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GLOSSARY

Irrotational fluid flow
When individual parcels of a frictionless incompressible fluid initially at
rest cannot be caused to rotate, the fluid flow is said to be irrotationnal.
Mathematically, the curl of the velocity field is zero.

Newtonian fluid
Fluid in which the viscous stresses arising from its flow, at every point,
are linearly proportional to the local strain rate.

Plastic collapse
Indefinitely increasing deformations under constant loads.

Representative Elementary Volume
The minimum volume above which the average field variables of interest
do not vary as the volume used for averaging is increased. Noted “REV”.
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IN ELASTICITY





CHAPTER 1

REVIEW OF TENSOR ALGEBRA

Physical laws should be independent of the position and orientation of the observer. There-
fore, equations that describe physical laws are vector or tensor equations, since vectors and
tensors transform from one system to another in such a way that if the vector or tensor equa-
tion holds for one coordinate system, it holds for any other coordinate system not moving
relative to the first on, i.e. in any other coordinate system in the same reference frame.
Invariance in the form of a physical law referred to two frames of reference in acceler-
ated motion relative to each other is more difficult and requires tensors in four-dimensional
space-time. In what follows, we provide a brief overview of tensor algebra as it pertains
to continuum mechanics. We use the so-called Einstein’s notation for repeated indices,
so that when an index appears at least twice in an expression, that means that there is a
summation over the values of that index. For example, if i ∈ [1, ..., n] and j ∈ [1, ...,m]:

viei =

n∑
i=1

viei (1.1)

aii =

n∑
i=1

aii (1.2)

aijbij =

m∑
j=1

n∑
i=1

aijbij (1.3)
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4 REVIEW OF TENSOR ALGEBRA

1.1 Vectors

In three-dimensional Euclidian space, vectors are physical quantities that possess magni-
tude and direction and obey certain laws. Scalars, on the other hand, have no direction
associated with them, although some scalars may have positive or negative values associ-
ated with them. Vectors are conventionally represented by an arrow, which points in the
direction associated with the vector and has length proportional to the magnitude of the
vector. Typical examples include forces, velocity, and acceleration.

A vector can be noted −→v , v or v. A unit vector is a vector of norm (or length) equal
to one. In 3D, a direct orthonormal basis is formed by three orthogonal unit vectors e1,
e2 and e3 that are oriented in such a way that the angles (e1, e2), (e2, e3) and (e3, e1) are
+90o, where positive is counter-clockwise. A vector v is decomposed as:

v = v1e1 + v2e2 + v3e3 (1.4)

where the scalars v1, v2 and v3 are called the components of v in directions 1, 2 and 3,
respectively. The scalar product between two vectors a and b is noted a · b and is defined
as:

a · b =

3∑
i=1

ai bi ei (1.5)

The cross product between two vectors a and b is noted a× b and is defined as:

a× b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (1.6)

The vector a × b is orthogonal to a and b and the vectors a, b and a × b form a direct
orthogonal basis. The norm of a vector v can be calculated as:

|v| =
√
v · v (1.7)

Below are some remarkable properties of the cross product:

a× (b× c) = (a · c)b− (a · b)c (1.8)

(a× d) · (b× c) = (a · b)(c · d)− (a · c)(b · d) (1.9)

The following is known as Jacobi’s formula:

a× (b× c) + b× (c× a) + c× (a× b) = 0 (1.10)

1.2 Matrices and tensors of order 2

1.2.1 Matrices

1.2.1.1 Basic operations
Matrices of the same order add term by term, i.e.

[A]± [B] = [C] (1.11)

is calculated as:
∀i, j, Aij ±Bij = Cij (1.12)
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Matrices must be conformable or else they cannot be multiplied. Matrices A and B are
conformable and can be multiplied in the order AB, if the first matrix has the same number
of columns as the second matrix has rows. Assuming that A has n columns and B has n
rows, the two matrices are then multiplied as follows:

[A][B] = [C] (1.13)

is calculated as:

∀i, j,
n∑
k=1

Aik ±Bkj = Cij (1.14)

In general, matrix multiplication is non-commutative, i.e.

[A][B] 6= [B][A] (1.15)

Matrix multiplication is associative, i.e.

([A][B]) [C] = [A] ([B][C]) (1.16)

1.2.1.2 Special matrices
A diagonal matrix is a square matrix with nonzero elements only on the main diagonal, i.e.
the elements Mij of the diagonal matrix [M ] are non-zero if and only if i = j. An identity
matrix, denoted by [I], is a diagonal matrix with each diagonal element equal to unity. The
elements of the identity matrix are δij , which is the Kronecker delta: δij = 1 if i = j and
δij = 0 otherwise.

The transpose of a matrix [M ] is noted [M ]T is the matrix obtained by interchanging rows
and columns, i.e. for all i,j: MT

ij = Mji. The transpose of a matrix product is:

([M1][M2][M3]...[Mn])
T

= [Mn]T ...[M3]T [M2]T [M1]T (1.17)

A symmetric matrix is a square matrix with equal elements in the positions symmetri-
cally placed with respect to the main diagonal, i.e. ∀i, j, Mij = Mji. A skew or
anti-symmetric matrix is such that ∀i, j, Mij = −Mji, which implies that the diago-
nal elements are all zero. We can always substitute a matrix [A] by the summation of a
symmetric matrix [B] and an anti-symmetric matrix, as follows:

[A] = [B] + [C], [B] =
1

2

(
[A] + [A]T

)
, [C] =

1

2

(
[A]− [A]T

)
(1.18)

The inverse [M ]−1 of a matrix [M ] is defined as:

[M ]−1[M ] = [M ][M ]−1 = [I] (1.19)

A matrix [M ] is said to be orthogonal if:

[M ]T [M ] = [M ][M ]T = [I] (1.20)

Therefore, for an orthogonal matrix we have:

[M ]T = [M ]−1 (1.21)
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1.2.1.3 Determinant of a matrix
A matrix is singular (i.e., non-invertible), if, and only if, its determinant is zero. Geo-
metrically, the determinant can be viewed as the volume scaling factor of the linear trans-
formation described by the matrix. This is also the signed volume of the n-dimensional
parallelepiped spanned by the column or row vectors of the matrix. The determinant is
positive or negative according to whether the linear mapping preserves or reverses the ori-
entation of n-space [21]. The determinant of a matrix [A] is noted det(A) or |A|. The
Leibniz formula for the determinant of an n x n matrix [A] is:

det(A) =
∑
σ∈Sn

(sgn(σ))

n∏
i=1

ai,σi (1.22)

Here the sum is computed over all permutations σ of the set {1, 2, ..., n}. A permutation is
a function that reorders this set of integers. The value in the ith position after the reordering
σ is denoted by σi. For example, for n = 3, the original sequence 1, 2, 3 might be reordered
to σ = [2, 3, 1], with σ1 = 2, σ2 = 3, and σ3 = 1. The set of all such permutations (also
known as the symmetric group on n elements) is denoted by Sn. For each permutation σ,
sgn(σ) denotes the signature of σ, a value that is +1 whenever the reordering given by σ
can be achieved by successively interchanging two entries an even number of times, and
-1 whenever it can be achieved by an odd number of such interchanges. For a 2 x 2 matrix
[A], it can be shown that:

det(A) = A11A22 −A12A21 (1.23)

For a 3 x 3 matrix, it can be shown that:

det(A) = A11 det

([
A22

A32

A23

A33

])
(1.24)

−A12 det

([
A21

A31

A23

A33

])
+A13 det

([
A21

A31

A22

A32

])

1.2.1.4 Eigenvalues and eigenvectors
A vector v is an eigenvector of the matrix [M ] if:

[M ]v = λv (1.25)

in which λ is a scalar called an eigenvalue of the matrix [M ]. Equation 1.25 is true if and
only if:

([M ]− λ[I])v = 0 (1.26)

If the vector v is non zero, equation 1.26 implies that the determinant of the matrix
([M ]− λ[I]) is zero:

det ([M ]− λ[I]) = 0 (1.27)
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By developping the determinant for a 3x3 matrix, we obtain:

det ([M ]− λ[I]) = det


M11 − λ
M21

M31

M12

M22 − λ
M32

M13

M23

M33 − λ


 (1.28)

= (M11 − λ) det

[
M22 − λ
M32

M23

M33 − λ

]

−M12 det

[
M21

M31

M23

M33 − λ

]

+M13 det

[
M21

M31

M22 − λ
M32

]

which can be re-arranged as:

det ([M ]− λ[I]) = −λ3 +A1λ
2 −A2λ +A3 (1.29)

in which:

A1 = M11 +M22 +M33 (1.30)

A2 = (M11M22 −M12M21) + (M22M33 −M23M32) + (M11M33 −M13M31)

A3 = det[M ]

The three coefficients A1, A2 and A3 are frame invariants, and the characteristic equation
(equation 1.29) has three real solutions, referred to as eigenvalues (noted λ1, λ2 and λ3).
Correspondingly, there are three eigenvectors v1, v2 and v3, which can be found by solving
the following equations:

∀i = 1, 2, 3, [M ]vi = λivi (1.31)

Any sqaure matrix can be transformed to the base of eigen vectors. Noting n1, n2 and n3

the eigenvectors, we have:

M = λ1 n1 ⊗ n1 + λ2 n2 ⊗ n2 + λ3 n3 ⊗ n3 (1.32)

The stress tensor σ is often times written in the form of a square matrix. The eigenvalues
of the stress matrix (λ1 = σ1, λ2 = σ2 and λ3 = σ3) define the values of the so-called
principal stresses. The normalized eigenvectors n1, n2 and n3 define the directions of the
principal stresses.

1.2.1.5 Rotation matrices
A rotation matrix [Q] is an orthogonal matrix with a determinant equal to unity:

[Q]T [Q] = [I], [Q][Q]T = [I], det[Q] = 1 (1.33)
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In 2D, the matrix that operates a rotation by an angle θ in a direct orthonormal coordinate
system is:

R(θ) =

(
cos θ sin θ

− sin θ cos θ

)
(1.34)

Figure 1.1 illustrates the transformation operated by R(θ). To transform a vector, the
following operation is needed:

v′ = R(θ) · v (1.35)

To transform a matrix (or a tensor of order 2), the following operation is needed:

A′ = R(θ) ·A · RT (θ) (1.36)

Figure 1.1 Transformation operated byR(θ). Image taken from Wikipedia, Jan. 2020.

In a 3D Euclidian space, the following rotation matrices operate rotations about the x, y
and z axes respectively:

Rx(θ) =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (1.37)

Ry(θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (1.38)

Rz(θ) =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (1.39)

The rotation matrix that accounts for all three rotations is the product of the three operators
above:

R(α, β, γ) = Rx(α) · Ry(β) · Rz(γ) (1.40)
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1.2.2 Tensors of order 2

A second-order tensor is a linear function which associates a vector (say, b) to another
vector (say, a). A second-order tensor is usually noted with a capital letter, asA or A:

b = A (a) (1.41)

By definition of linearity,A satisfies:

A (λa) = λb (1.42)

in which λ is a scalar; and:
A (a1 + a2) = b1 + b2 (1.43)

if b1 = A (a1) and b2 = A (a2).

A second order tensor A can be represented in a matrix form. For example, in a three-
dimensional space:

[A] =

A11

A21

A31

A12

A22

A32

A13

A23

A33

 (1.44)

As a result, matrix properties apply to tensors of order 2. Some of these properties are
summarized below.

The transpose of a tensorA of order 2 is notedAT and is defined as:

∀i, j, ATij = Aji (1.45)

A tensorA of order 2 is symmetric if, and only if:

A = AT (1.46)

A tensorA of order 2 is anti-symmetric (also called “skew”) if, and only if:

A = −AT (1.47)

A tensor can always be decomposed into a symmetric part As and an anti-symmetric part
As as follows:

A = As +Aa, As =
1

2

(
A+AT

)
, Aa =

1

2

(
A−AT

)
(1.48)

The tensorial product of two vectors a and b is a second-order tensor noted a ⊗ b and
defined as:

a⊗ b =

a1b1

a2b1

a3b1

a1b2

a2b2

a3b2

a1b3

a2b3

a3b3

 (1.49)

which can also be noted as:

a⊗ b =

(
3∑
i=1

aiei

)
⊗

 3∑
j=1

bjej

 =

3∑
i=1

3∑
j=1

aibjei ⊗ ej = aibjei ⊗ ej (1.50)
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in which we used Einstein’s notation in the right-hand side member of the equation. The
tensorial product of two tensors of order 2 A and B is a fourth order tensor noted A⊗B
and defined as:

A⊗B =
∑
i

∑
j

∑
k

∑
l

AijBkl ei ⊗ ej ⊗ ek ⊗ el (1.51)

The dot product between two vectors is the scalar product of these two vectors. The dot
product between two tensors of order 2 A and B is a tensor of order 2, noted A ·B and
defined in index notation as:

∀i, j, (A ·B)ij =
∑
k

AikBkj = AikBkj (1.52)

in which we used Einstein’s notation in the right-hand side of the equation above. The
dot product can be viewed as a tensorial product in which the last index of the first tensor
is “contracted” (or merged) with the first index of the second tensor. As a result, the dot
product between a vector v and a tensor of order 2 A is a vector noted v ·A and defined
in index notation as:

∀i, (v ·A)i =
∑
k

vkAki = vkAki (1.53)

Similarly, the dot productA · v is defined as:

∀i, (A · v)i =
∑
k

Aikvk = Aikvk (1.54)

in which we used Einstein’s notation in the right-hand side of the two equations above.
The double-dot product is a double contraction of indices, i.e. the double-dot product of
two tensors of order 2 A and B is such that the second index of A is set equal to the first
index ofB, and the first index ofA is set equal to the second index of B. The double-dot
product of two tensors of order 2A andB is a scalar notedA : B and is defined as:

A : B =
∑
i,j

Aij Bji = Aij Bji (1.55)

in which we used Einstein’s notation in the right-hand side of the equation above. We can
readily see that:

A : B = Aij Bji = BjiAij = B : A (1.56)

1.3 Higher-order tensors

Let us consider an Euclidian spaceE endowed with an othronormal base (e1, e2, e3). Any
tensor of order 2A can be decomposed into:

A =

3∑
i=1

3∑
j=1

Aij ei ⊗ ej (1.57)

Any tensor of order 2 is a bilinear function of E, i.e., in the equation above, every tensor
Aij ei ⊗ ej is linear in ei and in ej . More generally, a tensor of order p is a p-linear
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function of E, i.e. a function that is linear in each of its p arguments. Noting T (p) a tensor
of order p, we have:

T (p)
(
ek1 , ek2 , ..., ekp

)
= Tk1k2...kp (1.58)

or equivalently:

T (p) =

3∑
k1=1

3∑
k2=1

...

3∑
kp

Tk1k2...kp ek1 ⊗ ek2 ⊗ ...⊗ ekp (1.59)

A scalar is a tensor of order 0 (for example, mass or temperature). A vector is a tensor of
order 1 (for example, displacement, velocity or flux). Stress and strain are tensors of order
2. The stiffness that relates a stress to a strain is a tensor of order 4.

The tensorial product of a tensor T (p) of order p and of a tensor T ′(q) or order q is a
tensor of order p+ q, noted T (p) ⊗ T ′(q) and defined as:

T (p) ⊗ T ′(q) = (1.60)

3∑
k1=1

3∑
k2=1

...

3∑
kp

3∑
kp+1

...

3∑
kp+q

Tk1k2...kp T ′kp+1kp+2...kp+q ek1 ⊗ ek2 ⊗ ...⊗ ekp ⊗ ekp+1
⊗ ...⊗ ekp+q

The dot, double-dot and triple dot products reduce the order of the resulting tensor by, 2, 4
and 6, respectively, by contracting 2, 4 and 6 indices, as follows:

T (p) · T ′(q) = Tk1k2...kp−1ki T ′kikp+2...kp+q ek1 ⊗ ek2 ⊗ ...⊗ ekp−1 ⊗ ekp+2 ⊗ ...⊗ ekp+q
(1.61)

T (p) : T ′(q) = Tk1k2...kp−2kjki T ′kikjkp+3...kp+q ek1⊗ek2⊗...⊗ekp−2
⊗ekp+3

⊗...⊗ekp+q
(1.62)

T (p) ... T ′(q) = Tk1k2...kp−3klkjki T ′kikjklkp+4...kp+q ek1⊗ek2⊗...⊗ekp−3
⊗ekp+4

⊗...⊗ekp+q
(1.63)

in which we are using Einstein’s notation for repeated indices. Higher-order dot products
are defined in the same way as the above.

A well-known double-dot product is the one that relates the stress tensor to the strain
tensor:

σ = C : ε (1.64)

In index notation:
∀i, j, σij = Cijkl εlk (1.65)

in which there is a summation on the k and l indices, according to Einstein’s notation.
Other interesting results follow.

ei · C · ej = Cikljek ⊗ el (1.66)

in which there is a summation on the k and l indices, according to Einstein’s notation.

(ei ⊗ ej) : C : (ek ⊗ el) = Cijkl (1.67)

in which there is no summation.
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1.4 Differential operations with tensors

1.4.1 Derivative of a scalar function by a tensor

Consider a scalar function ψ that depends on a second-order tensorial variable A. Let us
assume that ψ is differentiable in terms of the components ofA. We have:

dψ =
∂ψ

∂Aij
dAij (1.68)

in which Einstein’s convention is used for repeated indices. We note:

∂ψ

∂A
=

∂ψ

∂Aij
ei ⊗ ej (1.69)

again, with Eintein’s convention for the repeated indices. From equations 1.68 and 1.69,
we have:

dψ =
T∂ψ

∂A
: dA (1.70)

Equation 1.70 is the intrinsic definition of the derivative of ψ byA. Note that the definition
takes the same form ifA is a first- or higher-order tensor.

1.4.2 Gradient of a tensor field

The gradient of a scalar tensor T is noted∇T or gradT and is defined to be the vector such
that for any unit vector n, the directional derivative dT/ds in the direction of n is given by
the scalar product:

dT

ds
= ∇T · n (1.71)

The geometric interpretation of the gradient, illustrated in 2D in Figure 1.2, follows from
the definition in equation 1.72, if we take n as the tangent vector t to the level surface
T (x1, x2, x3) = constant. Then, dT/ds = 0 and equation 1.72 implies that:

∇T · t = 0 (1.72)

According to equation 1.72, since the gradient vector is perpendicular to every tangent
vector at the point considered, the gradient vector must be normal to the level surface
through that point.

Moreover, the rate of change of the function T with respect to distance in the direction
n of increasing T normal to the surface T (x1, x2, x3) = constant, namely ∇T · n, is
equal to |∇T | since ∇T is parallel to the normal and since ∇T · n is positive because n
was taken as the direction of increasing T . The unit normal vector to the level surface,
taken in the direction of increasing T , is therefore given by:

n =
∇T
|∇T |

(1.73)

Other important applications of the gradient in mechanics relate the force vector to the gra-
dient of the potential of a conservative force field, and the velocity vector to the gradient
of a velocity potential in irrotational fluid flow.
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Figure 1.2 Gradient of a scalar field. Image taken from [2].

Let us now consider a vector field Φ, which associates the vector Φ (X) to the vector
X . Let us assume that the components Φi of Φ are differentiable. We have:

dΦ =
∂Φ

∂Xj
dXj =

(
∂Φ

∂Xj
⊗ ej

)
· dX (1.74)

Therefore, there exists a tensor of order 2 that relates the differentials dX and dΦ. That
tensor, noted∇Φ, is the gradient of Φ:

dΦ = ∇Φ · dX (1.75)

so that:
∇Φ =

∂Φ

∂Xj
⊗ ej =

∂Φi
∂Xj

ei ⊗ ej (1.76)

Equation 1.76 is the intrinsic definition of the gradient of Φ.

Let us now consider a tensor field or order p, X → T (p) (X). The differential of T (p)

is written:

dT (p) =
∂T (p)

∂Xj
dXj =

(
∂T (p)

∂Xj
⊗ ej

)
· dX (1.77)

in which Eintein’s convention is adopted for repeated indices. The gradient that relates
linearly the differentials dT (p) and dX is therefore a tensor of order p + 1, intrinsically
defined as:

dT (p) = ∇
(
T (p)

)
· dX (1.78)

In the orthonormal base:

∇
(
T (p)

)
=
∂T (p)

∂Xi
⊗ ei (1.79)

1.4.3 Divergence of a tensor field

1.4.3.1 Definition
Let us consider a tensor T (p) of order p ≥ 1. The divergence of T (p) is noted divT (p) and
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is defined as the contraction of the two last indices of ∇
(
T (p)

)
. By definition, divT (p) is

thus a tensor of order p− 1. For example, if p = 1:

divT = ∇T : I =
∂Ti
∂Xj

δji =
∂Ti
∂Xi

(1.80)

with, as always, Einstein’s convention for repeated indices. If p = 2:

div
(
T
)

= ∇T : I =

(
∂Tij
∂Xk

ei ⊗ ej ⊗ ek
)

:
(
δlpel ⊗ ep

)
=
∂Tij
∂Xk

δkjei =
∂Tij
∂Xj

ei

(1.81)

1.4.3.2 Divergence theorem
In general, tensors vary from point to point and represent a tensor field, i.e. a tensor func-
tion of position. To determine the unknown tensor functions, one needs to derive the differ-
ential equations governing the way the stress and deformation vary in the neighborhood of
a point and with time. In addition, the constitutive equations (e.g., stress-strain equations)
and boundary and initial conditions must be added to obtain a well-defined mathemati-
cal problem to solve for the stress and deformation distributions or the displacement or
velocity fields.

The differential equations expressing locally the conservation of mass, momentum, and
energy are derived from integral forms of the equations of balance expressing fundamental
postulates of continuum mechanics. The derivations make use of certain integral trans-
formation formulas, especially the divergence theorem (Gauss’s theorem). In the invari-
ant form shown below, this theorem is independent of any choice of coordinates, but it
is simpler to present the derivation of Gauss’s theorem in terms of rectangular Cartesian
components, as shown in Figure 1.3.

Figure 1.3 Outgoing normal vector at an infinitesimal surface element on volume V. Image taken
from [2].

The derivation of Gauss’s theorem makes use of the following relationship between a
volume integral and a surface integral over the bounding surface of the volume. If the scalar
field T (x1, x2, x3) has continuous first partial derivatives with respect to the rectangular
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Cartesian coordinates xi, then:

∀i = 1, 2, 3,

∮
S

T ni dS =

∫
V

∂T

∂xi
dV (1.82)

Here the unit vector components ni are the direction cosines of the outward normal to the
surface S at a point in the surface area element dS; the ni are functions of position on the
surface. The restrictions on the surface regularity are not great; it will be sufficient if the
surface is piecewise smooth and is topologically such that it clearly defines an inside and
an outside. The volume need not be simply connected, provided that the surface integral
is extended over all the bounding surfaces, and the outer normal on each is taken to point
away from the enclosed volume. It should be possible by inserting a finite number of
interior boundaries to display the total volume as the sum of a finite number of volumes
each bounded by simple closed surfaces.

If equation 1.82 is written with the three components vi of a vector v successively
substituted for T and the three resulting equations are added, the result is:∮

S

vi ni dS =

∫
V

∂vi
∂xi

dV (1.83)

in the Cartesian form, and: ∮
S

v · n dS =

∫
V

div(v)dV (1.84)

in the vector form. Equations 1.83 and 1.84 are the divergence theorem, or Gauss’s theo-
rem, which states that the integral of the outer normal component of a vector over a closed
surface is equal to the integral of the divergence of the vector over the volume bounded by
the closed surface (subject, of course, to the same kind of restrictions on the continuity of
derivatives, etc. as were stated above for the component equations).

Finally, if equation 1.82 is written with the components of a second-order tensorA suc-
cessively substituted for T, and the corresponding equations are added, we get the following
form of the divergence theorem:∮

S

Aij nj dS =

∫
V

∂Aij
∂xj

dV (1.85)

in Cartesian form and: ∮
S

A · n dS =

∫
V

div (A) dV (1.86)

in tensor form.

1.4.4 Laplacian operator

The Laplacian of a tensor order p T (p) is noted ∆T (p) and is calculated as:

∆T (p) = div
(
∇T (p)

)
(1.87)

By definition, the Laplacian of T (p) is a tensor of order (p+ 1)− 1 = p.
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1.4.5 Curl of a vector

The curl of a vector field v is noted curl (v) or curl (v) and is defined as:

curl (v) = ∇× v (1.88)

For example, in a 3D space and in Cartesian coordinates:

curl (v) =

(
∂v3

∂x2
− ∂v2

∂x3

)
e1 +

(
∂v1

∂x3
− ∂v3

∂x1

)
e2 +

(
∂v2

∂x1
− ∂v1

∂x2

)
e3 (1.89)

1.4.6 Formula sheet: gradient, divergence, Laplacian and curl operators in
Cartesian, cylindrical and spherical coordinate systems

Figure 1.4 below provides the expressions of basic operators applied to a vector in all
coordinate systems. In the four next pages, these operators are expressed more explicitly
for both vectors and scalars. The text is in French, but the formalism is the same as that
used in the course.

Figure 1.4 Gradient, divergence, Laplacian and curl of a vector in Cartesian, cylindrical and
spherical coordinate systems. Image taken from calculusandmathematicsformulas.blogspot.com.
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PROBLEMS

1.1 Prove equations 1.8, 1.9 and 1.10.

1.2 Prove equations 1.23 and 1.24.

1.3 Find the eigenvalues of [A], and for each eigenvalue, find an eigenvector, where:

[A] =

[
−3

3

15

9

]

1.4 Let us consider an Euclidian space of dimension 3, with the Cartesian coordinate
system (e1,e2,e3). In the following, tensors noted in lower case are vectors, tensors noted
with capital letters are tensors of order 2 and tensors noted in calligraphic font are tensors
of order 4. Develop the following expressions in index notation:

a · T · b, a⊗ b : T , T ⊗A ... B ⊗ c

a⊗ b : T : c⊗ d, T ...
.
a⊗ b⊗ c⊗ d

1.5 Prove the formulas given in Figure 1.4.

1.6 A force of magnitude F acts in a direction radially away from the axes origin, at a
point with coordinates (a/3, 2b/3, 2c/3) on the surface of the ellipsoid of equation:(x1

a

)2

+
(x2

b

)2

+
(x3

c

)2

= 1

Determine the component of the force in the direction normal to the surface.

1.7 In the following, U is a scalar and a is a vector. Prove the following equations:

div (∇U) = ∆U (1.90)

∇× (∇U) = 0 (1.91)

∇ · (∇× a) = 0 (1.92)

∇× (∇× a) = ∇ (∇ · a)−∆a (1.93)

1.8 In the following, U and V are scalars and a and b are vectors. Prove the following
equations:

∇ (U V ) = V ∇(U) + U∇(V ) (1.94)

∇ · (U a) = a ·∇(U) + U (∇ · a) (1.95)

∇× (U a) = ∇(U)× a+ U (∇× a) (1.96)

∇ · (a× b) = b · (∇× a)− a · (∇× b) (1.97)

∇× (a× b) = (∇ · b)a− (∇ · a) b+ (b ·∇)a− (a ·∇) b (1.98)

∇ (a · b) = a× (∇× b) + b× (∇× a) + (b ·∇)a+ (a ·∇) b (1.99)





CHAPTER 2

ELEMENTS OF CONTINUUM MECHANICS

2.1 Basic assumptions and principles of Continuum mechanics

The mechanics of a continuous medium is that branch of mechanics that relates the de-
formation or flow of solids, liquids, and gases under the influence of external forces. The
term continuous refers to the simplifying concept underlying the analysis: we disregard
the molecular structure of matter and picture it as being without gaps or empty spaces.
We further suppose that all the mathematical functions entering the theory are continuous
functions, except possibly at a finite number of interior surfaces separating regions of con-
tinuity. This statement implies that the derivatives of the functions are continuous too, if
they enter the theory, since all functions entering the theory are assumed continuous. This
hypothetical continuous material we call a continuous medium or continuum.

Given a solid body acted upon contact forces (surface forces) applied to the surface of
the body/ and or forces acting throughout the body (body forces), the two basic questions
that are posed in the study of continuum mechanics are: (i) How are the forces transmitted
through the interior of the body? (ii) What are the resulting deformations?

Deformations refer to the differences in the shape and size of the body prior and after
the load application, that is, the natural shape and size of the body are in general changed
by the application of loads (Figure 2.1.a).

Transmission of the forces refers to the internal force distribution resulting from the
application of loads together with the types and locations of the supports. The resultants as-
sociated with this internal force distribution can be determined by taking a section through
the body (Figure 2.1.b).

Theoretical Geomechanics.
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Figure 2.1 (a) Undeformed and deformed configurations. (b) Section showing internal force
resultants. Image taken from [2].

The formulation of a solid mechanics problem involves establishing the framework
within which the relationship(s) between the loads, the internal forces and the deforma-
tions can be determined.

First Basic Element: Equilibrium and Stress. The first element in the formulation of
a continuum mechanics problem refers to the requirement that the body or any part of the
body is in a state of equilibrium or that the motion is in accordance with Newton’s second
law. This is one of the basic physical laws that govern any and all solutions to problems
in solid mechanics. This basic physical law can be used to establish relationships between
the loads and the reactions by drawing a free body diagram (FBD) and requiring the entire
body to be in equilibrium. Also, equilibrium equations can be written for portions of the
body obtained by sectioning to establish the force resultants acting on a section through
the body (internal forces).

Second Basic Element: Deformation and Strain. The second basic idea of solid
mechanics arises in connection with the need to be able to describe the deformations that
are associated with the differences in the undeformed and deformed configurations. In the
study of statics and dynamics, bodies are generally assumed to be rigid and hence undergo
what are termed rigid body motions. The kinematics that is appropriate for discussing
the motion of a rigid body deals with translations and rotations. When formulating the
kinematics for a deformable body it is also necessary to describe changes in the size of the
body and changes in the shape of the body in addition to any rigid body motions that may
result.

Third Basic Element: Material behavior. In the first basic element that refers to the
state of stress and equilibrium of a body, we introduced the unknown normal and shear
stresses acting on the body. In the second element that refers to deformation and strain, the
additional unknown variables are the displacements and the strains. The equations relating
these unknowns are the strain-displacement relations and equilibrium equations, which are
insufficient for the solution of the boundary value problem. Thus, the third basic element
introduces the relationship between the kinetic variables (stresses) and the kinematic vari-
ables (displacements and strains), thus bringing into balance the number of equations and
unknowns. The relationships between the force and displacement variables for a given ma-
terial are generally referred to as material behavior. This discussion of material behavior
will characterize, both qualitatively and quantitatively, the basic responses of different ma-
terials to mechanical and thermal inputs by specifying the form of, as well as the constants
appearing in, the relations between the force and displacement variables.
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2.2 Stress tensor

2.2.1 Lemma of the tetrahedron and definition of Cauchy’s stress tensor

Assume that at a point O in a continuous medium a set of rectangular coordinates is drawn,
and a free body is chosen in the form of a tetrahedron or triangular pyramid bounded by
parts of the three coordinate planes through O and a fourth plane ABC not passing through
O, as shown in Figure 2.2. The outward normal to the oblique plane is noted n and the
surface traction vector whose direction is positive for the sign convention in continuum
mechanics for geomaterials (compression positive), is noted S.

Figure 2.2 Cauchy’s tetrahedron. Image taken from [2].

The components of the unit vector normal n are the direction cosines of its direction,
i.e.

n1 = cos
(
ÂON

)
, n2 = cos

(
B̂ON

)
, n3 = cos

(
ĈON

)
(2.1)

Next, we denote the area of the four triangles comprising the surface of the tetrahedron as:

A1 = A(OBC), A2 = A(OCA), A3 = A(OAB), A = A(ABC) (2.2)

The altitude ON, of length h, is a leg of the three triangles ANO, BNO and CNO with
hypotenuses OA, OB, and OC. Therefore:

h = OAn1 = OB n2 = OC n3 (2.3)

Finally, the volume of the tetrahedron is one third of the base multiplied by the altitude.
Considering each of the four bases in turn, four equivalent expressions for the volume V
are obtained:

V =
1

3
hA =

1

3
OAA1 =

1

3
OBA2 =

1

3
OC A3 (2.4)

From equations 2.3 and 2.4, we have:

A1 = An1, A2 = An2, A3 = An3 (2.5)
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These equations express the fact that three on the faces are projections of the oblique face
onto the coordinate planes. We shall now consider the equilibrium of the free body in the
three Cartesian coordinate directions. Suppose that the traction S is balanced by three
surface distributions of traction T1, T2 and T3, acting on the faces OBC, OCA and OAB
respectively. The surface tractions Tj do not necessarily act orthogonal to the faces where
they are applied and each have three components T1j , T2j and T3j in directions 1, 2 and 3
of the Cartesian space. As a result, the equilibrium equations are:

S1A = T11A1 + T12A2 + T13A3 (2.6)
S2A = T21A1 + T22A2 + T23A3

S3A = T31A1 + T32A2 + T33A3

where S1, S2 and S3 are the components of the surface traction vector S in directions 1, 2
and 3, respectively. From equations 2.5 and 2.6, we have:

S1 = T11 n1 + T12 n2 + T13 n3

S2 = T21 n1 + T22 n2 + T23 n3

S3 = T31 n1 + T32 n2 + T33 n3

⇒ ∀i = 1, 2, 3, Si = Tijnj (2.7)

The second-order tensor that associates the surface traction vector S to the unit normal
vector n is called Cauchy’s stress tensor and it is noted σ. By construction:

σ (x, t) · n = S (x, t,n) (2.8)

∀i = 1, 2, 3, σij (x, t) nj = Si (x, t,n) (2.9)

in which x is the position vector and t is the time variable. The stress component σij can
physically be understood as the surface force that is applied in the direction of ei on a
surface of normal ej .

2.2.2 Equilibrium of forces - Cauchy’s equations of motion

The momentum principle for a collection of particles states that: “the time rate of change
of the total momentum of a given set of particles equals the vector sum of all the external
forces acting on the particles of the set”, provided that Newton’s third law of action and
reaction governs the internal forces. Consider a given mass of medium, instantaneously
occupying a volume V bounded by a surface S and acted upon by an external surface force
field t per unit area and by a body forces field b per unit of mass. The rate of change of
momentum of the given mass is d

dt

∫
V
ρvdV , in which ρ is the mass density of the material

and v is the velocity field of the medium. Then, the momentum balance expressed by the
postulate is: ∫

S

tdS +

∫
V

ρbdV =
d

dt

∫
V

ρvdV (2.10)

Introducing the Cauchy stress defined in Equation 2.9 in the above equation, we get:

∀i = 1, 2, 3,

∫
S

σijnjdS +

∫
V

ρbidV =
d

dt

∫
V

ρvidV (2.11)
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Now using the divergence theorem in the first term of the equation above, we obtain:

∀i = 1, 2, 3,

∫
S

σijnjdS =

∫
V

divi (σ) dV =

∫
V

∂σij
∂xj

dV (2.12)

Using the Reynolds transport theorem, which states that the time derivative of a volume
integral is equal to the volume integral of a time derivative, we obtain:

∀i = 1, 2, 3,
d

dt

∫
V

ρvidV =

∫
V

ρ
dvi
dt
dV (2.13)

where here, it is assumed that the mass density ρ does not vary over time. Now combining
equations 2.11, 2.12 and 2.13, we get:

∀i = 1, 2, 3,

∫
V

∂σij
∂xj

dV +

∫
V

ρbidV =

∫
V

ρ
dvi
dt
dV (2.14)

Equation 2.14 holds for an arbitrary volume V , and consequently at each point. This result
yields the Caushy’s equations of motion:

∀i = 1, 2, 3,
∂σij
∂xj

+ ρbi = ρ
dvi
dt

= ρ
d2ui
dt2

(2.15)

in which d2ui
dt2 is the acceration field in direction i. If the problem is static, we get:

∀i = 1, 2, 3,
∂σij
∂xj

+ fi = 0 (2.16)

in which fi = ρbi is the body force in direction i per unit of volume.

2.2.3 Equilibrium of moments - symmetry of the stress tensor

In a collection of particles whose interactions are equal, opposite, and collinear forces, the
time rate of change of the total moment of momentum for the given collection of particles
is equal to the vector sum of the moments of the external forces acting on the system. Using
the conservation of momentum equation (equation 2.10) and assuming that the continuum
considered is not subjected to any distributed couple, we have:∫

S

r × tdS +

∫
V

r × (ρb) dV =
d

dt

∫
V

r × (ρv) dV (2.17)

in which r = x1e1 + x2e2 + x3e3 is the position vector. In indicial notation:∫
S

eijkeixjtkdS +

∫
V

eijkeixjρbkdV =
d

dt

∫
V

eijkeixjρvkdV (2.18)

in which e is the third-order permutation tensor, defined as:

∀i, j, k, eijk =


0 when two indices are equal
+1 when the indices are 1,2,3 or an even permutation of 1,2,3
−1 when the indices are an odd permutation of 1,2,3

(2.19)



28 ELEMENTS OF CONTINUUM MECHANICS

One can show that the components of the permutation tensor can be calculated as follows:

eijk =
1

2
(i− j)(j − k)(k − i) (2.20)

Using the stress-traction relationship (Equation 2.9) and the divergence theorem, the first
term of Equation 2.18 can be rewritten as:∫

S

eijkeixjtkdS =

∫
S

eijkeixjσklnldS = ei

∫
V

∂ (eijkxjσkl)

∂xl
dV (2.21)

∫
S

eijkeixjtkdS = ei

∫
V

eijkδjlσkldV + ei

∫
V

eijkxj
∂σkl
∂xl

dV (2.22)

Using Reynold’s transport theorem, the third term of Equation 2.18 can be rewritten as:

d

dt

∫
V

eijkeixjρvkdV =

∫
V

eijkeiρ
dxjvk
dt

dV = ei

∫
V

eijkρ

(
vk
dxj
dt

+ xj
dvk
dt

)
dV

(2.23)
Substituting the two equations above into Equation 2.18, one gets:

ei

∫
V

eijkσkjdV + ei

∫
V

eijkxj
∂σkl
∂xl

dV + ei

∫
V

eijkxjρbkdV (2.24)

= ei

∫
V

eijkρ

(
vk
dxj
dt

+ xj
dvk
dt

)
dV

Cauchy’s equations of motion (Equations 2.15) impose that:

∂σkl
∂xl

+ ρbk = ρ
dvk
dt

(2.25)

Combining the two equations above provides:

ei

∫
V

eijkσkjdV = ei

∫
V

ρeijkvkvjdV (2.26)

In the right-hand side of the equation above, ρeijkeivjvk is the indicial notation for ρv×v,
which is zero. Therefore, for an arbitrary volume V :

ei

∫
V

eijkσkjdV = 0 (2.27)

Hence, at each point of the volume, we have:

σ23 = σ32 if i=1 (2.28)
σ31 = σ13 if i=2
σ12 = σ21 if i=3

This establishes the symmetry of the stress tensor in general, with no assumption of equi-
librium or uniformity of the stress distribution. The symmetry of the stress tensor is related
to the moment of momentum principle in the general non-polar case (i.e. no assigned trac-
tion couples or body forces and no couple stresses) and related to the moment equilibrium
condition.
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2.2.4 Principal stresses and stress invariants

Stress is a symmetric tensor of order and can thus be represented by a symmetric 3 x 3
matrix. According to Section 1.2.1.4, the eigenvalues of the stress matrix, are the roots of
the following characteristic equation:

det (σij − σδij) = −σ3 + I1σ
2 − I2σ + I3 (2.29)

in which σ is an eigenvalue and in which

I1 = σ11 + σ22 + σ33 = Tr (σ) (2.30)

I2 =
(
σ11σ22 − σ2

12

)
+
(
σ22σ33 − σ2

23

)
+
(
σ11σ33 − σ2

13

)
=

1

2

[
Tr (σ)

2 − Tr
(
σ2
)]

I3 = det (σ)

in which Tr is the trace operator (i.e., the sum of the diagonal coefficients of a matrix).
The three coefficients I1, I2 and I3 are frame invariants, and they are called the stress
invariants.

The characteristic equation is a polynomial of order 3 and therefore, there are three
roots σ1, σ2 and σ3 (note that there is only one index, as opposed to the stress tensor
components, which are referred to with two indices). The stress eigenvalues are called the
principal stress values. The corresponding eigenvectors v are called the principal stress
directions. Typically, we order the principal stresses as follows: σ1 ≥ σ2 ≥ σ3. σ1v1⊗v1

is called the major principal stress, σ3v3 ⊗ v3 is called the minor principal stress and
σ2v2 ⊗ v2 is called the intermediate principal stress. Since the stress matrix is symmetric,
it can be shown that the eivenvectors are orthogonal. It is possible to write the stress tensor
as:

σ = σ1v1 ⊗ v1 + σ2v2 ⊗ v2 + σ3v3 ⊗ v3 (2.31)

In other words, the stress matrix is diagonal in the principal base (v1, v2, v2). In the
principal stress base, the stress invariants have a simpler expression:

I1 = σ1 + σ2 + σ3 (2.32)

I2 = σ1σ2 + σ2σ3 + σ1σ3

I3 = σ1σ2σ3

The stress tensor is commonly decomposed into a volumetric part, which represents
the effects of an isotropic pressure, and a deviatoric part, which represents a state of pure
shear. The volumetric part of the stress tensor is its mean value p, times the identity tensor,
where:

p =
1

3
Tr (σ) =

1

3
I1 (2.33)

The deviatoric stress tensor s is defined as the difference between the stress tensor and the
volumetric part of the stress tensor:

s = σ − pI (2.34)
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Since subtracting a constant normal stress in all directions will not change the principal
directions, σ and s have the same principal axes. The principal values of the deviatoric
stress tensor, s1, s2 and s3, can be found in the same manner as the principal values of the
stress tensor, σ1, σ2 and σ3:

det (s− sI) = 0 ⇒ s3 − J1s
2 − J2s− J3 = 0 (2.35)

in which J1, J2 and J3 are the deviatoric stress invariants:

J1 = Tr (s) = Tr (σ)− 3× 1

3
Tr (σ) = 0 (2.36)

J2 = −1

2
(siisjj − sijsij) =

1

2
sijsij

J3 = det(s)

2.2.5 Rotation of the stress tensor

Stress is a tensor field that is expressed at a material point. In 3D, a material point can be
thought of as a cube of infinitesimal dimensions. When the faces of the cube are normal to
the Cartesian axes ex, ey and ez , the stress is said to be expressed in the base (ex, ey , ez)
and can be written in the form of a 3 x 3 matrix, as follows:

[σ]ex, ey, ez =


σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (2.37)

in which we used the property of symmetry of the stress tensor. As written, the knowledge
of the stress tensor only informs on the stress that is applied on faces that are normal to
ex, ey , or ez . For example, that could be the stress at a point P located at a depth h,
subjected to the vertical stress σyy = γh and to horizontal stresses σxx and σzz (typically
calculated from the coeffiicent of pressures at rest). Often times, it is necessary to know
the state of stress on planes other than those normal to the reference axes. For example, if
P is located on a fault that has a certain angle θ compared to the horizontal, then it becomes
necessary to calculate the state of stress on a plane that has a normal oriented by an angle θ
compared to ey , as illustrated in Figure 2.3. As a result, an operation is needed to calculate
the state of stress in a new coordinate system (here, e′x = ex+θ, e′y = ey+θ, e′z = ez).
This operation is a rotation by an angle θ about the z-axis, which, according to Subsection
1.2.1.5, is mathematically expressed as:

[σ]e′x, e′y, e′z = Rz(θ) [σ]ex, ey, ez R
T
z (θ) (2.38)

in which:

Rz(θ) =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (2.39)
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The development of equation 2.38 gives:

σx′x′ = σxx cos2 θ + 2σxy sin θ cos θ + σyy sin2 θ (2.40)
σy′y′ = σxx sin2 θ − 2σxy sin θ cos θ + σyy cos2 θ

σz′z′ = σzz

σx′y′ = (σyy − σxx) sin θ cos θ + σxy
(
cos2 θ − sin2 θ

)
σy′z′ = σyz

σx′z′ = σxz

Using trigonometry rules, the equations above can be rewritten as:

σx′x′ =
σxx + σyy

2
+
σxx − σyy

2
cos 2θ + σxy sin 2θ (2.41)

σy′y′ =
σxx + σyy

2
− σxx − σyy

2
cos 2θ − σxy sin 2θ

σz′z′ = σzz

σx′y′ =
σyy − σxx

2
sin 2θ + σxy cos 2θ

σy′z′ = σyz

σx′z′ = σxz

Rotations about other axes are obtained in the same way, using compositions of rotations,
as explained in Subsection 1.2.1.5.

Figure 2.3 An example where a rotation of stress is needed: here the stress is known at every point
in the rock mass, but only for material points oriented with faces orthogonal to the unit vectors of
the Cartesian base. The components σxx, σyy , σzz , σxy , σxz and σyz are thus known (note that for
clarity, only σxx, σyy and σzz were represented in the sketch). But typically, what is needed is the
stress on a face oriented parallel to a fault, at an angle θ to the horizontal. Knowing the shear stress
on the fault plan could help understanding whether that fault slips or not, for instance.
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The same result can be obtained from equilibrium equations. For simplicity, let us
restrict ourselves to plane stress (i.e., to a state of stress in which there is a direction ei
such that all components of stress in that direction are zero, i.e, σ · ei = 0). The reasoning
is the same in 3D. Let us thus assume that a material point is subjected to a state of plane
stress in the plane (x,y), that is, the stress can be represented by the following 2 x 2 matrix:

[σ]ex, ey, =

(
σxx σxy

σxy σyy

)
(2.42)

We seek to express the state of stress at the same material point, on a plane of normal ex1

oriented by an angle θ compared to the x-axis, as shown in Figure 2.4. We note σ1 the
state of stress in the coordinate system (ex1, ex2). To calculate the components of σ1,
we consider the free body diagram of a wedge that is part of the material point, as shown
in Figure 2.5. Forces that apply on a face of normal ex1 are balanced by forces that are
applied on faces of normal ex and ey .

Figure 2.4 The material point in plane stress. (a) In 3D. (b) In 2D, before rotation. (c) In 2D, after
rotation. Image taken from [9].

Noting A0 the area of the face of the wedge that is normal ex, the force balance equa-
tions in directions ex1 and ey1 are obtained as follows:

A0

cos θ
σx1x1 = A0σxx cos θ +A0σxy sin θ +A0 tan θσxy cos θ +A0 tan θσyy sin θ(2.43)

A0

cos θ
σx1y1 = −A0σxx sin θ +A0σxy cos θ −A0 tan θσxy sin θ +A0 tan θσyy cos θ

from which we get:

σx1x1 = σxx cos2 θ + σxy sin θ cos θ + σxy sin θ cos θ + σyy sin2 θ (2.44)
σx1y1 = −σxx sin θ cos θ + σxy cos2 θ − σxy sin2 θ + σyy sin θ cos θ

which can also be written as:

σx1x1 = σxx cos2 θ + σyy sin2 θ + 2σxy sin θ cos θ (2.45)
σx1y1 = − (σxx − σyy) sin θ cos θ + σxy

(
cos2 θ − sin2 θ

)
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Figure 2.5 Free body diagram of the wedge within the material point. Image taken from [9].

and finally transformed into:

σx1x1 =
σxx + σyy

2
+
σxx − σyy

2
cos 2θ + σxy sin 2θ (2.46)

σx1y1 =
σyy − σxx

2
sin 2θ + σxy cos 2θ

We check that the result above is the same as that found by using the rotation matrices, in
Equation 2.41. Note that σy1y1 is calculated according to the same formula as σx1x1, in
which θ is replaced by θ + π/2 (rotation by θ plus a right angle compared to the x-axis).
The variations of the normal stress (σx1x1 or σy1y1) and of the shear stress (σx1y1) with the
angle θ are shown in Figure 2.6. The normal stress reaches an extremum when σx1y1 = 0,
which was expected since, from Equation 2.46, σx1y1 is the derivative of σx1x1 in reference
to θ. That means that when the normal stress reaches an extremum, the normal stress is a
principal stress.
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Figure 2.6 Variations of the normal and shear stress components with the rotation angle θ. Image
taken from [9].

2.2.6 Mohr’s circle representation

To start, let us continue our stress analysis in plane stress. From Equation 2.46, we have:(
σx1x1 −

σxx + σyy
2

)2

+ (σx1y1)
2

=

(
σxx − σyy

2

)2 (
cos2 2θ + sin2 2θ

)
(2.47)

+ σ2
xy

(
sin2 2θ + cos2 2θ

)
+ (σxx − σyy)σxy sin 2θ cos 2θ

+ (σyy − σxx)σxy cos 2θ sin 2θ

After simplification:(
σx1x1 −

σxx + σyy
2

)2

+ (σx1y1)
2

=

(
σxx − σyy

2

)2

+ σ2
xy (2.48)

Noting:

σavg =
σxx + σyy

2
, R =

√(
σxx − σyy

2

)2

+ σ2
xy (2.49)

Equation 2.48 becomes:

(σx1x1 − σavg)2
+ (σx1y1)

2
= R2 (2.50)

Equation 2.50 is the equation of a circle of center (σavg , 0) and of radius R in the space
(σ, τ ), where σ stands for a normal stress and τ stands for a shear stress. What this
equation means is that: (i) At a given material point, the state of stress at a face, given
by the two stress components (σ = σx1x1, τ = σx1y1) is a point in the (σ, τ ) space; (ii)
That point takes different coordinates for different values of the inclination angle θ; (iii)
If the points marking the state of stress are plotted for all the possible values of θ, then
a circle is obtained in the plane (σ, τ ). In other words, the point that marks the state of
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stress in the (σ, τ ) plane travel on the circle when the material point rotates. The circle
representing all the possible values of the stress components at a material point is called
Mohr’s circle. Figure 2.7 provides a graphical representation of the Mohr circle. Note that
by convention, a shear stress that tends to rotate the material element counterclockwise is
positive, but plotted in the bottom half of the (σ, τ ) space. That is why in Figure 2.7, the
τ axis is pointing downwards. Points P1 and P2 are the points that mark principal states
of stress, where the shear stress is zero. Point A represents the state of stress (σxx, σxy)
and B represents the state of stress (σyy , −σxy) and B. We will see later why A and B are
diametrically opposite.

Figure 2.7 Mohr circle in plane stress. Image adapted from chegg.com.

Now the question is: How to relate the physical rotation by an angle θ to the rotation
of the point that marks the stress state around the center of Mohr’s circle? To answer that
question, let us first calculate the angle of the rotation θp needed to go from the state of
stress A (σxx,σxy) to the principal state of stress P1 (σ1, 0). A principal stress is reached
when the shear stress is zero. According to Equation 2.46, the shear stress is zero when:

tan 2θp =
2σxy

σxx − σyy
(2.51)

Now let us calculate the angle ÂCP1 in Figure 2.7:

tan
(
ÂCP1

)
=

AA′

CA′
=

AA′

OA−OC ′
=

σx1y1

σxx − σavg
=

2σx1y1

σxx − σyy
= 2 tan 2θp

(2.52)
in which A’ is the projection of A on the horizontal axis and O is the origin of the coordi-
nate system. Since both θp and ÂCP1 are sought in an interval

[
−π2 , +π

2

]
deduce from

Equation 2.52 that:
ÂCP1 = 2θp (2.53)

We just showed that whenever the principal stress state is reached on a face that has a
normal oriented by an angle +θp to the physical horizontal axis ex, then a rotation by
+2θp is needed on Mohr’s circle to travel from the stress state at A (face that has a normal
equal to ex) to the stress state at P1 (principal stress). Now, let us examine the rotation
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needed on Mohr’s circle to travel from the state of stress at A to the state of stress at D,
where D represents the state of stress on a face with a normal oriented by an angle θ to the
horizontal. Figure 2.8 provides a graphical representation of the problem. Let us note θp1
the angle of the rotation needed in the physical space to go from the state of stress at D to
the principal stress state. Following the same reasoning as above, we have:

D̂CP1 = 2θp1 (2.54)

Therefore:
ÂCD = ÂCP1 − D̂CP1 = 2 (θp − θp1) (2.55)

Now, looking at the rotation needed to go from stress state A to stress state D in the physical
space (Figure 2.8), we have:

θ = θp − θp1 (2.56)

As a result, we have:
ÂCD = 2 θ (2.57)

which shows that a rotation by an angle θ in the physical space is equivalent to a rotation
by an angle 2θ in the stress space, on Mohr’s circle. This is a general and important result.
We now understand why A and B are diametrically opposite: the face of normal ey where
the state of stress B is applied is oriented by angle π/2 compared to the face of normal ex
where the state of stress A is applied, which means that a rotation by an angle π is needed
in the stress space to travel from A to B. Lastly, one ca see from Mohr’s circle that the
maximum shear stress at the material point is reached at the top of the circle, where the
normal stress is equal to σavg, and we have:

τmax = R =

√(
σxx − σyy

2

)2

+ (σx1y1)
2 (2.58)

Figure 2.8 Rotation of a material element and corresponding rotation in the stress space. Image
adapted from [9].



STRESS TENSOR 37

Now, what happens if the state of stress in not plane, in other words, what is the graph-
ical representation of the state of stress for a three-dimensional stress state? First think of
a state of triaxial stress, i.e. a 3D state of stress without any shear stress, see Figure 2.9. If
σ3 = 0, the material point is in plane stress in the plane (e1, e2) and the state of stress is
described by a Mohr circle of center ((σ1 + σ2)/2, 0) and of radius (σ1−σ2)/2. Similarly,
if σ2 = 0, the material point is in plane stress in the plane (e1, e3) and the state of stress is
described by a Mohr circle of center ((σ1 + σ3)/2, 0) and of radius (σ3 − σ2)/2. Finally,
if σ1 = 0, the material point is in plane stress in the plane (e2, e3) and the state of stress
is described by a Mohr circle of center ((σ2 + σ3)/2, 0) and of radius (σ2 − σ3)/2. If the
element is in a 3D principal stress state, the state of stress is represented by the three points
A, B and C in Figure 2.9. If now σ3 is maintained constant and the element is rotated about
the axis e3, the shear stresses exerted on the faces normal to the e3 axis remain equal to
zero, and the normal stress σ3 remains perpendicular to the plane spanned by e1 and e2

in which the transformation takes place and thus, does not affect this transformation. As
a result, the state of stress is represented by three points: point C and two diametrically
opposite points on the red circle, which describes the state of plane stress in the plane (e1,
e2). A similar situation occurs if a rotation of the element is operated about the axis e2:
after rotation, the state of stress is described by point B, and by two diametrically opposite
points on the blue circle, which describes the state of plane stress in the plane (e1, e3). And
finally, if a rotation of the element is operated about the axis e1: after rotation, the state of
stress is described by point A, and by two diametrically opposite points on the green circle,
which describes the state of plane stress in the plane (e2, e3).

Figure 2.9 Mohr circles for a material point subjected to a 3D triaxial stress state, with rotations
about the principal axes. Image adapted from learnengineering.com.

Now, the question is: What happens if element shown in Figure 2.9 is not rotated about
one of the principal axes, so that some shear stress is produced one more than two opposite
faces? First, let us show that the state of stress is represented by points that are all within
the zone enclosed by the three Mohr’s circles [22]. This is the yellow zone in Figure 2.10.
The normal and shear components of the stress vector T(n), for a given plane with unit
vector n, satisfy the following equations:(

T (n)
)2

= σijσiknjnk (2.59)

σ2
n + τ2

n = σ2
1n

2
1 + σ2

2n
2
2 + σ2

3n
2
3

σn = σ1n
2
1 + σ2n

2
2 + σ3n

2
3
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Knowing that nini = n2
1 + n2

2 + n2
3 = 1, we can solve for n2

1, n2
2, n2

3. Using the Gauss
elimination method which yields:

n2
1 =

τ2
n + (σn − σ2)(σn − σ3)

(σ1 − σ2)(σ1 − σ3)
≥ 0 (2.60)

n2
2 =

τ2
n + (σn − σ3)(σn − σ1)

(σ2 − σ3)(σ2 − σ1)
≥ 0

n2
3 =

τ2
n + (σn − σ1)(σn − σ2)

(σ3 − σ1)(σ3 − σ2)
≥ 0

Since σ1 > σ2 > σ3, and (ni)
2 is non-negative, the numerators from these equations

satisfy

τ2
n + (σn − σ2)(σn − σ3) ≥ 0 because σ1 − σ2 > 0, σ1 − σ3 > 0 (2.61)
τ2
n + (σn − σ3)(σn − σ1) ≤ 0 because σ2 − σ3 > 0, σ2 − σ1 < 0

τ2
n + (σn − σ1)(σn − σ2) ≥ 0 because σ3 − σ1 < 0, σ3 − σ2 < 0

These expressions can be rewritten as

τ2
n +

[
σn − 1

2 (σ2 + σ3)
]2 ≥ ( 1

2 (σ2 − σ3)
)2

(2.62)

τ2
n +

[
σn − 1

2 (σ1 + σ3)
]2 ≤ ( 1

2 (σ1 − σ3)
)2

τ2
n +

[
σn − 1

2 (σ1 + σ2)
]2 ≥ ( 1

2 (σ1 − σ2)
)2

which are the equations of the three Mohr’s circles for stress C1, C2, and C3, with radii
R1 = 1

2 (σ2 − σ3), R2 = 1
2 (σ1 − σ3), and R3 = 1

2 (σ1 − σ2), and their centers with coor-
dinates

[
1
2 (σ2 + σ3), 0

]
,
[

1
2 (σ1 + σ3), 0

]
,
[

1
2 (σ1 + σ2), 0

]
, respectively. These equations

for the Mohr circles show that all admissible stress points (σn, τn) lie on these circles or
within the shaded area enclosed by them (see Figure 2.10). Stress points (σn, τn) satisfy-
ing the equation for circle C1 lie on, or outside circle C1. Stress points (σn, τn) satisfying
the equation for circle C2 lie on, or inside circle C2. And finally, stress points (σn, τn)
satisfying the equation for circle C3 lie on, or outside circle C3.

So one may wonder how a stress point travels in the stress space when the 3D material
point is rotated about an arbitrary axis. Let us denote the components of the unit normal
vector of an arbitrary plane, relative to the principal coordinate system, by (l, m, n). We
denote the three principal directions (i.e. the directions of the vectors normal to the planes
that are subjected to a principal stress), by (x, y, z). It can be shown [13] that the normal
and shear tractions acting on this plane are:

σ = l2σ1 +m2σ2 + n2σ3 (2.63)
τ2 = l2σ1 +m2σ2 + n2σ3 − σ2

where:
l2 +m2 + n2 = 1 (2.64)
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Figure 2.10 The zone of 3D admissible states of stress with the Mohr circle representation. Image
taken from [22].

Solving these equations yields:

l2 =
(σ2 − σ)(σ3 − σ) + τ2

(σ2 − σ1)(σ3 − σ1)
(2.65)

m2 =
(σ3 − σ)(σ1 − σ) + τ2

(σ3 − σ2)(σ1 − σ2)

n2 =
(σ1 − σ)(σ2 − σ) + τ2

(σ1 − σ3)(σ2 − σ3)

Suppose that the direction n is fixed, so that the normal vector makes a fixed angle θ =
arcos(n) with the z-axis, as shown in Figure 2.11. The intersection of the normal vector
with the unit sphere will lie on the small circle F’E’D’. Equation 2.65 can be rearranged to
yield:

τ2 +

[
σ − 1

2
(σ1 + σ2)

]2

=
1

4
(σ1 − σ2)

2
+ n2 (σ1 − σ3) (σ2 − σ3) (2.66)

which is the equation of a circle in the (σ, τ ) plane. The center of this circle, A, is located
at:

σ =
1

2
(σ1 + σ2) , τ = 0 (2.67)

and the radius of the circle is:

r =

[
1

4
(σ1 − σ2)

2
+ n2 (σ1 − σ3) (σ2 − σ3)

]1/2

(2.68)

As n varies from 0 to 1, the radius varies from AQ=(σ1−σ2)/2 to AR=[(σ1 + σ2)/2]−σ3.
A typical circle for an intermediate value of n is shown in Figure 2.11 as DEF. In the same
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manner, holding l constant in Equation 2.65 gives the family of circles:

τ2 +

[
σ − 1

2
(σ2 + σ3)

]2

=
1

4
(σ2 − σ3)

2
+ l2 (σ2 − σ1) (σ3 − σ1) (2.69)

The centers of these circles are at B, located at σ = (σ2 + σ3)/2, τ = 0. The radii vary
from BQ=(σ2 − σ3)/2 when l = 0, to BP=σ1 − [(σ2 + σ3)/2], when l = 1. A typical
circle for intermediate values of l is GEH. In Figure 2.11, planes for which l is a constant
lie on a cone that make an angle φ = arcos(l) with the x-axis, and which intersects the
unit sphere at G’E’H’. Finally, holding m constant in Equation 2.65 gives the family of
circles:

τ2 +

[
σ − 1

2
(σ1 + σ3)

]2

=
1

4
(σ1 − σ3)

2
+m2 (σ3 − σ2) (σ1 − σ2) (2.70)

The centers of these circles are at C, located at σ = (σ1 + σ3)/2, τ = 0. The radii vary
from CR=(σ1 − σ2)/2 when m = 0, to CQ=[(σ1 + σ3)/2] − σ2, when m = 1. Note
that these circles are no shown in Figure 2.11. The last question to answer is what is the
relationship between an angle of rotation in the 3D physical space and the 3D stress space
illustrated in Figure 2.11. We will not perform such operations in this course, so the reader
is referred to [13] for the details of that procedure.

Figure 2.11 Mohr’s circles in three dimensions. Image taken from [13].

2.2.7 Deviatoric plane representation and Lode angle

In the principal stress space, the hydrostatic axis (or space diagonal) is the line that makes
equal angles with all three axes. The unit vector along the hydrostatic axis has components:

n =

{
1√
3
,

1√
3
,

1√
3

}
(2.71)

Any plane perpendicular to the hydrostatic axis is called deviatoric plane. The deviatoric
plane that passes through the origin is called the p-plane. Any given stress state plots
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as a point P with coordinates (σ1, σ2, σ3), as shown in Figure 2.12. The vector OP=
{σ1, σ2, σ3} is referred to as the stress vector. The stress vector may be decomposed
into two components, OP=ON+NP where ON is carried by the space diagonal and NP
is contained in the deviatoric stress plane passing through N and P. We have:

|ON | = OP · n =
1√
3

(σ1 + σ2 + σ3) =
1√
3
I1 (2.72)

The vector ON has components {p, p, p} along the three reference axes, and the vector NP
has components:

NP = OP −ON = {s1, s2, s3} (2.73)

in which s1 = σ1 − p, s2 = σ2 − p and s3 = σ3 − p are the principal stresses of the
deviatoric stress tensor associated with σ. The length of the vector NP is:

|NP | =
(
s2

1 + s2
2 + s2

3

)1/2
= Tr

(
s2
)

=
√

2 J2 (2.74)

Figure 2.12 Stress vector decomposition in the principal stress space. Image taken from [2].

The state of pure shear is defined as a state of stress in which a face is subhected to a
tension −σ/2 on one face while being subjected to a compression +σ/2 on a face orthog-
onal to the face in tension (note the soil mechanics sign convention adopted here). In the
state of pure shear, the minor principal stress is σ3 = −σ/2, the major principal stress
is σ1 = +σ/2 and the intermediate principal stress is σ2 = 0, as shown in Figure 2.13.
Using Mohr’s circles (see Subsection 2.2.6), it can be found that the shear stress that is
applied on the faces of normal e2 is τ = (σ1 − σ3)/2 = (s1 − s3)/2 = σ/2. Moreover,
σ2 = (σ1 + σ3)/2, which yields s2 = (s1 + s3)/2. Correspondingly, in the deviatoric
plane, the pure shear axis is defined by the equation: s2 = (s1 + s3)/2.

Figure 2.14 shows a view at right angle to the deviatoric plane through N, so that the
three principal stress axes appear at angles of 2π/3 to each other. Let θ be the polar angle
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Figure 2.13 State of pure shear. Image adapted from [16].

measured from pure shear axis. From Figure 2.14, it can be shown that:

sinθ =

√
3s2

2
√
J2

=

√
3

2

s2√
2 J2

=

√
3

2

s2

|NP |
, −π

6
≤ θ ≤ +

π

6
(2.75)

Using the trigonometric identity sin(3θ) = 3sinθ − 4sin3θ and performing the algebraic
manipulations:

sin3θ =
3
√

3J3

2J
3/2
2

, J3 = det(s) = Tr

(
s3

3

)
(2.76)

The angle θ is called the Lode angle.

Figure 2.14 The deviatoric stress space. Image taken from [2].
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The three principal stresses are explicitly given by the three roots of the characteristic
equation (Equation 2.29):

σ1 = p+ 2√
3

√
J2sin

(
θ + 2π

3

)
σ2 = p+ 2√

3

√
J2sinθ

σ3 = p+ 2√
3

√
J2sin

(
θ − 2π

3

)
 σ1 ≥ σ2 ≥ σ3 (2.77)

Note that while J2 is proportional to the magnitude of the shearing stress, J3 relates to the
direction of shearing by means of the Lode angle. Figure 2.15 provides another represen-
tation of the Lode angle, in 3D.

Figure 2.15 Representation of the Lode angle (noted θ in this sketch) in the principal stress space.
Image taken from [16].

Finally, a path in stress space indicates successive states stressing in a material speci-
men, and is called a stress path. If the path lies entirely within the plane passing through
the s1 axis and making equal angles of 45o with both the s2 and s3 axes, it is called an
axial stress path.

2.2.8 Octahedral stress

When the directions of the three principal stresses are taken as coordinates, planes that have
outward normal forming equal angles with these three axes must have the mean normal
stress p acting on them as the normal stress. There are eight such planes as can be seen
Figure 2.16, and the mean normal stress and resultant shear stress on these planes are
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referred to as octahedral normal and octahedral shear stress respectively:

s∗11 = soct =
1

3
(s1 + s2 + s3) (2.78)

s∗12 =
1√
6

(s2 − s1)

s∗13 =
1

3
√

2
(2s3 − s1 − s2)

t2oct = (s∗12)
2

+ (s∗13)
2

=
1

9

[
(s1 − s2)

2
+ (s2 − s3)

2
+ (s3 − s1)

2
]

Figure 2.16 The eight planes subjected to the mean normal stress p. Image taken from [16].

2.3 Concept of deformation

2.3.1 Geometric transformation and Green-Lagrange deformation tensor

2.3.1.1 Deformed and undeformed configurations
The configuration of a solid body is described by a continuous mathematical model, whose
geometric points are identified with particles of the body. For example, consider the con-
figuration shown in Figure 2.17. At time t, the solid body illustrated on the left is unde-
formed, and at time t + δtit has deformed given the externally applied loads and boundary
conditions at time t. The so-called concept of kinematics in solid mechanics refers to the
description of deformations that are associated with the differences in the deformed and
undeformed configurations. Any change that introduces new boundary surfaces shall be
regarded as an extraordinary circumstance and will not be considered in the context of this
course (e.g. fractures that introduce new surface by means of cracks).
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Figure 2.17 Illustration of deformed and undeformed configurations. Image taken from [2].

2.3.1.2 Jacobian
We note X the position vector in the initial configuration (at time t) and x the position
vector in the current configuration (at time t+ δt). The coordinate change between a space
derivative at t and a space derivative at t+δt can be operated by the Jacobian matrix, which
is defined as follows in the Cartesian coordinate system:

[J ] =


∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

 (2.79)

The determinant of [J ] is noted J and is called the Jacobian. The Jacobian satisfies the
following property:

Ωt+δt =

∫
Ωt

J dΩ (2.80)

in which Ωt and Ωt+δt are the volume of the body at time t and t + δt, respectively. In
incremental version:

dΩt+δt = J dΩt (2.81)

Equation 2.81 is very useful whenever a coordinate change is needed in space integrals.
The condition for integration is that J > 0. The Jacobian represents the volumetric dilation
of the volume between the initial and current configurations.

2.3.1.3 Green-Lagrange deformation tensor and small deformation assumption
Consider two vectors dX and dX ′ of origin the position X in the initial configuration.
Suppose that these two vectors are transformed into the vectors dx and dx′ of origin the
position x in the current configuration, as shown in Figure 2.18. The transport of vector X
into x is operated by the transport function Φ: x = Φ (X, t), and we have:

dx = Φ (X + dX, t)− Φ (X, t) = F (X, t) · dX, F (X, t) = ∇ (Φ) (2.82)

Deformation implies a change in length and or/angles, i.e. a deformation is the opposite
of an isometry. A fundamental property of an isometry is to conserve the scalar product.
Let us calculate the difference between the scalar product of the two vectors dx and dx′

in the current configuration and the scalar product of the two vectors dX and dX ′ in the
initial configuration:

dx · dx′ − dX · dX ′ = dX ·
(
TF · F − I

)
· dX ′ = 2 dX · e · dX ′ (2.83)
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Figure 2.18 Transport of material vectors from the initial to the current configuration. Image taken
from [6].

in which:
e =

1

2

(
TF · F − I

)
(2.84)

e is called the Green-Lagrange deformation tensor. It is zero if and only if F · F = I ,
i.e., when F is a rotation or the identity. As a result, the transformation from the initial
configuration to the current configuration is an isometry if, and only if, the transformation
is a rigid body motion. If the transformation is not an isometry, there is a deformation
between the initial and current configurations, and this deformation is quantified by the
tensor e. We define the displacement field u as follows:

u (X, t) = Φ (X, t) −X = x−X (2.85)

From Equations 2.82 and 2.85, we have:

F (X t) = I + ∇ (u (X, t)) (2.86)

The combination of Equations 2.84 and 2.86 gives the expression of the Green-Lagrange
tensor deformation as a function of the displacement field, as follows:

e =
1

2

(
∇ (u) +T ∇ (u) +∇ (u) ·T ∇ (u)

)
(2.87)

Under the assumtion that:
|∇ (u) | << 1 (2.88)

we can neglecct the terms ∇ (u) or order two in Equation 2.87. The resulting tensor is
called the linearized deformation tensor and is noted ε:

ε =
1

2

(
∇ (u) +T ∇ (u)

)
(2.89)

The statement in Equation 2.88 is called the small deformation assumption. One can cal-
culate deformation with the linearized deformation tensor defined in Equation 2.89 only
if the small deformation assumption holds. The properties of the linearized deformation
tensor are similar to those of the Cauchy’s stress tensor, in particular, ε is symmetric, and
possesses invariants defined in the same as in Equations 2.30 and 2.32. Lastly, we define
the volumetric deformation as follows:

εv = Tr
(
ε
)

=
∑
i

εii (2.90)
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2.3.2 Kinetic admissibility

The compatibility equations are derived from kinematic considerations which relate the
components of a strain field εij to the components of the displacement field ui. It may also
be necessary to impose the condition of compatibility of strains or displacements in order
to ensure that these strain-displacement relations are integrable for a prescribed strain field.
A set of displacements and strains that satisfies these geometry conditions in addition to
the imposed displacement boundary conditions is called kinematically admissible set, or
simply compatible set. The kinematic considerations lead to the following conditions for
small deformations:

Strain-displacement relations:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.91)

Compatibility conditions:

∂2εij
∂xk∂xl

+
∂2εkl
∂xi∂xj

− ∂2εik
∂xj∂xl

− ∂2εjl
∂xi∂xk

= 0 (2.92)

The compatibility conditions are the geometrical relationship that strain tensor εij at each
material point must satisfy in order to ensure a continuous deformation for the continuum.
These conditions comprise 81 equations, however only six equations are independent to
each other, given that the symmetry of the strain tensor is accounted for, i.e. εij = εji.
Therefore, a compatible set of displacements ui and strains εij must satisfy Equations ??
and along with the displacement boundary conditions. In most practical problems, the
displacements are taken explicitly as the unknowns in the formulation. Then, the com-
patibility conditions in Equation 2.3.2 are not needed, and only Equation 2.91 is required
to derive strains from the displacements. In such cases, there are nine independent un-
knowns (namely, six stress components σij plus three displacement components ui, while
strains are expressed in terms of the displacements). On the other hand, for static problems,
only three equations of motion are available, thus the six additional equations needed to
complete the formulation of the problem are furnished by the constitutive (stress-strain)
relations of the material.

2.3.3 Large deformation

There are problems in soil mechanics where geometrical nonlinearities, which refer to
nonlinear phenomena occurring due to the effects of deformation on the overall geometry
change of the configuration, cannot be described by means of small-stain theory. In this
case, namely when the displacement-gradient components are not small compared to unity,
the problem of characterizing the strain from the initial state is more cumbersome than in
the small-strain case, and implies that the concept of finite strains needs to be introduced.
Phenomena described by this concept include the progressive failure response of a soft
ground to footing load, 1D consolidation of very compressible soils (e.g. slurry consol-
idation), liquefaction and landslides. We shall here present an overview of the two most
commonly used solution procedures for the analysis of large-strain and large-displacement
continuum problems. The finite strain definitions associated with these procedures, can be
categorized as follows:
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1. Definitions in terms of the undeformed configuration (referred to as Lagrangian), and

2. Definitions in terms of the deformed configuration (referred to as Eulerian).

When coordinates are introduced, the first class uses material coordinates in the unde-
formed configuration, while the second class uses spatial coordinates in the deformed con-
figuration, as illustrated in Figure 2.19.

Figure 2.19 Coordinate systems in the underformed (initial) configuration and in the deformed
(current) configuration. Image taken from [2].

In the undeformed configuration shown in Figure 2.19, we have:(
dS0

)2
= δij dx

0
i dx

0
j (2.93)

In the deformed configuration shown in Figure 2.19, we have:(
dSt
)2

= δij dx
t
i dx

t
j (2.94)

We shall now write the position vector in the current tx coordinate frame, in terms of the
initial 0x frame:

dtxi =

(
∂txi
∂0xj

)
d0xj =

[
∂

∂0xj

(
0xi +t ui

)]
d0xj (2.95)

Note that we use the displacement definition: txi =0 xi +t ui, where tui is the displace-
ment vector. Therefore, Equation 2.95 can be rewritten as:

dtxi =

[
∂
(

0xi +t ui
)

∂0xj

]
d0xj =

[
δij +

∂tui
∂0xj

]
d0xj (2.96)

The strain tensors are defined so that they give the change in the square length of the
material vector dS. Therefore, the formulation of the strain tensor in the two alterative
reference configurations is:

Lagrangian strain definition:[(
dSt
)2 − (dS0

)2]
= 2Lijdx

0
i dx

0
j (2.97)

Eulerian strain definition:[(
dSt
)2 − (dS0

)2]
= 2Eijdx

t
idx

t
j (2.98)
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The tensors L and E are defined as:

Lij =
1

2

[
∂tui
∂0xj

+
∂tuj
∂0xi

+
∂tuk
∂0xi

∂tuk
∂0xj

]
(2.99)

Eij =
1

2

[
∂tui
∂txj

+
∂tuj
∂txi

− ∂tuk
∂txi

∂tuk
∂txj

]
(2.100)

2.4 Linear elastic constitutive relationships

2.4.1 Linear elastic stiffness tensor

Having derived the mathematical descriptions of stress, strain and rate of deformation, we
here consider equations characterizing the individual materials and their reactions to ap-
plied loads; such equations are called constitutive equations, since they describe the macro-
scopic behavior resulting from the internal constitution of the material. Nonetheless, solid
materials behave in a very complex way when the entire range of possible temperatures
and deformations is considered, that is not feasible to derive equations which describe ac-
curately a real material over its entire range of behavior. Instead, we formulate separately
equations that describe various categories of ideal material behavior, each one of which is
a mathematical formulation designed to approximate physical observations of a real mate-
rial?s response over a suitably restricted (practical) range of interest. In soil mechanics, the
simplest constitutive relation that can be formulated is the one that describes the stress-stain
behavior of ideal elastic materials.

The linear elastic solid (or Hookean solid) is the ideal material most commonly as-
sumed for stress analysis in continuum mechanics theory. It is assumed to obey Hooke?s
law, which in a uniaxial stress situation takes the form σ = Eε, expressing a linear rela-
tion between the axial stress and strain, where E is the modulus of elasticity. The basic
relations between stress and strain, upon which many of the others are based, are those of
linear elasticity. Since there are 9 independent components of stress and 9 of strain, 81
coefficients are needed to relate them linearly in the most general way, i.e. σij = Cijklεlk.
Therefore, the matrixC, called the stiffness matrix, is a fourth order tensor that contains 81
linear coefficients.The stress-strain relation can also be expressed in the inverse form, i.e.
εij = C−1

ijklσlk = Dijklσlk. The matrix D that relates strains to stresses is referred to as
the compliance matrix. We have illustrated above, however, that the stress and strain ten-
sors are symmetric, namely that they contain 6 independent components instead of 9. That
means that only 36 coefficients are needed to relate the stress and strain tensors linearly in
the most general way, namely:

σij = σji ⇒ Cijkl = Cjikl

εkl = εlk ⇒ Cijkl = Cijlk

 ⇒ Cijkl contains 36 components. (2.101)

However, by considering the energy stored in a strained linear elastic body, one can show
that the coefficients must form a symmetric array. The term relating, say, σij to εkl, must
be the same as the one relating σkl to εij , through Cijkl = Cklij . This symmetry of the
stress-strain relation reduces the number of independent terms to 21 coefficients.

For most numerical purposes, it is most useful to use Voigt notation for the stress and
strain tensors, i.e., to write the stresses and strains as vectors:

{σ}T = {σ11, σ22, σ33, σ12, σ23, σ31} (2.102)
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{ε}T = {ε11, ε22, ε33, ε12, ε23, ε31} (2.103)

With Voigt notation, the linear elastic stress-strain relationship is written as:

σ11

σ22

σ33

σ12

σ23

σ31


=



C∗11

...

...

...

...

...

C∗12

C∗22

...

...

...

...

C∗13

C∗23

C∗33

...

...

...

C∗14

C∗24

C∗34

C∗44

...

...

C∗15

C∗25

C∗35

C∗45

C∗55

...

C∗16

C∗26

C∗36

C∗46

C∗56

C∗66





ε11

ε22

ε33

ε12

ε23

ε31


(2.104)

in which we only wrote the terms of the Voigt stiffness matrix above the diagonal, since
the matrix is symmetric. Note that the relation between the Voigt matrix and the actual
matrix is as follows: C1111 = C∗11, C1112 = C∗12, etc. The number of independent terms
can be further reduced by considering the planes or axes of isotropy in the material. In
geotechnical engineering, the three most commonly used types are (with decreasing level
of complexity) orthotropy, cross-anisotropy (also called transverse isotropy) and complete
isotropy. Note that these symmetries are a directional property and not a positional prop-
erty. Even when the material has a certain elastic symmetry at each point, the properties
may vary from point to point irrespective of the symmetry of the shape of the body.

2.4.2 Orthotropic symmetry

An orthotropic material has 3 orthogonal planes of symmetry, as shown in Figure 2.20.
The coefficient matrix for orthotropic symmetry with respect to the coordinate planes has
9 independent coefficients, namely:

[C∗] =



C∗11

...

...

...

...

...

C∗12

C∗22

...

...

...

...

C∗13

C∗23

C∗33

...

...

...

0

0

0

C∗44

...

...

0

0

0

0

C∗55

...

0

0

0

0

0

C∗66


(2.105)

Note that in an orthotropic material, the normal stresses are decoupled from the shear
stresses, however, the limitations of applying this formulation to represent geomaterials
can be readily seen when we consider phenomena such as dilation or contraction during
shear, namely phenomena where shear strain introduces volume changes.

2.4.3 Transverse isotropy

Cross-anisotropic symmetry, also called transverse isotropy, applies when there is some
plane (usually horizontal) in which all stress-strain relations are isotropic; i.e., it makes no
difference how the axes are chosen within the plane: the elastic constants are the same.
The elastic constants for stresses and strains outside the plane are different. Figure 2.21
illustrates what cross-anisotropy is. The resulting matrix [C∗] has 5 independent constants.
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Figure 2.20 Definition of orthotropy and examples of orthotropic materials.

For example, if the x3 axis is normal to the plane of isotropy, the matrix becomes:

[C∗] =



C∗11

...

...

...

...

...

C∗12

C∗11

...

...

...

...

C∗13

C∗13

C∗33

...

...

...

0

0

0

2 (C∗11 − C∗12)

...

...

0

0

0

0

C∗55

...

0

0

0

0

0

C∗55


(2.106)

Figure 2.21 Definition of cross-anisotropy and examples of transverse isotropic materials.

2.4.4 Elastic coefficients in isotropic materials

In an isotropic material, the elastic constants are independent of the orientation of the
coordinate axes, which implies that there are only 2 independent elastic constants, namely:

C∗11 = C∗22 = C∗33

C∗12 = C∗13

}
⇒ 2 independent coefficients (2.107)
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The constants can be expressed in terms of several different parameters. The most common
ones are as follows:

Young’s modulus E, which relates axial stress to axial strain in a simple tension or
compression test:

σ11 = Eε11, all other stresses are zero (2.108)

Poisson’s ratio ν, which relates axial strains in a simple tension or compression test:

ε22 = ε33 = −νε11, all other stresses are zero except σ11 are zero (2.109)

Shear modulus G, which relates shear stress to shear strain:

σ12 = 2Gε12 (2.110)

Bulk modulus K, which relates volumetric strain to average or octahedral stress:

σoct = Kεv (2.111)

Lamé constants, λ and µ = G, which relate the stresses and strains as follows:

σij = λεkkδij + 2µεij (2.112)

Constrained modulus M , which relates axial strain to axial stress when the other two
axial strains are held to zero, namely:

σ11 = Mε11, all other strains are zero (2.113)

The following relations exist between these constants:

G = µ =
E

2(1 + ν)
, K =

E

3(1− 2ν)
= λ+

2

3
µ (2.114)

λ =
ν E

(1 + ν)(1− 2ν)
, M =

E(1− ν)

(1 + ν)(1− 2ν)

In terms of the Young’s modulus and the Poisson’s ratio, the matrix [C∗] is (expressions in
terms of the other coefficients can be deduced from the Equation 2.114):

[C∗] =
E

(1 + ν)(1− 2ν)



1− ν
ν

ν

...

...

...

ν

1− ν
ν

...

...

...

ν

ν

1− ν
...

...

...

0

0

0
1−2ν

2

...

...

0

0

0

0
1−2ν

2

...

0

0

0

0

0
1−2ν

2


(2.115)
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2.5 Elastic potential (strain energy function)

2.5.1 Conservation of energy

The energy equation is an additional field equation, formulated on the basis of the energy-
balance postulate of the first law of thermodynamics. The energy equation involves an
additional unknown quantity, the so called internal energy, thus makes a useful addition to
the equations of continuum mechanics only when it is possible to relate the internal energy
to the other state variables. In continuum mechanics, the thermodynamic system is usually
be chosen as a given collection of continuous matter, i.e. the system is a closed system not
interchanging matter with it?s surroundings; the bounding surface of the system in general
moves with the flow of the matter (an alternative approach is to used a fixed control surface
in space and account for the flux of the matter through it). The first law of thermodynamics
relates the work done on the system and the heat transfer into the system to the change in
energy of the system:

δW + δQ = δU + δK (2.116)

in which δW is the increment of mechanical work, δQ is the rate of incremental heat in-
put, δU is the incremental internal energy, and δK is the increment of kinetic energy. A
typical assumption in continuum mechanics is that the only energy transfers to the system
are by mechanical work done on the system by surface tractions and body forces, by heat
transfer through the boundary, and possibly by distributed internal heat sources. In partic-
ular, for linear elasticity, heat transfer is considered insignificant, and all of the input work
is assumed converted into internal energy in the form of recoverable stored elastic strain
energy, which can be recovered as work when the body is unloaded. In general, however,
the major part of the input work into a deforming material is not recoverably stored, but
dissipated by the deformation process, causing an increase in the body?s temperature and
eventually being conducted away as heat.

2.5.2 Statically and kinetically admissible fields

2.5.2.1 Statically admissible stress
When external body and surface forces are prescribed as acting on a deformable body, a
statically admissible stress distribution is defined as one satisfying the equilibrium partial
differential equations:

∂σij
∂xj

+ fi = 0 (2.117)

in the interior of the body, and boundary conditions:

ti = σijnj (2.118)

whenever any boundary tractions ti are prescribed. It is important to remember that the
proposed equilibrium stress distribution used in connection with the principle need not
to be the actual stress distribution in the deformed body. Even when all the boundary
conditions are in terms of stress, the stress distribution is not completely determined by the
equilibrium conditions and the boundary conditions, but depends in general upon material
properties. Usually, many different possible statically admissible stress distributions exist,
all satisfying equilibrium requirements. Any one of them may be the distribution referred
to in the principle of virtual displacements. In the ensuing, we shall restrict the formulation
to the non-polar case, namely the case where the Cauchy stress tensor is symmetric (σij =
σji).
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2.5.2.2 Kinetically admissible displacement
A kinematically admissible displacement distribution is one satisfying any prescribed dis-
placement boundary conditions and possessing continuous first derivatives in the interior
of the body.

2.5.3 Principle of Virtual Work

Variational methods have played a prominent role in continuum mechanics. The funda-
mental variational principle is the principle of virtual displacements, referred to as princi-
ple of virtual work. Although it takes a form similar to equation ??, this is not an energy
principle because the work computed is a fictitious work computed with a set of statically
admissible forces and stresses assumed to remain constant while they do work on a set of
infinitesimal, kinematically admissible displacements. In other words, the stresses need
not to be the actual stresses occurring in the real physical material, and the displacements
need not to be the actual displacements. Since the virtual displacements to be considered
are additional displacements from the equilibrium configuration, a virtual displacement
component must actually be zero wherever the actual displacement is prescribed by the
boundary conditions. In the statics of particles and rigid bodies, the principle of virtual
displacements is an alternative way of expressing the equilibrium conditions, and we shall
see that the same holds for the equilibrium of a deformable medium.

Suppose that a body is in a certain equilibrium configuration, and that each point of the
body is given an infinitesimal virtual displacement δui from the equilibrium configuration.
Each component of the displacement is a function of position of the body. We suppose that
the three functions δui have continuous first partial derivatives with respect to x1, x2 and
x3, and that δui = 0 on those parts of the boundary surface where the actual displacement
ui is prescribed. Thus, the virtual displacements satisfy displacement boundary conditions
where prescribed means that no additional virtual displacement is permitted where the
boundary condition fixes the value of displacements which would occur under the given
loads, but merely hypothetical, kinematically possible displacements.

At each boundary point, we choose a local Cartesian axis system (usually with one axis
along the normal) and require:

either σ1jnj = t1 or δu1 but not both (2.119)
either σ2jnj = t2 or δu2 but not both
either σ3jnj = t3 or δu3 but not both

In the equation above, the barred symbols ti are given functions of position on those parts
of the boundary where the traction components are prescribed. The traction vector compo-
nents ti in a fixed system xi can be then expressed in terms of ti and ti δui dS = ti δui dS
represents the virtual work of the traction forces on dS.

If the forces are assumed to be unchanged during the virtual displacement, the virtual
work δW of the external surface tractions ti and body forces bi is:

δW =

∫
S

ti δui dS +

∫
V

ρ bi δuidV (2.120)
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where δui denotes the change in the displacement field. Since ti = σijnj on the surface
S, the surface integral can be transformed into a volume integral, as follows:

δW =

∫
S

σijnj δui dS +

∫
V

ρ bi δuidV (2.121)

=

∫
V

∂ (δui σij)

∂xj
dV +

∫
V

ρ bi δuidV

=

∫
V

∂σij
∂xj

δui dV +

∫
V

∂ (δuj)

∂xj
σij dV +

∫
V

ρ bi δui dV

=

∫
V

(
∂σij
∂xj

+ ρ bi

)
δui dV +

∫
V

∂ (δuj)

∂xj
σij dV

The equation of equilibrium imposes ∂σij
∂xj

+ ρ bi = 0 and therefore:

δW =

∫
V

∂ (δuj)

∂xj
σij dV (2.122)

By definition, the linearized deformation tensor is the symmetric part of the gradient of the
displacement field, so that:

δεij =
1

2

(
∂ (δuj)

∂xj
+
∂ (δui)

∂xi

)
(2.123)

Let us note ωij the skew part of the gradient of the displacement field, and we have:

δωij =
1

2

(
∂ (δuj)

∂xj
− ∂ (δui)

∂xi

)
(2.124)

Equation 2.122 now writes:

δW =

∫
V

(δεij + δωij)σij dV (2.125)

Since Cauchy stress tensor is symmetric, we can easily show that ωijσij = 0, so that
Equation 2.125 becomes:

δW =

∫
V

σij δεij dV (2.126)

Restraining consideration to adiabatic situations with no appreciable change in kinetic en-
ergy, the first law of thermodynamics (Equation 2.116) reduces to:

δW =

∫
V

σij δεij dV = δU (2.127)

Equation 2.127 shows that if the stress is statically admissible, the total virtual work of
the external forces on any kinematically admissible virtual displacement field is equal to∫
V
σij δεij dV . This concept and its converse, together, are the principle of virtual dis-

placements for a deformable body. The converse proposition states that if the virtual work
of the prescribed external forces is equal to

∫
V
σij δεij dV for a certain assumed stress

field σij for every kinematically admissible virtual displacement field, then the stress field
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is statically admissible, i.e. it satisfies: (i) Equilibrium equations in the interior; and (ii)
Traction boundary conditions wherever traction boundary conditions are prescribed on the
surface.

Within the context of solid mechanics, the internal energy U is usually called the strain
energy. Assume the existence of a strain energy density function U0 depending only on the
strains and perhaps the temperature, such that:

δU =

∫
V

δU0dV (2.128)

from which it follows that dU0 = σijdεij . Note that this development also contains the
result that dU0 = −dWi, stating that the change in internal strain energy is negative the
work done by internal forces. In fact, U0 is the area under the stress strain curve for the
material in question, shown in Figure 2.22. In other words, we have:

U0 =

∫
σijδεij =

∫
(Cijklεlk) δεij =

1

2
Cijklεijεkl (2.129)

in which we made use of the symmetry of the linearized deformation tensor in the indicial
notations.

Figure 2.22 The concept of strain energy. Picture taken from [2].

PROBLEMS

2.1 We consider the 2D domain 0 < x1 < L, −c < x2 < c (in Cartesian coordinates).
We define: I = 4c3/3. The state of stress in the domain is given as follows:

σ11 =
p

I

(
x2

1x2 −
2

3
x3

2

)
, σ22 =

p

I

(
1

3
x3

2 − c2x2 +
2

3
c3
)
, σ12 =

p

I

((
c2 − x2

2

)
x1

)
a. Show that the state of stress is in equilibrium, i.e., div

(
σ
)

= 0.
b. Calculate the state of stress on each of the four sides of the domain.
c. Calculate the resulting force that is applied on the face x1 = x10 by the part of the
domain x1 ≥ x10. Calculate the resulting moment at the point (x10, 0).
d. Suppose that c << L. Give a loading boundary condition that approximates the stress
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field given in the equation above.
e. Numerical application: consider a plane wing (shaped as a parallelepiped) that is 20m
long (i.e., L=20m), and that has a half width c=1 cm. The wing is subjected to a uniformly
distributed lifting surface force p = CzρaV

2/2. We give: Cz=0.8; V=200 m/s; ρa=1
kg/m3. Calculate σmax11 .

2.2 By considering the initial state of stress σij at a point and a general increment of
stress ∆σij , determine which of the stress invariants I allows superposition such that:
Ifinal = Iinitial + Iincremental.

2.3 The stress state at a point is given as:

[σ] =

4

3

2

3

5

1

2

1

6

 [kPa]

a. Determine the stress invariants I1, I2 and I3 at the point.
b. Determine the invariants J1, J2 and J3 of the deviatoric stress tensor sij .

2.4 Consider a point in plane stress, at which the state of stress is given by: σxx = 2 MPa,
σyy = −1 MPa and σxy = 0.5 MPa. For the given state of stress:
a. Draw Mohr’s circle.
b. Determine the orientation of the principal planes and the corresponding principal stresses.
c. Determine the state of stress after the element has been rotated through and angle of 30o

clockwise.

2.5 A steel penstock has a 750-mm outer diameter, a 12-mm wall thickness and connects
a reservoir at A with a generating station at B, as shown in Figure 2.23. Knowing that the
density of water is 1000kg/m3, determine the maximum normal stress and the maximum
shearing stress in the penstock under static conditions. Hint: in a cylindrical pressurized
vessel (i.e., in a cylindrical container that has a radius that is large compared to the thick-
ness of the shell, and in which the pressure inside is larger than the pressure outside), the
hoop stress is equal to pr/t and the longitudinal stress is equal to pr/2t, in which p is
the pressure of the fluid inside the vessel, r is the inner radius of the vessel and t is the
thickness of the shell.

Figure 2.23 Penstock studied in Problem 2.5.
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2.6 Square plates, each of 16-mm thickness, can be bent and welded together in either
of the two ways shown to form the cylindrical portion of a compressed air tank, as shown
in Figure Figure 2.24. Knowing that the allowable normal stress perpendicular to the weld
is 65MPa, determine the largest allowable gage pressure in each case. Use the same hint
as in Problem 2.5.

Figure 2.24 Compressed air tanks studied in Problem 2.6.

2.7 Show which of the following strain states satisfies the compatibility condition:

u3 = 0, ε11 =

(
x2

1 + x2
2

)
a2

, ε22 =
x2

2

a2
, ε12 =

x1x2

a2
(2.130)

u3 = 0, ε11 =
x3

(
x2

1 + x2
2

)
a3

, ε22 =
x2

2x3

a3
, ε12 =

x1x2x3

a3
(2.131)

2.8 Let us consider a vertical beam of length L = 2m and half-width h=0.2 m, as shown
in Figure 4.29.a. The position vector is given as OP = XeX + Y eY in the Cartesian
coordinate system, with −h ≤ X ≤ +h and 0 ≤ Y ≤ L. Consider the deformed
configuration shown in Figure 4.29.b. such that the new position vector is given as:

OP = x0(Y, t) +Xer (θ(Y, t)) , er = cos θeX+sin θeY , eθ(θ) = − sin θeX+cos θeY

in which x0(Y, t) and θ(Y, t) will be defined later.
a. Calculate the Green-Lagrange deformation tensor e as a function of x0(Y, t) and θ(Y, t).
b. Calculate the elongation in the eX -direction.
c. Calculate the elongation in the eY -direction, on the vertical axis (X = 0) and on the
lateral sides (X = ±h).
d. Calculate the distortion in the direction (eX ,eY ) as a function of Y .
e. Now we pose:

x0(Y, t) =
L

π
(−eX + er (θ(Y, t))) , θ(Y, t) =

π Y

L

Repeat questions a.-d. above.
f. Now suppose that the deformed configuration is that shown in Figure 4.29.c, in which:

OP = x0(Y, t) +Xer (1.1θ(Y, t))
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Figure 2.25 Beam problem studied in Problem 2.8.

Explain the difference between Figure 4.29.b and Figure 4.29.c.

2.9 A cube of granite with sides of length a = 89 mm (see Figure 2.26) is tested in a
laboratory under triaxial stress. Assume E = 80 GPa, ν = 0.25. Gages mounted on the
testing machine show that the compressive strains in the material are εxx = -138 x 10−5

and εyy = εzz = -510 x 10−6. Determine the following quantities:
a. The normal stresses σxx, σyy , and σzz acting on the x, y, and z faces of the cube;
b. The maximum shear stress τmax in the material;
c. The change ∆V in the volume of the cube;
d. The maximum value of σxx when the change in volume must be limited to -0.11%.

Figure 2.26 Granite sample studied in Problem 2.9.

2.10 Consider a parallelepidic specimen of length L, with a square section of edge length
a. The square section of the specimen lies on the plane (0, x1, x2). The parallelepiped can
slide on the plane but cannot loose contact with the plane. The specimen is loaded at
x3 = L by a uniform compression −F in the e3 direction. The material that makes the
specimen is isotropic and linear elastic,with a Young’s modulus E and a Poisson’s ratio ν.
We assume that deformations are very small, and we neglect the gravity and inertia forces.
We give: L=20 cm, a=1 cm, E=200 GPa, ν=0.3, F=100 N.
a. Calculate the displacement field at x3 = L if the lateral faces of the specimen are free
of stress.
b. Calculate the displacement field at x3 = L if the specimen is encased in a very rigid
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support, within which it can slide. c. Calculate the displacement field at x3 = L if the the
faces x1 ± a/2 are fixed and if the other two lateral faces are free of stress.
d. Now suppose that the specimen is encased in a very rigid support and that there is
an initial misfit of 0.01 mm between the lateral faces. What is the required value of the
compression force F for which the lateral faces of the specimen get in contact with the
rigid support?



CHAPTER 3

ANALYTICAL SOLUTIONS OF BOUNDARY
VALUE PROBLEMS IN LINEAR
ELASTICITY

3.1 Fundamental principles

3.1.1 Superposition principle

The solution of a problem of a given elastic solid with given surface and body forces
requires us to determine stress components or displacements that satisfy the spatial-domain
(and time-domain) differential equations and the boundary conditions. In the case that the
problem is formulated on the basis of stress components, the solution needs to satisfy:

the equations of equilibrium:
∂σij
∂xj

+ bi = 0 (3.1)

the compatibility equations:

∂2εij
∂xk∂xl

+
∂2εkl
∂xi∂xj

− ∂2εik
∂xj∂xl

− ∂2εjl
∂xi∂xk

= 0 (3.2)

the boundary conditions.

Let σij be the normal and shear stresses that have been determined, developed due to the
presence of surface tractions ti and body forces bi. Let also σ∗ij be the normal and shear
stresses that have been determined, developed due to the presence of surface tractions
t∗i and body forces b∗i . Then the stress components σij + σ∗ij will represent the stress

Theoretical Geomechanics.
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developed due to the presence of surface tractions ti + t∗i and body forces bi + b∗i . This
holds because all the differential equations and boundary conditions are linear. As a result,
the equilibrium equation becomes:

∂σij
∂xj

+ bi = 0
∂σ∗ij
∂xj

+ b∗i = 0
}
⇒ ∂

∂xj

(
σij + σ∗ij

)
ρ (bi + b∗i ) = 0 (3.3)

The compatibility equations can be combined in the same way. The complete set of equa-
tions shows that σij+σ∗ij satisfies the complete set of equations and conditions determining
the stress due to forces ti + t∗i and bi + b∗i . This is an instance of the principle of super-
position, and it can be extended to other types of boundary conditions such as prescribed
displacements. Figure 3.1 provides an example.

Figure 3.1 An example of application of the principle of superposition in elatostatics. Picture
taken from [2].

Note that in deriving the equations of equilibrium and boundary conditions, we made
no distinction between the position and form of the element before loading, and its position
and form after loading. As a consequence, our equations and the conclusions drawn from
them are valid only so long as the small displacements in the deformation do not affect
substantially the action of the external forces. Nonetheless, there are cases where the de-
formation must be taken into account and the justification of the principle of superposition
fails (large displacements).

3.1.2 Saint-Venant’s principle

St. Venant’s principle can be stated as follows:

In elastostatics, if the boundary tractions on a part S1 of the boundary S are replaced by a
statically equivalent traction distribution, the effects on the stress distribution in the body
are negligible at points whose distance from S1 is large compared to the maximum distance
between points on S1.

This principle is of great importance in applied elasticity, where it is frequently invoked
to justify solutions in long structural members, where the end traction boundary conditions
are satisfied only in an average sense, so that the correct stress resultants act on the ends.
In such solutions, the actual stress distribution near the ends may differ considerably from
the calculated stress distribution. There are two reasons for using such approximate so-
lutions in applied elasticity: (i) it is not usually known in detail how the loads applied at
the end of a structural member will be distributed, and (ii) simple solutions, obtained by
inverse methods, can sometimes be applied if not all the boundary conditions are exactly
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satisfied, while the exact solutions may require elaborate calculations. Figure 3.2 provides
an example.

Figure 3.2 Illustration of Saint-Venant’s principle. Picture taken from [2].

3.2 Elastostatics equations

3.2.1 Equations of equilibrium in Cartesian, cylindrical and spherical coor-
dinates

In vector notation, the equation of equilibrium established in Section 5.1.2 is:

divσ + f = 0 (3.4)

in which f is a body force.
In Cartesian coordinates: 

∂σxx
∂x +

∂σyx
∂y + ∂σzx

∂z + fx = 0

∂σxy
∂x +

∂σyy
∂y +

∂σzy
∂z + fy = 0

∂σxz
∂x +

∂σyz
∂y + ∂σzz

∂z + fz = 0

(3.5)

In cylindrical coordinates (see Figure 3.3):
∂σrr
∂r + 1

r
∂σθr
∂θ + ∂σzr

∂z + σrr−σθθ
r + ρfr = 0

∂σrθ
∂r + 1

r
∂σθθ
∂θ + ∂σzθ

∂z + 2σrθ
r + ρfθ = 0

∂σrz
∂r + 1

r
∂σθz
∂θ + ∂σzz

∂z + σrz
r + ρfz = 0

(3.6)

In spherical coordinates (see Figure 3.3), we have:

x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ (3.7)
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The general form of the elasticity equations in spherical coordinates was established by
Sokolnikoff (1956) and Goodier (1970). The most common and important special case is
that of radial symmetry, in which case the only non-zero displacement component will be
the radial component, u(r). The only non-zero strains will be the three normal strains,
which are related to the radial displacements by:

εrr =
∂u

∂r
, εθθ = εφφ =

u

r
(3.8)

Using the linear elasticity constitutive equations, we get:
σrr = (λ+ 2G)εrr + λ(εθθ + εφφ)

σθθ = (λ+ 2G)εθθ + λ(εrr + εφφ)

σφφ = (λ+ 2G)εφφ + λ(εrr + εθθ)

(3.9)

where σθθ and σφφ anre the normal stresses in the two directions perpendicular to r. From
the above equations, we get the stress-displacement equations for spherically symmetric
deformations:

σrr = (λ+ 2G)
∂u

∂r
+ 2λ

u

r
, σθθ = σφφ = λ

∂u

∂r
+ 2(λ+G)

u

r
(3.10)

The only non-trivial equation of stress equilibrium is:

∂σrr
∂r

+
2(σrr − σθθ)

r
= 0 (3.11)

Figure 3.3 Spherical (a) and cylincrical (b) coordinate systems. Picture taken from [13].

3.2.2 Navier’s displacement equations of motion

When combining the equations of equilibrium, the stress-strain equations and the strain-
displacement equations, we obtain the so-called Navier’s displacement equations of mo-
tion. For example, in a Cartesian coordinate system (noting u, v and w the components of
displacement in the x, y and z directions respectively):

λ

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)
+G

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z
+
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ρfx = 0

(3.12)
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λ

(
∂2u

∂x∂y
+
∂2v

∂y2
+

∂2w

∂y∂z

)
+G

(
∂2u

∂x∂y
+
∂2v

∂y2
+

∂2w

∂y∂z
+
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ρfy = 0

(3.13)

λ

(
∂2u

∂x∂z
+

∂2v

∂y∂z
+
∂2w

∂z2

)
+G

(
∂2u

∂z∂y
+

∂2v

∂y∂z
+
∂2w

∂z2
+
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ρfz = 0

(3.14)
In tensorial notation:

(λ+G)
∂

∂x
(∇ · u) +G∇2u + ρfx = 0 (3.15)

(λ+G)
∂

∂y
(∇ · u) +G∇2v + ρfy = 0 (3.16)

(λ+G)
∂

∂z
(∇ · u) +G∇2w + ρfz = 0 (3.17)

And finally:
(λ+G)∇ (∇ · u) +G∇2u + ρf = 0 (3.18)

According to Equation 3.11, the Navier’s equation of motion for spherically symmetric
deformations is:

∂2u

∂r2
+

2

r

∂u

∂r
− 2u

r
= 0 (3.19)

3.2.3 Beltrami-Michell’s compatibility equations - stress equations

When the displacements do not explicitly appear as dependent field variables, the com-
patibility equations must be satisfied to ensure the existence of a displacement field. The
compatibility equations can be expressed as:

∂2εij
∂xk∂xl

+
∂2εkl
∂xi∂xj

− ∂2εik
∂xj∂xl

− ∂2εjl
∂xi∂xk

= 0 (3.20)

which represents only six linearly independent equations (in fact, only three functionally
independent conditions). Also, Hooke’s law in equation can be expressed as follows:

εij =
1 + ν

E
σij −

ν

E
σkkδij (3.21)

Combining the two equations above, we get:

∂2σij
∂xk∂xm

+
∂2σkm
∂xi∂xj

− ∂2σik
∂xj∂xm

− ∂2σjm
∂xi∂xk

= (3.22)

ν

1 + ν

[
δij

∂2σpp
∂xk∂xm

+ δkm
∂2σpp
∂xi∂xj

− δik
∂2σpp
∂xj∂xm

− δjm
∂2σpp
∂xi∂xk

]

Since only six of these 81 equations are linearly independent, they are equivalent to the six
linearly independent equations obtained by putting k=m and summing to obtain:

∂2σij
∂xk∂xk

+
∂2σkk
∂xi∂xj

− ∂2σik
∂xj∂xk

− ∂2σjk
∂xi∂xk

= (3.23)

ν

1 + ν

[
δij

∂2σpp
∂xk∂xk

+ δkk
∂2σpp
∂xi∂xj

− δik
∂2σpp
∂xj∂xk

− δjk
∂2σpp
∂xi∂xk

]



66 ANALYTICAL SOLUTIONS OF BOUNDARY VALUE PROBLEMS IN LINEAR ELASTICITY

which is a set of nine equations, but only six distinct equations, because of the symmetry in
the free indices i, j. These equations can be simplified by using the equations of equilibrium
as follows:

− ∂2σik
∂xk∂xj

=
∂fi
∂xj

, − ∂2σjk
∂xk∂xi

=
∂fj
∂xi

(3.24)

so that we have:

∇2σij +
1

1 + ν

∂2σpp
∂xi∂xj

− ν

1 + ν
δij∇2σpp = − ∂fi

∂xj
− ∂fj
∂xi

(3.25)

Now substituting k=i and m=j in Equation 3.25 and combining the resulting expressions
with the equation above, we get:

∂2σij
∂xi∂xj

=
1− ν
1 + ν

∇2σpp (3.26)

From the equations of equilibrium, we have:

∂2σij
∂xi∂xj

= − ∂fi
∂xi

(3.27)

and so we have:

∇2σpp = −1 + ν

1− ν
∂fi
∂xi

(3.28)

As a result, Equation 3.25 takes the following form:

∇2σij +
1

1 + ν

∂2σpp
∂xi∂xj

= − ν

1− ν
δij

∂fi
∂xi
− ∂fi
∂xj
− ∂fj
∂xi

(3.29)

Equations 3.29 are nine distinct equations but provide three linearly independent equations
to solve for six stress components. To solve a boundary value problem in linear elasticity,
one needs to add the three equations of equilibrium and solve nine equations for six stress
components. It is not convenient to solve nine equations for only six unknowns, and very
few solutions of the full three-dimensional boundary-value problem have been attempted.
A more convenient formulation in terms of stress functions is possible in certain special
cases.

3.2.4 Airy’s stress functions

Elasticity problems can be approached by using the three Navier equations, in which the
dependent variables are the three components of displacement. Alternatively, one can use
the six Beltrami-Michell equations, in which the stresses are the dependent variables. The
Navier equations may seem to be simpler to use, since they form a system of three coupled
equations instead of six. When displacements are imposed at the boundaries, Navier equa-
tions are convenient to use. However, in most practical problems, tractions, rather than
displacements, are known at the boundary. For these problems, it is more convenient to
use a stress-based formulation. A stress-based method of solving the elasticity equations
becomes particularly simple for plane stress or plane strain problems, in which case, the
governing equations reduce to a single differential equation. It is not easy to see that the
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Beltrami-Michell equations reduce to a single equation in this case; rather, it is easier to
start with the single strain-compatibility equation for two dimensional problems:

∂2εxx
∂y2

+
∂2εyy
∂x2

= 2
∂2εxy
∂x∂y

(3.30)

Substituting the stress-strain relationships in the equation above, one gets:

(χ+ 1)

[
∂2σxx
∂y2

+
∂2σyy
∂x2

]
+ (χ− 3)

[
∂2σxx
∂x2

+
∂2σyy
∂y2

]
= 8

∂2σxy
∂x∂y

(3.31)

where χ = 3 − 4ν for plane strain and χ = (3 − ν)/(1 + ν) for plane stress. Next,
differentiation of the two equilibrium equations yields [13]:

∂2σxy
∂x∂y

= −∂
2σxx
∂x2

− ρ∂fx
∂x

= −∂
2σyy
∂y2

− ρ∂fy
∂y

(3.32)

which is to say:

−8
∂2σxy
∂x∂y

= 4

[
∂2σxx
∂x2

+
∂2σyy
∂y2

]
+ 4ρ

[
∂fx
∂x

+
∂fy
∂y

]
(3.33)

Substituting Equation 3.33 in Equation 3.31, one gets:(
∂2

∂y2
+

∂2

∂x2

)
[σxx + σyy] =

−4ρ

(χ+ 1)

(
∂fx
∂x

+
∂fy
∂y

)
(3.34)

which can also be written as:

∇2 (σxx + σyy) =
−4ρ

(χ+ 1)

(
∂fx
∂x

+
∂fy
∂y

)
(3.35)

It is often the case that the body force can be expressed as the gradient of a potential
function, V , that satisfies Laplace’s equation: ∇2V = ∇ ·(∇V ) = 0. A common example
is the body force due to gravity, for which v = −g z. In these situations, we have F =
−∇V , that is:

fx = −∂V
∂x

, fy = −∂V
∂y

(3.36)

And then the right-hand side of Equation 3.35 vanishes, because ∇ ·F = −∇ ·(∇V ) = 0,
that is:

∂fx
∂x

+
∂fy
∂y

= − ∂

∂x

(
∂V

∂x

)
− ∂

∂y

(
∂V

∂y

)
= −

(
∂2V

∂x2
+
∂2V

∂y2

)
= 0 (3.37)

Then, Equation 3.35 reduces to the Laplace equation:

∇2 (σxx + σyy) = 0

Note that for a linear elastic material, the governing equation does not depend on the consti-
tutive parametersE and ν. We note that the stress equilibrium equations will automatically
be satisfied if we define the three independent stress components in terms of some function
U , as follows:

σxx =
∂2U(x, y)

∂y2
+ ρ V, σyy =

∂2U(x, y)

∂x2
+ ρ V, σxy = −∂

2U(x, y)

∂x∂y
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Now inserting Equation 3.2.4 in Equation 3.2.4, we have:

0 = ∇2 (σxx + σyy) =
1

2
∇2

[
∂2U(x, y)

∂x2
+
∂2U(x, y)

∂y2
+ 2ρ V

]
=

1

2
∇2
(
∇2U

)
+ρ∇2V

But ∇2V = 0 so we see that the function U must satisfy the following so-called bihar-
monic equation:

∇2
(
∇2U(x, y)

)
= ∇4 U(x, y) = 0 (3.38)

The biharmonic function U is called Airy stress function. If the Airy stress function satis-
fies the biharmonic equation, then the stresses that are derived from U via Equation 3.2.4
will automatically satisfy the two-dimensional elasticity equations (including Hooke’s law,
compatibility equations and equilibrium equations). The advantage of the biharmonic
equation is that it has to be solved for one unknown only. The approach is convenient
if the boundary conditions are all given in terms of tractions, rather than displacements.
Otherwise, a displacement-based formulation must be used.

In Cartesian coordinates, the biharmonic equation takes the form:

∂4U

∂x4
+
∂4U

∂y4
+

∂4U

∂x2∂y2
= 0 (3.39)

In cylindrical coordinates:

σrr =
1

r

∂U

∂r
+

1

r2

∂2U

∂θ2
, σθθ =

∂2U

∂r2
, σrθ = − ∂

∂r

(
1

r

∂U

∂θ

)
(3.40)

and so: (
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)(
∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2

∂2U

∂θ2

)
= 0 (3.41)

3.3 Complex variable method for 2D elasticity problems

Two-dimensional problems in elasticity can be solved by the complex variable method de-
veloped by Kolosov (1909) and Muskhelishvili (1963). In this method, the displacements
and stresses are represented in terms of two analytic functions of a complex variable, i.e., in
terms of two functions of a complex variable that are locally given by a convergent power
series. General solutions are readily generated, as any pair of analytic functions automat-
ically leads to displacements and stresses that satisfy the equations of stress equilibrium
and Hooke’s law. The only non-trivial aspect of the solution procedure is in satisfying the
boundary conditions of the specific problem at hand. A brief introduction to those aspects
of the theory that are needed for solving elasticity problems is given in [13] and reported
here.

3.3.1 Complex-valued functions

A complex-valued function of a complex variable z = x+ iy can be represented by ζ(z),
where the dependent variable is a complex number that can be written as:

ζ = ξ + iη (3.42)

Both ξ and η are real-valued functions ot the two real variables x and y. The function ζ(z)
is said to be analytic in a certain region of the complex plane if it is coninuous throughout
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that region and has a derivative at every point in the region. The derivative, noted dζ/dz =
ζ ′(z), is also a complex number and so can temporarily be written as ζ ′(z) = a+ ib. The
differential of ζ can therefore be expressed as:

dζ = ζ ′(z)dz = (a+ ib)(dx+ idy) = (adx− bdy) + i(bdx+ ady) (3.43)

and can also be written as:

dζ = dξ + idη =

(
∂ξ

dx
dx+

∂ξ

dy
dy

)
+ i

(
∂η

dx
dx+

∂η

dy
dy

)
(3.44)

The comparison of Equations 3.43 and 3.44 reveals that the two functions ξ and η must
satisfy the so-called Cauchy-Riemann equations, expressed as:

∂ξ

∂x
=
∂η

∂y
,

∂ξ

∂y
= −∂η

∂x
(3.45)

Hence, ζ ′(z) can be written in any of the following four equivalent forms:

ζ ′(z) =
∂ξ

∂x
− i ∂ξ

∂y
=
∂η

∂y
+ i

∂η

∂x
=
∂ξ

∂x
+ i

∂η

∂x
=
∂η

∂y
− i ∂ξ

∂y
(3.46)

If ζ is analytic, it follows from Equation 3.45 that both the real and imaginary parts of ζ
satisfy Laplace’s equation:

∇2ξ(x, y) = 0, ∇2η(x, y) = 0 (3.47)

Functions that satisfy Laplace’s equation are called harmonic functions, and two harmonic
functions that are related through the Cauchy-Riemann equations are called conjugate har-
monic functions. It can be proven that if ξ is any harmonic function, Equation 3.45 can
always be integrated to find its harmonic conjugate function, η, and vice versa. Moreover,
the resulting function ζ = ξ + iη will be an analytic function of z.

3.3.2 Complex potentials

It was shown in Subsection 3.2.4 that two dimensional elasticity problems can be solved
in terms of an Airy stress function U , which satisfies the biharmonic equation (Equation
3.38). We now demonstrate that the Airy stress function for a particular problem can
always be expressed in terms of two analytic functions of a complex variable. First, let

P = σxx + σyy = ∇2U (3.48)

so that P is a harmonic function. Then, as remarked before, its harmonic conjugate, Q,
can in principle be found, and the function:

f(z) = P + iQ (3.49)

will be analytic. The function found by integrating f(z) along any contour that lies within
a region in which f(z) is analytic will itself be analytic, so we can define another analytic
function, φ(z), by:

φ(z) =
1

4

∫
f(z)dz = p+ iq (3.50)
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where p and q are the real and imaginary parts of φ(z). It follows from Equation 3.46 that:

φ′(z) =
∂p

∂x
+ i

∂q

∂x
=

1

4
f(z) =

1

4
(P + iQ) (3.51)

Equating the real and imaginary parts of the expression above, and making use of Equation
3.45, we have:

1

4
P =

∂p

∂x
=
∂q

∂y
,

1

4
Q =

∂q

∂x
= −∂p

∂y
(3.52)

Next, we note that the function p1 = U − px− qy is harmonic since:

∇2 (p1 = U − px− qy) = ∇2U − x∇2p− 2
∂p

∂x
− y∇2q − 2

∂q

∂y
= 0 (3.53)

It follows that p1 is the real part of an analytic function, which we will call χ(z). Noting
that the real part of zφ(z) is:

R{zφ(z)} = R{(x− iy)(p+ iq)} = px+ qy (3.54)

it follows that:

U = p1 + px+ qy = R{χ(z)}+R{zφ(z)} =
1

2

[
zφ(z) + zφ(z) + χ(z) + χ(z)

]
(3.55)

where φ(z) = p − iq, etc. Therefore, we have shown that the Airy stress function U can
always be expressed in terms of two analytic functions φ(z) and χ(z), which are called
complex potentials in the following.

3.3.3 Solution procedure with the complex potentials

By differentiating Equation 3.55, we find:

2
∂U

∂x
= φ(z) + zφ′(z) + φ(z) + zφ′(z) + χ′(z) + χ′(z) (3.56)

2
∂U

∂y
= −iφ(z) + izφ′(z) + iφ(z)− izφ′(z) + iχ′(z)− iχ′(z)

2
∂2U

∂x2
= 2φ′(z) + zφ′′(z) + 2φ′(z) + zφ′′(z) + χ′′(z) + χ′′(z)

2
∂2U

∂y2
= 2φ′(z)− zφ′′(z) + 2φ′(z)− zφ′′(z)− χ′′(z)− χ′′(z)

2
∂2U

∂x∂y
= izφ′′(z)− izφ′′(z) + iχ′′(z)− iχ′′(z)

Let us define a new function:

ψ(z) = χ′(z) (3.57)
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FromEquations 3.56 and 3.57, we can express the stress solution as a function of the com-
plex potentials φ(z) and ψ(z), as follows:

σxx + σyy =
∂2U

∂x2
+
∂2U

∂y2
= 2

[
φ′(z) + φ′(z)

]
= 2R [φ′(z)] (3.58)

σyy − σxx + 2iσxy =
∂2U

∂x2
− ∂2U

∂y2
− 2i

∂2U

∂x∂y
= 2 [zφ′′(z) + ψ′(z)]

Let us note the following useful relationship:

∂U

∂x
+ i

∂U

∂y
= φ(z) + zφ′(z) + ψ(z) (3.59)

To get the solution in displacements, it is necessary to introduce the constitutive rela-
tionships. In linear elasticity, the strain components are related to the components of stress
according to [13]:

8Gεxx = (κ+ 1)σxx + (κ− 3)σyy (3.60)
8Gεyy = (κ+ 1)σyy + (κ− 3)σxx

in which κ = 3 − 4ν in plane strain and κ = (3 − ν)/(1 + ν) for plane stress. These
relations can also be written as [13]:

2G
∂u

∂x
= −σyy +

1

4
(κ+ 1)(σxx + σyy) (3.61)

2G
∂v

∂y
= −σxx +

1

4
(κ+ 1)(σxx + σyy)

Using the real and imaginary parts of the complex potential, the equation above can be
rewritten as [13]:

2G
∂u

∂x
= −∂

2U

∂x2
+ (κ+ 1)

∂p

∂x
(3.62)

2G
∂v

∂y
= −∂

2U

∂y2
+ (κ+ 1)

∂q

∂y

Integrating the first and second equations above with respect to x and y, respectively, we
get:

2Gu = −∂U
∂x

+ (κ+ 1)p+ g(y) (3.63)

2Gv = −∂U
∂y

+ (κ+ 1)q + h(x)

where g and h are yet-unknown functions of y and x, respectively. To study these two
functions, recall that 2Gεxy = σxy , in which case, in the absence of body force, Equation
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3.2.4 gives:

2G

(
∂u

∂y
+
∂v

∂x

)
= −2

∂2U

∂x∂y
(3.64)

But differentiation of Equation 3.57 gives:

2G

(
∂u

∂y
+
∂v

∂x

)
= −2

∂2U

∂x∂y
+ g′(y) + h′(x) (3.65)

from which we deduce that:
g′(y) + h′(x) = 0 (3.66)

The general solution of the equation above is:

g(y) = ω y + a, h(y) = −ω x+ b (3.67)

where ω, a and b are constants. The portion of the displacement vector that is represented
by g and h therfore corresponds to a rigid-body motion and has no stresses associated with
it. Ignoring this rigid-body motion, the displacement vector can be written as a complex
number. Using the equations above, one gets:

2G(u+ iv) = −
(
∂U

∂x
+ i

∂U

∂y

)
+ (κ+ 1)(p+ iq) = κφ(z)− zφ′(z)− χ′(z) (3.68)

3.4 Analytical solutions of cavity expansion

When the boundary conditions are given in terms of tractions, it is convenient to use the
biharmonic equation (Equation 3.38) to solve for the stress components. In other cases, a
displacement-based formulation is preferred. In the previous section, solutions to elasticity
problems were presented in terms of arbitrary analytic functions of the complex variable
z. Many important problems can be solved by taking the complex potentials to be poly-
nomials in either z or 1/z. In the following, we will explain fundamental solutions of
underground stress obtained by solving the biharmonic equation or by using the complex
potentials.

3.4.1 Uniform state of stress

A uniform state of stress abd strain can be found by taking the two potentials to be linear
functions of z:

φ(z) = c z, ψ(z) = d z (3.69)

where c and d are constants that may be complex. From Equation 3.156, we have:

σxx − σyy = 4R(c) (3.70)
σxx − σyy + 2iσxy = 2 [zφ′′(z) + ψ′(z)] = 2d

As the imaginary part of c does not affect the stresses, we may take c to be purely real. The
imaginary part of d, however, determines the shear component σxy , and cannot be ignored.
As c and d are constants, the two equations above show that Equation 3.69 represents a
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uniform state of stress. If the principal stresses are denoted σ1 and σ2, with the rotation of
σ1 rotated by an angle β from the x-axis, then we have [13]:

σ1 − σ2 = 4 c (3.71)
σ2 − σ1 = (σxx − σyy + 2iσxy) e2iβ = 2d e2iβ

These relations can be inverted to yield:

c =
1

4
(σ1 + σ2) , d =

1

2
(σ2 − σ1) e−2iβ (3.72)

In other words, the uniform stress state consisiting of principal stresses σ1 rotated by an
angle β from the x-axis and principal stress σ2 rotated by an angle β from the y-axis is
represented by the complex potentials:

φ(z) =
1

4
(σ1 + σ2) z, ψ(z) =

1

2
(σ2 − σ1) z e−2iβ (3.73)

and following Equation 3.63, the displacement field is determined by the following equa-
tion:

2G(u+ iv) =
1

4
(κ− 1) (σ1 + σ2) z − 1

2
(σ2 − σ1) z e2iβ (3.74)

3.4.2 Pressurized circular cavity subjected to uniform stress in the far field

We focus on a 2D elasticity problem (plane strain or plane stress). We consider a pressur-
ized circular cavity of radius a subjected to a uniform state of stress at a distance b from
the center, as shown in Figure 3.17. We will show how to find the state of stress around
the cavity, between a and b, using two methods: (i) the compex potentials method; (ii) the
resolution of the biharmonic equation.

3.4.2.1 Complex potentials
We take the complex potentials as follows:

φ(z) = c z, ψ(z) =
d

z
(3.75)

in which c and d are constants. The imaginary components of c and d would lead to shear
stresses and rotations, so for the present problem, which presents radial symmetry, we can
take c and d to be real. The displacement vector follows from Equation 3.63:

2G(ux + ivy) = (κ− 1)c z − d

z
(3.76)

In polar coordinates, we have z = r eiθ and therefore:

2G(ux + ivy) = (κ− 1)c r eiθ − d eiθ

r
(3.77)

So we have:

2G(ur + ivθ) = 2G(ux + ivy) e−iθ = (κ− 1) c r − d

r
(3.78)
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Figure 3.4 Circular pressurized cavity subject to isotropic stress in the far field. Picture taken from
[4].

Since c and d are real:

2Gur = (κ− 1) c r − d

r
, 2Guθ = 0 (3.79)

The stresses are found from Equations 3.156:

σrr + σθθ = σxx + σyy = 4R (φ′(z)) = 4 c (3.80)

σyy − σxx + 2iσxy = 2 [zφ′′(z) + ψ′(z)] =
−2d

z2
=
−2d

r2
e−2iθ

And we have:

σθθ − σrr + 2iσrθ = (σyy − σxx + 2iσxy) e2iθ =
−2d

r2
(3.81)

Separating out the real and imaginary parts, we get:

σθθ − σrr =
−2d

r2
, σrθ = 0 (3.82)

The boundary conditions impose (Figure 3.17):

σrr(a) = pi, σrr = p0 (3.83)

Therefore, we have:

c =
b2p0 − a2pi
2(b2 − a2)

, d =
a2b2(pi − p0)

(b2 − a2)
(3.84)
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The full solution is then:

σrr =
(b2p0 − a2pi)

(b2 − a2)
+
a2b2(pi − p0)

(b2 − a2) r2
(3.85)

σθθ =
(b2p0 − a2pi)

(b2 − a2)
− a2b2(pi − p0)

(b2 − a2) r2

2Gur = (κ− 1)
(b2p0 − a2pi) r

2(b2 − a2)
− a2b2(pi − p0)

(b2 − a2) r

When the uniform stress p0 is applied at infinity, i.e., when b >> a, then:

σrr = p0 +
a2

r2
(pi − p0) (3.86)

σθθ = p0 −
a2

r2
(pi − p0)

2Gur = (κ− 1)
p0 r

2
− a2(pi − p0)

r

If a borehole in an infinite rock mass is loaded by a hydrostatic pressure P , the resulting
displacement of the borehole wall will be ur(a) = −Pa/2G. This equation is useful is
estimating the shear modulus G from borehole measurements.

3.4.2.2 Biharmonic equation
In axis-symmetric conditions, the biharmonic Equation 3.41 becomes:

d4

dr4
U(r) +

2

r

d3

dr3
U(r) − 1

r2

d2

dr2
U(r) +

1

r3

d

dr
U(r) = 0 (3.87)

The general solution was established by Timoshenko & Goodier (1970):

U(r) = A ln(r) +B r2 ln(r) + C r2 +D (3.88)

Another solution was then given by Barber (2010):

U(rθ) = A ln(r) + C r2 + E θ (3.89)

The expression of stress is found by using the following derivation formulae in polar coor-
dinates (Barber, 2010):

σrr =
1

r

∂U

∂r
+

1

r2

∂2U

∂θ2

σθθ =
∂2U

∂r2

σrθ =
1

r2

∂U

∂θ
− 1

r

∂2U

∂r∂θ
(3.90)

The problem is axis-symmetric, therefore:

σrr =
1

r

∂U

∂r
, σθθ =

∂2U

∂r2
, σrθ = 0 (3.91)
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For a pressurized circular cavity subject to isotropic stress in the far-field (see Figure
3.17), the solution by Timoshenko & Goodier is:

σrr =
A

r2
+ 2C +B(1 + 2 ln(r))

σθθ = −A
r2

+ 2C +B(3 + 2 ln(r))

σrθ = 0 (3.92)

and the olution by Barber is:

σrr =
A

r2
+ 2C

σθθ = −A
r2

+ 2C

σrθ = 0 (3.93)

For the boundary conditions considered: σrr(r = a) = pi, σrθ(r = a) = 0, σrr(r =
b) = p0, σrθ(r = b) = 0, both analytical solutions lead to:

σrr =
A

r2
+ 2C

σθθ = −A
r2

+ 2C

σrθ = 0

A =
(pi − p0)a2b2

b2 − a2
2C =

p0b
2 − pia2

b2 − a2

(3.94)

3.4.3 Free circular cavity subjected to horizontal stress

We consider the free circular cavity subjected to a uniform horizontal stress in the far field,
as illustrated in Figure 3.5. In the absence of the hole, the complex potentials associated
with a uniaxial stress state pxx aligned with the x-axis would be φ(z) = pxx z/4, ψ(z) =
−pxx z/2, as found for the case of a uniform state of stress. Although this solution gives
the correct far-field stress, it will give incorrect, non-zero tractions at the borehole wall. We
must therefore find additional terms in the potentials that will cancel out these unwanted
tractions, but not give any additional stresses at infinity. The only such terms which may
be of use and which will lead to stresses that vary as functions of 2θ, are the following:

φ(z) =
1

4
pxx

(
z +

A

z

)
, ψ(z) = −1

2
pxx

(
z +

B

z
+
C

z2

)
(3.95)

where A, B and C are real constants.
The derivatives that will be needed for subsequent calculation of displacements and

stresses are:

φ′(z) =
1

4
pxx

(
1− A

z2

)
, φ′′(z) =

pxxA

2z3
, ψ′(z) = −1

2
pxx

(
1− B

z2
− 3C

z4

)
(3.96)
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Figure 3.5 Free circular cavity subjected to a horizontal stress pxx in the far field

Working in polar coordinates, we have:

σrr + σθθ = 4R [φ′(z)] = pxxR
[
1−Ar−2e−2iθ

]
= pxx

(
1−Ar−2 cos(2θ)

)
(3.97)

Next, we have:

σyy − σxx + 2iσxy = 2 [zφ′′(z) + ψ′(z)] =
Apxxz

z3
− pxx

(
1− B

z2
− 3C

z4

)
(3.98)

= Apxxr
−2e−4iθ − pxx

(
1−Br−2e−2iθ − 3Cr−4e−4iθ

)
Then we find:

σθθ − σrr + 2iσrθ = (σyy − σxx + 2iσxy) e2iθ (3.99)
= pxx

[
Br−2 − e2iθ + (Ar−2 + 3Cr−4)e−2iθ

]
The real part gives:

σθθ − σrr = pxx
[
Br−2 − e2iθ − (1Ar−2 − 3Cr−4) cos(2θ)

]
(3.100)

Then, Equations 3.97 and 3.100 can be solved to give:

σrr =
1

2
pxx

[
1−Br−2 + (1− 2Ar−2 − 3Cr−4) cos(2θ)

]
(3.101)

σθθ =
1

2
pxx

[
1 +Br−2 + (3Cr−4 − 1) cos(2θ)

]
The imaginary part of Equation 3.99 gives:

σrθ = −1

2
pxx

[
(1 +Ar−2 + 3Cr−4) sin(2θ)

]
(3.102)

In order for the hole boundary to be traction-free, both Equations 3.101 and 3.102 must
vanish at r = a. This requires A, B and C to satisfy the following equations:

1−Ba−2 = 0, 1− 2Aa−2 − 3Ca−4 = 0, 1 +Aa−2 + 3Ca−4 = 0 (3.103)

The solution is:
A = 2a2, B = a2, C = −a4 (3.104)
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The full expression of the stresses follows:

σrr =
1

2
pxx

(
1− a2

r2

)
+

1

2
pxx

(
1− 4

a2

r2
+ 3

a4

r4

)
cos(2θ)

σθθ =
1

2
pxx

(
1 +

a2

r2

)
− 1

2
pxx

(
1 + 3

a4

r4

)
cos(2θ)

σrθ = −1

2
pxx

(
1 + 2

a2

r2
− 3

a4

r4

)
sin(2θ)

The displacement field are found by solving the following equation:

8G (u+ iv)

pxx
= κ

(
reiθ +Ar−1e−iθ

)
−
(
reiθ −Ar−1e3iθ

)
+
(
re−iθ +Br−1eiθ + Cr−3e3iθ

)
(3.105)

Multiplying by e−iθ and using the values of A, B and C and separating out the real and
imaginary parts, we get the components of the displacement field, as follows:

8Gur
apxx

=
[
(κ− 1)

( r
a

)
+ 2

(a
r

)]
(3.106)

+ 2

[( r
a

)
+ (κ+ 1)

(a
r

)
−
(a
r

)3
]

cos(2θ)

8Guθ
apxx

= −2

[( r
a

)
+ (κ− 1)

(a
r

)
+
(a
r

)3
]

sin(2θ)

where κ = 3− 4ν for plane strain and κ = (3− ν)/(1 + ν) for plane stress.

3.4.4 Kirsch equations

Kirsch equations provide the stress solution for a free circular cavity subjected to a biaxial
state of stress in the far field (Figure 3.6).

Kirsch equations can be obtained by superposition. The first option is to superpose the
case of a pressurized circular cavity under uniform stress in the far field (Figure 3.7):

σrr = p
(

1− a2

r2

)
σθθ = p

(
1 + a2

r2

)
σrθ = 0

(3.107)

with the case of a free circular cavity subjected to a horizontal state of stress in the far field:

σrr = p
(

1− a2

r2

)
+ 1

2 (Kp− p)
(

1− 4a
2

r2 + 3a
4

r4

)
cos(2θ)

σθθ = p
(

1 + a2

r2

)
− 1

2 (Kp− p)
(

1 + 3a
4

r4

)
cos(2θ)

σrθ = − 1
2 (Kp− p)

(
1 + 2a

2

r2 − 3a
4

r4

)
sin(2θ)

(3.108)
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Figure 3.6 Free circular cavity subjected to a biaxial stress in the far field. Picture taken from [4].

Figure 3.7 First superposition option to establish Kirsch equations
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The second option is to superpose the case of a free circular cavity under vertical stress
in the far field to the case of a free circular cavity under horizontal stress in the far field
(Figure 3.8):

σ
(I)
rr = 1

2p
(

1− a2

r2

)
− 1

2p
(

1− 4a
2

r2 + 3a
4

r4

)
cos(2θ)

σ
(II)
rr = 1

2Kp
(

1− a2

r2

)
+ 1

2Kp
(

1− 4a
2

r2 + 3a
4

r4

)
cos(2θ)

σ
(I)
θθ = 1

2p
(

1 + a2

r2

)
+ 1

2p
(

1 + 3a
4

r4

)
cos(2θ)

σ
(II)
θθ = 1

2Kp
(

1 + a2

r2

)
− 1

2Kp
(

1 + 3a
4

r4

)
cos(2θ)

σ
(I)
rθ = − 1

2p
(

1 + 2a
2

r2 − 3a
4

r4

)
sin(2θ)

σ
(II)
rθ = 1

2Kp
(

1 + 2a
2

r2 − 3a
4

r4

)
sin(2θ)

(3.109)

Figure 3.8 Second superposition option to establish Kirsch equations

For both cases, the following equations are obtained to solve for the stress field:

σrr = 1
2p(1 +K)

(
1− a2

r2

)
− 1

2p(1−K)
(

1− 4a
2

r2 + 3a
4

r4

)
cos(2θ)

σθθ = 1
2p(1 +K)

(
1 + a2

r2

)
+ 1

2p(1−K)
(

1 + 3a
4

r4

)
cos(2θ)

σrθ = 1
2p(1−K)

(
1 + 2a

2

r2 − 3a
4

r4

)
sin(2θ)

(3.110)

The above equations are called the Kirsch equations. The trends of the stress field predicted
by the Kirsch equations are shown in Figure 3.9.

3.4.5 Elliptical cavities Introduction to conformal mapping

Consider two complex planes, z = x+ iy and ζ = ξ + iη (see Figure 3.10). The transfor-
mation from the ζ-plane to the z-plane is defined by an analytic function ω: z = ω(ζ). We
note:

dz = dx+ idy = ω′(ζ)dζ = Mexp(iδ) [dξ + idη] (3.111)
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Figure 3.9 Stress field predicted by the Kirsch equations

Figure 3.10 Principle of conformal mapping. Image taken from [13].

We have [13]:

ω′(ζ)

ω′(ζ)
= exp(2iδ),

(
dy

dx

)
η=η0

= tanδ,

(
dx

dy

)
ξ=ξ0

= − 1

tanδ
(3.112)

The curves of equations ξ = ξ0 and η = η0 are orthogonal lines in the ζ-plane and they
are orthogonal curves in the z-plane. Moreover, δ is the angle between the x axis and the
tangent to the curve of equation η = η0 in the z-plane.

We have:

φ′(z) =
dφ

dz
=
dφ(ζ)

dζ

dζ

dz
=

1

ω′(ζ)

dφ(ζ)

dξ
(3.113)

and similar relationships hold for φ′′ and χ′′. It is thus possible to express the stress field
in the ζ-plane. After some calculations:

σξξ + σηη = 2 [φ′(z)] (3.114)

σηη − σξξ + 2iσξη = 2 [zφ′′(z) + χ′′(z)]
ω′(ζ)

ω′(ζ)

= 2 [zφ′′(z) + χ′′(z)] exp(2iδ)
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Figure 3.11 Use of elliptical coordinates for conformal mapping.Image taken from Wikipedia,
2014.

When the cavity is elliptical, axis-symmetry does not hold and the balance equation in
the physical space becomes complicated, which makes it challenging to find an analytical
solution for the fields of stress and displacements. Hence the idea of using conformal
mapping. An ellipse can be represented by the equation ξ = ξ0, see Figure 3.11. Lines
perpendicular to the ellipse are iso-η values. Each point of the ellipse is located at an angle
δ from the major axis.

The specific mapping transformation is the following:

z = x+ iy = c coshζ = c cosh(ξ + iη) (3.115)

where:

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
(3.116)

We thus have:
x = c coshξ cosη, y = c sinhξ sinη (3.117)

The equation of the ellipse is ξ = ξ0, which can also be written as:

x2

(c coshξ0)2
+

y2

(c sinhξ0)2
= 1 (3.118)

The major axis a0 and the minor axis b0 of the initial ellipse are:

a0 = c coshξ0, b0 = c sinhξ0 (3.119)

We have:
dx+ idy = Meiδdξ (3.120)

Using the complex variable method, the elastic stress distribution around an ellipse in
the ζ-plane is given by:

σξξ + σηη = 2
[
φ′(z) + φ′(z)

]
(3.121)

σξξ − σηη + 2iτξη = 2 [zφ′′(z) + χ′′(z)] e2iδ
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For a traction-free elliptical hole subjected to a far field stress σ∞1 in a direction rotated
from the major axis of the ellipse by an angle β, the potentials are:

4φ(z) = σ∞1 c
[
e2(ξ0+iβ)coshζ + (1− e2ξ0+iβ)sinhζ

]
(3.122)

4χ′(z) = −σ∞1 c
[
cosh2ξ0 − cos2β + e2ξ0sinh2(ζ − ξ0 − iβ)

]
/sinhζ

For a traction-free cavity, σξξ = 0 and:

σηη = 2
[
φ′(z) + φ′(z)

]
(3.123)

σξη = −i
[
φ′(z) + φ′(z)

]
− i [zφ′′(z) + χ′′(z)] e2iδ

For a traction-free elliptical hole subjected to a far field stress σ∞1 in a direction rotated
from the major axis of the ellipse by an angle β:

σηη =
2ab+ (a2 − b2)cos(2β)− (a2 + b2)cos(2(β − η)

(a2 + b2 − (a2 − b2)cos(2η)
(3.124)

The conform plane is the (ρ, θ)-plane in which the ellipse of the ζ-plane becomes a
circle of unit radius:

z = x+ iy = R

(
ζ2 +

m

ζ2

)
= ω(ζ2), ζ2 = ξ2 + iη2 = ρ eiθ (3.125)

R =
a0 + b0

2
, m =

a0 − b0
a0 + b0

(3.126)

θ is the angle between the ρ- and ξ2- axes:

ρ =
a+ b

a0 + b0
= eξ−ξ0 , θ = η (3.127)

(σρρ, σθθ)(ρ, θ) = (σξξ, σηη)(ρ, θ) = (σξξ, σηη)(eξ−ξ0 , η) (3.128)

The stress components in the conform phase plane (σρρ, σθθ) can be obtained from the
stress components in the phase plane (σξξ, σηη) by substituting ξ by lnρ + ξ0. Once the
stress components in the conform phase plane are known, it is possible to obtain the stress
components in the physical plane by using a transformation of stress. Considering α the
direct angle between the ρ- and the x- axes, we have:

σxx =
σρρ+σθθ

2 +
σρρ−σθθ

2 cos(2α) + σρθsin(2α)

σyy =
σρρ+σθθ

2 − σρρ−σθθ
2 cos(2α)− σρθsin(2α)

σxy = −σρρ−σθθ2 sin(2α) + σρθcos(2α)

(3.129)

Taking the notations of Figure 3.12, we have in particular:

σA = p
(
1−K + 2WH

)
σB = p

(
K − 1 + 2K H

W

) (3.130)
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Figure 3.12 Problem of finding the stress around a free elliptical cavity subjected to a biaxial stress
in the far field. Image taken from Eberhardt, ISRM lecture 8, 2014.

3.5 Fundamental analytical solutions for point loads and line loads

In elastostatics, the fundamental solutions are derived using the principle of superposition
and St. Venant’s principle, on the basis of a small number of fundamental problems. We
have covered a few problems of cavity expansion. We will now study basic problems of
point loads and line loads.

3.5.1 Point and line loads in 2D

The complex variable method for solving two-dimensonal elasticity problems can be used
to investigate the stresses and displacements in an elastic half-space under the action of
surface loads. In order to maintain the standard practice of letting x and y be real variables
that represent the two coordinates, and taking z = x + iy to be a complex variable, in
this subsection, we let x be the vertical coordinate normal to the surface of the half-space
x ≥ 0, as shown in Figure 3.13.

Figure 3.13 Surface loads applied to a half-space: (a) normal and tangential line laods; (b) uniform
normal traction applied over a strip; (c) linearly increasing normal traction applied over a strip. Image
taken from [13].
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The normal load applied to the surface between points A and B, per unit length in the
direction normal to the plane (x,y), can be calculated as [13]:∫ B

A

(N + iT )dy =

∫ B

A

[
∂2U

∂y2
− i ∂

2U

∂x∂y

]
dy (3.131)

= −i
[
∂U

∂x
+ i

∂U

∂y

]B
A

= −i
[
φ(z) + zφ′(z) + ψ(z)

]B
A

where we used Equations 3.56.
Now consider the functions:

φ(z) = C ln(z), ψ(z) = D ln(z) (3.132)

which have singularities at the origin and so may be expected to correspond to point loads
applied there. We now write point A as a e−iπ/2 and point B as a eiπ/2. Using equation
3.131, the total loads represented by the functions given in Equation 3.132 are found to be:∫ B

A

(N + iT )dy = −i
[
C ln

(
b

a

)
+ iπC +Dln

(
b

a

)
iπD

]
(3.133)

For this to correspond to a point load having components (N0, T0), the complex constants
C and D must be chosen so that:

−i
[
C ln

(
b

a

)
+ iπC +Dln

(
b

a

)
iπD

]
= N0 + iT0 (3.134)

This is achieved by choosing:

C =
(N0 + iT0)

2π
, D = − (N0 − iT0)

2π
(3.135)

We see that:

φ(z) =
(N0 + iT0)

2π
ln(z), ψ(z) = − (N0 − iT0)

2π
ln(z) (3.136)

are the complex stress potentials that correspond to a concentrated load (N0, T0) per unit
length in the third direction, applied to the surface of the half space at the origin. As the
load acts along the entire line corresponding to (x = 0, y = 0), that is, the entire z-axis,
the solutions represent line loads.

The normal line load is found by taking T0 = 0. Then we have:

σrr + σθθ = 4R (φ′(z)) =
2N0

π
R
(

1

z

)
=

2N0 cos θ

πr
(3.137)

σθθ − σrr + 2iσrθ = 2 [zφ′′(z) + ψ′(z)] e2iθ = −N0

π

[
z

z2
+

1

z

]
e2iθ = −2N0 cos θ

πr

from which the stresses follow as:

σrr =
2N0 cos θ

πr
, σθθ = σrθ = 0 (3.138)
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In Cartesian coordinates, it can be shown that [13]:

σxx =
2N0x

3

πr4
, σyy =

2N0xy
2

πr4
, σxy = σxx =

2N0x
2y

πr4
(3.139)

The displacement is:

2G(u+ iv) =
N0

2π
[4(1− ν)ln(r)− cos(2θ) + i (2(1− 2ν)θ − sin(2θ))] (3.140)

so that along the upper loaded surface (x = 0), the normal displacement is:

u(x = 0) =
(1− ν)N0

Gπ
ln(y) (3.141)

The tangential line load is found by taking N0 = 0. Proceeding the same way as above,
we then have:

σxx =
2T0x

2y

πr4
, σyy =

2T0y
3

πr4
, σxy =

2T0xy
2

πr4
(3.142)

2G(u+ iv) =
T0

2π
[−2(1− 2ν)θ − sin(2θ) + i (4(1− ν)ln(r) + cos(2θ))] (3.143)

3.5.2 Tractions applied over a strip in 2D

Consider the loading case illustrated in Figure 3.13.b. The vertical line load which cor-
responds to a force N0 per unit of length in the z direction is now distributed over an
infinitesimal strip of width dy. The compressive normal traction σ under this load will
then be N0/dy, which shows that the loading should be represented by N0 = σ dy. Using
superposition, the resultant stresses and displacements are found by integrating Equations
3.139 and 3.140 over the entire loaded region, noting that in the integrand, y must repre-
sent the horizontal distance between the point of application of the load and the observation
point. For a uniform normal stress applied over the strip −a ≤ y ≤ a, we have:

σxx =
2σ x3

π

∫ +a

−a

dy′

[x2 + (y − y′)2]
2 (3.144)

=
σ

π

[
(θ1 − θ2)− x(y − a)

r2
1

+
x(y + a)

r2
2

]
=

σ

π
[(θ1 − θ2)− sin(θ1 − θ2) cos(θ1 + θ2)]

where the angles and radii are defined in Figure 3.13.b. Similarly, the other components of
stress are given by:

σyy =
σ

π

[
(θ1 − θ2) +

x(y − a)

r2
1

− x(y + a)

r2
2

]
(3.145)

=
σ

π
[(θ1 − θ2) + sin(θ1 − θ2) cos(θ1 + θ2)]

σxy =
σx2(r2

2 − r2
1)

πr2
1r

2
2

=
σ

π
[sin(θ1 − θ2) sin(θ1 + θ2)] (3.146)
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The normal displacement of the surface is, except for an additive constant:

u(x = 0) =
(1− ν)N0

Gπ
[2a+ (y − a)ln|y − a| − (y + a)ln|y + a|] (3.147)

Now consider the loading case illustrated in Figure 3.13.c. The normal surface traction
increases linearly from 0 at A to σ at B. In this case, the results are [13]:

σxx =
σ

2π

[(
1 +

y

a

)
(θ1 − θ2)− sin(2θ1)

]
(3.148)

σyy =
σ

2π

[(
1 +

y

a

)
(θ1 − θ2) + sin(2θ1)− 2x

a
ln

(
r2

r1

)]
σxy =

σ

2π

[(
1− x

a

)
(θ1 − θ2) + cos(2θ1)

]

This solution was used to estimate the stresses in the crust beneath mountain ranges. In
such models, the weight of the mountain is assumed to provide a vertical normal traction
that acts on the surface of a flat half-space. The subsurface stresses thus calculated are then
added to the ρgx term that is due to the weight of the material below the nominal x = 0
surface. The overall effect is that the subsurface vertical stress will, in general, not be equal
to that which would be calculated from the lithostatic gradient using the depth below the
actual ground surface.

3.5.3 Fundamental solutions for point loads in 3D

Like in 2D, it is possible to obtain solutions for line loads or surface loads in 3D by inte-
grating solutions for point loads. The derivation of these fundamental solutions for point
loads in 3D is not straightforward. So in the following, we will only list the solutions for
a few basic cases, so that the reader can reconstruct more complex 3D cases by superposi-
tion. We adopt the formalism of Poulos and Davis, who provide an exhaustive catalog of
solutions in [17].

3.5.3.1 Kelvin’s solution for a vertical point load acting within an infinite elastic
mass
This solution is in cylindrical coordinates (r, θ, z). For θ = 0, we note R2 = r2 + z2. The
point load P is applied at the origin of the coordinate system and it is parallel to the z-axis.
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The solution for the stresses is:

σrr =
P

8π(1− ν)

r

R3

[
3r2

R2
− (1− 2ν)

]
(3.149)

σθθ = −P (1− 2ν)

8π(1− ν)

z

R3

σzz =
P

8π(1− ν)

[
3z3

R5
+

(1− 2ν)z

R3

]

σrz =
P

8π(1− ν)

r

R3

[
3z2

R2
+ (1− 2ν)

]
σrθ = 0

σzθ = 0

The solution for the displacements is:

ur = − P (1 + ν)

8π(1− ν)E

r z

R3
(3.150)

θ =
P

8π(1− ν)E

2(1 + ν)z

R3

uz = − P (1 + ν)

8π(1− ν)ER

(
3− 4ν +

r2

R2

)
(3.151)

3.5.3.2 Boussinesq’s solution for a vertical point load acting on the surface of a
semi-infinite mass
This solution is in cylindrical coordinates (r, θ, z). For θ = 0, we note R2 = r2 + z2. The
point load P is applied at the origin of the coordinate system and it is parallel to the z-axis.
The solution for the stresses is:

σrr = − P

2πR2

[
−3r2z

R3
+

(1− 2ν)R

R+ z

]
(3.152)

σθθ = − (1− 2ν)P

2πR2

[
r

R
− R

R+ z

]

σzz =
3Pz3

2πR5

σrz =
3Prz2

2πR5

σrθ = 0

σzθ = 0
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The solution for the displacements is:

ur =
P (1 + ν)

2πER

[
rz

R2
− (1− 2ν)r

R+ z

]
(3.153)

θ =
(1 + ν)Pz

πR3

uz =
P (1 + ν)

2πER

[
2(1− ν) +

z2

R2

]

3.5.3.3 Cerutti’s solution for a horizontal point load acting along the surface of a
semi-infinite mass
This solution is in Cartesian coordinates. The point load P is applied at the origin of the
coordinate system and it is parallel to the x-axis. We noteR2 = x2 +y2 +z2. The solution
for the stresses is:

σxx = − Px

2πR3

[
−3x2

R2
+

(1− 2ν)

(R+ z)2

(
R2 − y2 − 2Ry2

R+ z

)]
(3.154)

σyy = − Px

2πR3

[
−3y2

R2
+

(1− 2ν)

(R+ z)2

(
3R2 − x2 − 2Rx2

R+ z

)]

σzz =
3Pxz2

2πR5

σxy = − Py

2πR3

[
−3x2

R2
+

(1− 2ν)

(R+ z)2

(
−R2 + x2 +

2Rx2

R+ z

)]

σxz =
3Px2z

2πR5

σyz =
3Pxyz

2πR5

The solution for the displacements is:

ux =
P (1 + ν)

2πER

[
1 +

x2

R2
+ (1− 2ν)

(
R

R+ z
− x2

(R+ z)2

)]
(3.155)

uy =
P (1 + ν)

2πER

[
xy

R2
− (1− 2ν)xy

(R+ z)2

]

uz =
P (1 + ν)

2πER

[
xy

R2
+

(1− 2ν)x

(R+ z)

]

3.5.3.4 Mindlin’s solution for a vertical point load acting beneath the surface of a
semi-infinite mass
The solution to this problem is shown in Figure 3.14 in Cartesian coordinates and in Figure
3.15 in cylindrical coordinates.
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Figure 3.14 Mindlin’s solution for a vertical point load acting beneath the surface of a semi-infinite
mass. Cartesian coordinates. Image taken from [17].

Figure 3.15 Mindlin’s solution for a vertical point load acting beneath the surface of a semi-infinite
mass. Cylindrical coordinates. Image taken from [17].
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3.5.3.5 Mindlin’s solution for a horizontal point load acting beneath the surface of a
semi-infinite mass
The solution to this problem is shown in Figure 3.16 in Cartesian coordinates.

Figure 3.16 Mindlin’s solution for a horizontal point load acting beneath the surface of a semi-
infinite mass. Cartesian coordinates. Image taken from [17].

PROBLEMS

3.1 Prove the Navier’s equations of motion in Cartesian coordinates:

λ

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)
+G

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z
+
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ρfx = 0

λ

(
∂2u

∂x∂y
+
∂2v

∂y2
+

∂2w

∂y∂z

)
+G

(
∂2u

∂x∂y
+
∂2v

∂y2
+

∂2w

∂y∂z
+
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ρfy = 0

λ

(
∂2u

∂x∂z
+

∂2v

∂y∂z
+
∂2w

∂z2

)
+G

(
∂2u

∂z∂y
+

∂2v

∂y∂z
+
∂2w

∂z2
+
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ρfz = 0

3.2 We consider a pressurized circular cavity of radius a subjected to a uniform state of
stress at a distance b from the center, as shown in Figure 3.17. We focus on a 2D elasticity
problem (plane strain or plane stress). Find the state of stress around the cavity, between a
and b, by solving the biharmonic equation.
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Figure 3.17 Circular pressurized cavity subject to isotropic stress in the far field. Picture taken
from [4].

3.3 Show that in Cartesian coordinates, the stress solution can be expressed in terms of
two complex potentials φ(z) and ψ(z) = χ′(z), as follows:

σxx + σyy =
∂2U

∂x2
+
∂2U

∂y2
= 2

[
φ′(z) + φ′(z)

]
= 2R [φ′(z)]

σyy − σxx + 2iσxy =
∂2U

∂x2
− ∂2U

∂y2
− 2i

∂2U

∂x∂y
= 2 [zφ′′(z) + ψ′(z)]

3.4 At a depth of 750 m, a 10-m diameter circular tunnel is driven in rock having a
unit weight of 26 kN/m3 and uniaxial compressive and tensile strengths of 80 MPa and 3
MPa, respectively. Will the strength of the rock on the tunnel boundary be exceeded if: (i)
K=0.3? (ii) K=2?

3.5 A gold-bearing quartz vein, 2 m thick and dipping 90o, is to be exploited by a small-
cut-and-fill stoping operation. The mining is to take place at a depth of 800 m, and the
average unit weight of the granite host rock above this level is 29 kN/m3. The strike of the
vein is parallel to the intermediate stress, and the major principal stress is horizontal with a
magnitude of 37 MPa. The uniaxial compressive strength of the vein material is 218 MPa
(in absolute value), and the tensile strength of the host rock is 5 MPa (in absolute value).
What is the maximum permissible stope height before failure occurs?

3.6 In Figure 3.18, the uniaxial rock compressive strength is 50 MPa and the corre-
sponding crack initiation stress is σc = 16 MPa. Calculate the extent of the failure zone in
tension and compression.

3.7 Provided the boundary conditions in Figure 3.19, and knowing that the following
purely frictional strength criterion holds: σ1 = d σ3 +C0, C0 = 0, calculate: (i) the extent
of the damaged zone (re), (ii) the pressure in the damaged zone (p1).

3.8 In Figure 3.20: Does the plane of weakness affect the elastic stress distribution?
Under which conditions does the rock mass slip along the plane of weakness?

3.9 In Figure 3.21: Does the plane of weakness affect the elastic stress distribution?
Under which conditions does the rock mass slip along the plane of weakness?



PROBLEMS 93

Figure 3.18 Cavity studied in Problem 3.6.

Figure 3.19 Cavity studied in Problem 3.7. [4]
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Figure 3.20 Cavity studied in Problem 3.8. [4]

Figure 3.21 Cavity studied in Problem 3.9. [4]
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3.10 In Figure 3.22: Does the plane of weakness affect the elastic stress distribution?
Under which conditions does the rock mass slip along the plane of weakness?

Figure 3.22 Cavity studied in Problem 3.10. [4]

3.11 In Figure 3.23: Does the plane of weakness affect the elastic stress distribution?
Under which conditions does the rock mass slip along the plane of weakness?

Figure 3.23 Cavity studied in Problem 3.11. [4]

3.12 In Figure 3.24: Does the plane of weakness affect the elastic stress distribution?
Under which conditions does the rock mass slip along the plane of weakness?

3.13 Considering Figure 3.25: How can we improve the design in order to avoid com-
pressive failure at the sidewalls?

3.14 Considering Figure 3.26: What are the stresses at the sidewall and at the crown?

3.15 Considering Figure 3.27: What are is the stress at edge A?
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Figure 3.24 Cavity studied in Problem 3.12. [4]

Figure 3.25 Cavity studied in Problem 3.13. [4]



PROBLEMS 97

Figure 3.26 Cavity studied in Problem 3.14. [4]

Figure 3.27 Cavity studied in Problem 3.15. [4]



98 ANALYTICAL SOLUTIONS OF BOUNDARY VALUE PROBLEMS IN LINEAR ELASTICITY

3.16 Considering Figure 3.28: Comment on the boundary stresses at the crown, at the
sidewall, and at edges A, B, C and D.

Figure 3.28 Cavity studied in Problem 3.16. [4]

3.17 Consider Figure 3.29. We give:

Solution for the line load:

σxx =
2P

π

x2 z

R4
, σzz =

2P

π

z3

R4
, σxz =

2P

π

z2 x

R4

Solution for the footing:

σzz =
Q

π
(a+ sin a cos(a+ 2δ))

1. Using the solution for the stresses (σxx, σzz , σxz) under a line load of intensity P
(force/unit length) acting normal to the surface, obtain the stresses due to a strip foot-
ing of width 2a with an applied surface traction Q(x). Write specific solutions for the
case when Q = Q0 (i.e. for surface constant loading).

2. Show that the loci of points with σ1 = constant (or σ3 = constant) describe a circle.

3. What is the locus of q = 0.5(σ1 − σ3)=constant? The value of q represents the
maximum shear stress acting at a point. Show that qmax = Q/π.
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Figure 3.29 Distributed load studied in Problem 3.17. [2]





CHAPTER 4

FINITE ELEMENT METHOD IN LINEAR
ELASTICITY

4.1 Variational formulation for 1 variable in 1D

4.1.1 Typical governing equation for 1 variable in 1D

In the following, we will explain the principle of the variational method by considering a
1D problem that needs to be solved for only one dependent variable, the function u(x).
Many 1D problems of engineering are governed by this differential equation:

− d

dx

[
a
du

dx

]
= q, 0 < x < L (4.1)

For example, the axial deformation of a bar subjected to an axial load is determined by the
following governing equation:

− d

dx

(
EA

du

dx

)
= fext (4.2)

The differential equation that describe the buckling of a double-pin ended column is:

EIz
d2y

dx2
+ P = 0 (4.3)

The governing equation for a 1D Newtonian fluid flow is:

µw
d2vwx
dy2

=
dpw
dx

, µw
d2vwx
dy2

= f(y) (4.4)

Theoretical Geomechanics.
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For conductive heat transfer, in 2D, the governing equations are:
qx(x, y) = −kT ∂2 T

∂x2

qy(x, y) = −kT ∂2 T
∂y2

(4.5)

4.1.2 Principle of the variational formulation

The strong formulation of a problem is given by a governing equation and boundary con-
ditions. The variational formulation is a “weak formulation” of the problem, obtained by:
(i) Writing the weighted integral statement; (ii) Performing an integration by parts; (iii)
Applying the boundary conditions. For the typical governign equation given in Equation
4.1, the weighted integral statement is:

∀w ∼ δu,
∫ L

0

w(x)

[
− d

dx

[
a
du

dx

]
− q
]
dx = 0 (4.6)

in which w is a so-called weight function, which has the smae physical dimension as a
small variation of u. An integration by parts is then performed to balance the orders of the
derivtives between w and u. For example, if a is constant:

∀w ∼ δu, −
∫ L

0

d

dx

(
w(x)

[
a
du

dx

])
dx+

∫ L

0

dw

dx

[
a
du

dx

]
dx+

∫ L

0

w(x)q(x)dx = 0

(4.7)
and the we obtain:∫ L

0

dw

dx

[
a
du

dx

]
dx+

∫ L

0

w(x)q(x)dx−
(
w(x)

[
a
du

dx

])
x=L

+

(
w(x)

[
a
du

dx

])
x=0

= 0

(4.8)
Assume that the boundary condition at the origin is u(0) = u. Then δu(0) = 0 since
u(0) is fixed. Then, w(0) = 0. It follows that the essential boundary conditions are
automatically satisfied in the variational formulation. In the example case studied here, the
variational formulation becomes:

∀w ∼ δu,
∫ L

0

dw

dx

[
a
du

dx

]
dx+

∫ L

0

w(x)q(x)dx−
(
w(x)

[
a
du

dx

])
x=L

= 0 (4.9)

If the dependent variable u is not known at the other end of the domain (at x = L), then
that means that a natural boundary condition is applied at L. In that case, w(L) 6= 0
and the value of

[
adudx

]
is known at L. The variable

[
adudx

]
is often noted Q and it is

called secondary variable (as opposed to the dependent variable, which is called primary
variable). The primary and secondary variables are work-conjugate. For example, if u is a
displacement, Q is a force. If u is a temperature, Q is a heat flux.

4.2 Building a FEM model for 1 variable in 1D

4.2.1 Space discretization

The first step in building a FEM model is to discretize the domain of study into subdomains
called elements (in the previous example, that would mean to divide the domain [0, L]



BUILDING A FEM MODEL FOR 1 VARIABLE IN 1D 103

in small segments). Space discretization makes it easier to compute the integrals of the
variational formulation, because integrating over a small elementary domain of regular
shape can be done with simple calculations that can be parallelized. For elements of same
shape, the formulas to calcualte the integrals are the same, which accelerates even more
the computations. The choice of the number of elements in different parts of the domain
depends on the number of objects to mode, the number of constitutive materials in the
domain, the load type and the boundary conditinos. The discretized domain is called a
mesh. The mesh can be refied by increasing the number of elements or by calculating
the approximate solution of the problem on each element with interpolation functions of
higher order (we will come back to the concept of interpolation later).

4.2.2 Elementary equations: Ritz method

The Finite Element Method is an approximation based on the interpolation of nodal degrees
of freedom:

UN (x) =

M∑
j=1

cjΦj(x) +

K∑
i=1

uiΨi(x), ui = u(xi) (4.10)

The FEM can be based on the Weighted Integral Statement (e.g., Galerkin Method) or on
the Weak Formulation (e.g., Ritz Method). In this course, we will use the Ritz Method, in
which the approximation is sought in the form:

UN (x) =

N∑
j=1

uiΨj(x), ui = u(xj) (4.11)

Most often the Ψi functions will be polynomials. If the maximal order of the derivative of
the dependent variable is n:

En(u,x) = f(x) (4.12)

then, p integrations by parts on the Weighted Integral Statement lead to (p < n):

∀w ∼ δu,

(−1)p
∫

Ω
∂pw(x)
∂xp En−p(u,x)dΩ

=
∫

Ω
w(x)f(x)dΩ − Σpk=1(−1)k

∫
Γ
∂k−1w(x)
∂xk−1 Q̂n−kds

(4.13)

Ritz method is an approximation method, in which in each element, the solution u(x) is
sought in the form:

u(x) ' UN (x) =

N∑
j=1

uiΨj(x) (4.14)

...applied on the weak formulation of the problem...

∀w ∼ δu,

(−1)p
∫

Ω
∂pw(x)
∂xp En−p(UN ,x)dΩ

=
∫

Ω
w(x)f(x)dΩ − Σpk=1(−1)k

∫
Γ
∂k−1w(x)
∂xk−1 Q̂n−kds

(4.15)
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instead of the Weighted Integral Statement:

∀i = 1..N,

∫
Ω
wi(x)En(UN ,x)dΩ =

∫
Ω
wi(x)f(x)dΩ

(4.16)

In each element, there are N unknowns (N nodal values uj). To solve for these unknowns,
one needs N independent equations. We can obtain N linearly independent equations by
writing the variational formulation with N linearly independent weight functions. We note
that:

w(x) ∼ δu(x) ' δUN (x) = ΣNj=1δuj Ψj(x) (4.17)

A simple set of N weight functions wi is thus:

∀i = 1..N, wi(x) = Ψi(x) (4.18)

In Ritz method, the family of weight functions is the same as the family of interpolation
functions. For an operator E that is linear in u:

∀i = 1..N,

ΣNj=1

[
(−1)p

∫
Ω
∂pΨi(x)
∂xp En−p(Ψj ,x)dΩ

]
uj

=
∫

Ω
Ψi(x)f(x)dΩ − Σpk=1(−1)k

∫
Γ
∂k−1Ψi(x)
∂xk−1 Q̂n−kds

(4.19)

In a matrix form:
[A]{c} = {F} (4.20)

with:
Aij =

[
(−1)p

∫
Ω
∂pΨi(x)
∂xp En−p(Ψj ,x)dΩ

]
Fi =

∫
Ω

Ψi(x)f(x)dΩ− Σpk=1(−1)k
∫

Γ
∂k−1Ψi(x)
∂xk−1 Q̂n−kds

(4.21)

If En = cst ∂n

∂xn , then [A] is symmetric if p=n-p, which requires n=2p (even number), i.e.
“self-adjoint” equations.

Let us take the example of the following (typical) 1D differential equation, which we want
to solve for u(x):

− d

dx

[
a
du

dx

]
+ cu(x) = f(x) (4.22)

The weighted integral statement on an element [xa, xb] is:

∀w = δu,

∫ xb

xa

w(x)

[
− d

dx

[
a
du

dx

]
+ cu(x)− f(x)

]
dx = 0 (4.23)

The integration by parts gives:∫ xb

xa

a
dw(x)

dx

du

dx
dx +

∫ xb

xa

cw(x)u(x)dx (4.24)

−
∫ xb

xa

w(x)f(x)dx − w(xb)

[
a
du

dx

]
x=xb

+ w(xa)

[
a
du

dx

]
x=xa

= 0
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We now apply the boundary conditions:

If xa (respectively xb) is a boundary, replace w(xa) or Q(xa) =
[
adudx

]
x=xa

(respec-
tively w(xb) or Q(xb)) by its value.

If xa (respectively xb) is not a boundary, use the continuity conditions:

(i) u(x+
a ) = u(x−a ) (respectively u(x+

b ) = u(x−b )), i.e. the dependent variable at a
node shared by several elements has the same value on all elements at that node;

(ii) Q(x+
a ) = Q(x−a ) (respectivelyQ(x+

b ) = Q(x−b )), i.e. fluxes at a node cancel out.

4.2.3 Interpolation functions

Next, we seek the FEM interpolation functions in the form of (independent) polynomials,
so that the approximation of the problem can be expressed as:

UN (x) = c0 + c1x + c2x
2 + ...+ cN−1x

N−1 (4.25)

Therefore we must ensure that:

UN (x) =

N∑
j=1

ujΨj(x) = c0 + c1x + c2x
2 + ...+ cN−1x

N−1, u(xj) = uj (4.26)

We can find a set of interpolation functions Ψj by solving the following system of equa-
tions:

∀i = 1..N, ui = UN (xi) =

N∑
j=1

uiΨj(xi) = c0 +c1xi +c2(xi)
2 +...+ cN−1(xi)

N−1

(4.27)
In a matrix form: 

1

1

...

1

x1

x2

...

xN

...

... ...

...

(x1)N−1

(x2)N−1

...

(xN )N−1



c0

c1

...

cN−1

 =


u1

u2

...

uN

 (4.28)

The equation:

∀i = 1..N, ui = UN (xi) =

N∑
j=1

uiΨj(xi) = c0 +c1xi +c2(xi)
2 +...+ cN−1(xi)

N−1

(4.29)
should hold for any set of values (ui)i=1..N , in particular for (1,0,0, ...,0); (0,1,0,...,0); ... ;
(0,0,...,0,1). We deduce from there the interpolation property:

∀i, j = 1..N, Ψj(xi) = δij (4.30)

For a constant function u(x) = UN (x) = α, we have: α =
∑N
j=1 αΨj(x) = α

∑N
j=1 Ψj(x),

from which we deduce the partition of unity:

∀x,
N∑
j=1

Ψj(x) = 1 (4.31)
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For all node located at xi, UN (xi) = u(xi). In particular true for nodes on the boundary.
The approximate solution thus automatically satisfies the boundary conditions. The FEM
approximation is designed so that the elementary approximation matches the exact solution
uei = UeN (xi) = UN (xi) = u(xi). But in case of approximation errors: uei = UeN (xi) =
UN (xi) ' u(xi). Lagrange interpolation functions are derived from the knowledge
of nodal values of the dependent variables. For example, for an element [x1, x2] with
two end nodes at x1 and x2, the linear Lagrange polynomials are given by: N = 2,
Ψ1(x1) = 1, Ψ1(x2) = 0, Ψ2(x1) = 0 and Ψ2(x2) = 1, which provides:

Ψ1(x) =
x− x2

x1 − x2
, Ψ2(x) =

x− x1

x2 − x1
(4.32)

Quadratic Lagrange polynomials allow interpolating between three nodes over the element.
The expression of these polynomials are found by solving Ψi(xj) = δij for i,j=1,2,3.
When interpolation functions are derived from nodal values of the dependent variable
as well as its derivatives, Hermite interpolation functions are obtained. For example,
for an element with two end nodes at x1 and x2, cubic Hermite polynomials are given by:

Ψ1(x1) = 1, Ψ′1(x1) = 0, Ψ1(x2) = 0, Ψ′1(x2) = 0 (4.33)

Ψ2(x1) = 0, Ψ′2(x1) = 1, Ψ2(x2) = 0, Ψ′2(x2) = 0

Ψ3(x1) = 0, Ψ′3(x1) = 0, Ψ3(x2) = 1, Ψ′3(x2) = 0

Ψ4(x1) = 0, Ψ′4(x1) = 0, Ψ4(x2) = 0, Ψ′4(x2) = 1

Going back to the previous example:

− d

dx

[
a
du

dx

]
+ cu(x) = f(x) (4.34)

∫ xb

xa

a
dw(x)

dx

du

dx
dx +

∫ xb

xa

cw(x)u(x)dx = (4.35)

∫ xb

xa

w(x)f(x)dx + w(xb)

[
a
du

dx

]
xb

− w(xa)

[
a
du

dx

]
xa

∀x ∈]xa, xb[, uN (x) =
∑
j

ujΨj(x) (4.36)

∀i = 1..N,
∑N
j=1

[∫ xb
xa
adΨi(x)

dx
dΨj(x)
dx dx +

∫ xb
xa
cΨi(x)Ψj(x)dx

]
uj (4.37)

=
∫ xb
xa

Ψi(x)f(x)dx + Ψi(xb)
[
adudx

]
xb
−Ψi(xa)

[
adudx

]
xa

[A]{u} = {F}+ {Q} (4.38)
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Aij =
[∫ xb
xa
adΨi(x)

dx
dΨj(x)
dx dx +

∫ xb
xa
cΨi(x)Ψj(x)dx

]
Fi =

∫ xb
xa

Ψi(x)f(x)dx

Qi = Ψi(xb)
[
adudx

]
xb
−Ψi(xa)

[
adudx

]
xa

(4.39)

A more general formulation is as follows:

En(u, x) = f(x) (4.40)

For each element: [Ke]{ue} = {F e} + {Qe}, in which [Ke]{ue} is the elementary
stiffness matrix, and {F e} + {Qe} are vectors that contain the values of the secondary
variable, e.g. the values of forces.

Ke
ij =

[
(−1)p

∫
Ω
∂pΨi(x)
∂xp En−p(Ψj ,x)dΩ

]
F ei =

∫
Ω

Ψi(x)f(x)dΩ

Qei = −Σpk=1(−1)k
∫

Γ
∂k−1Ψi(x)
∂xk−1 Q̂en−kds

(4.41)

For one element delimited by Nnd nodes, assuming that operator E is linear in u:

∀i = 1..Nnd,

ΣNndj=1

[
(−1)p

∫
Ω
∂pΨi(x)
∂xp En−p(Ψj ,x)dΩ

]
uej

=
∫

Ω
Ψi(x)f(x)dΩ

−Σpk=1(−1)k
∫

Γ
∂k−1Ψi(x)
∂xk−1 Q̂en−kds

(4.42)

4.2.4 Assembling the elementary equations

The boundary value problem requires solving all the elementary equations [A]{u} =
{F}+ {Q}. These elementary conditions are coupled because of:

Primary Variables are continuous, i.e. a node may belong to several adjacent elements
but the value of the primary variable at that node is the same in all the elements that
this node belongs to. The corresponding continuity condition is expressed as:

uI = uelt ki =uelt k+1
j =uelt k+2

n =uelt k+3
p (4.43)

Secondary Variables satisfy equilibrium at the nodes, i.e. the sum of forces of flux that
converge to a node is equal to zero. The corresponding balance condition is expressed
as:

QI = Qelt ki +Qelt k+1
j +Qelt k+2

n +Qelt k+3
p (4.44)
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Table 4.1 Principle of a connectivity table

elt loc. node 1 loc. node 2 ... loc. node Nnd

1 I1 I2 ... INnd

2 J1 J2 ... JNnd

...

Ne N1 N2 ... NNnd

Note that if no external loading is imposed on node I, the secondary variable equilib-
rium equation is QI = 0 by default.

In order to satisfy the continuity and balance requirements above, the elementary equa-
tions are assembled into a unique system of equations that is solved at the scale of the
entire domain. The assembling process requires double-numbering the nodes, which pos-
sess a local number in the element and a global number in the domain (Figure 4.1). The
connectivity table relates local and global node numbers (Table 4.1).

Figure 4.1 Local and global node numbers.

Elements of the same interpolation order and same geometry are governed by the same
elementary equations. A coordinate change can be done to adapt the elementary equations
of elements of same interpolation order but different geometries. In practice, elementary
equations are calculated only once for each type of Finite Element - called the master
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elements. In most 1D cases, for element nok:

Kk
ij = cst1

∫ xb

xa

dΨi(x)

dx

dΨj(x)

dx
dx + cst0

∫ xb

xa

Ψi(x)Ψj(x)dx (4.45)

Coordinate change: x = x− xa, le = xb − xa, dx = dx :

Kk
ij = cst1

∫ le

0

dΨi(x+ xa)

dx

dΨj(x+ xa)

dx
dx + cst0

∫ le

0

Ψi(x+ xa)Ψj(x+ xa)dx

(4.46)
By construction, Ψi(x+ xa) only depends on x and le. For all elements of length le:

Ke
ij = cst1

∫ le

0

dΨi(x)

dx

dΨj(x)

dx
dx + cst0

∫ le

0

Ψi(x)Ψj(x)dx (4.47)

The elementary stiffness matrix is then the same for for all elements (of length le).

In most cases, for element nok:

F ki =

∫ xb

xa

Ψi(x)f(x)dx (4.48)

Coordinate change: x = x− xa, le = xb − xa, dx = dx :

F ki =

∫ le

0

Ψi(x+ xa)f(x+ xa)dx (4.49)

By construction, Ψi(x+ xa) only depends on x and le.

F ki =

∫ le

0

Ψi(x)f(x+ xa)dx (4.50)

Generally, f depends on xa and the integral depends on the element, so that the Fi coeffi-
cients must generally be computed for each element.

We call “number of degrees of freedom” the number of dependent variables (u, u’...) that
one needs to solve for, multiplied by the number of nodes. After assembling the elementary
equations, we obtain Ndof global equations to solve for 2 Ndof unknowns

K11

...

K1Ndof 1

...

...

...

K1Ndof

...

KNdof Ndof





u1

...

uNdof


=



F1

...

FNdof


+



Q1

...

QNdof


We have 1 additional equation per degree of freedom:

either a boundary condition (û or Q̂)

or a connectivity requirement (Σi=IQei = 0 if nothing imposed)

As a result, we dispose of Ndof +Ndof equations for 2Ndof unknowns, so in principle, it
is possible to solve the problem.
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4.2.5 Resolution and post-processing

For each degree of freedom, the boundary conditions, continuity conditions and balance
conditions impose the value of either the primary variable (u = û) or the secondary vari-
able (Q = Q̂). Noting (I) the conditions on primary variables and (II) the conditions on
the secondary variables, we can write the global FEM equation with block matrices, as
follows:

 [KI, I ]

[KII, I ]

[KI, II ]

[KII, II ]



{ûI}

{uII}

 =


{FI}

{FII}

 +


{QI}

{Q̂II}

 (4.51)

We first solve for the unknown primary variables stored in the vector {uII} (“resolution”):

{uII} = [KII, II ]
−1
(
{FII}+ {Q̂II} − [KI, II ]{ûI}

)
(4.52)

We then solve for the unknown secondary variables stored in the vector {QI} (“post-
processing”):

{QI} = [KI, I ]{ûI} + [KI, II ]{uII} − {FI} (4.53)

It is possible to use a so-called “condensation technique” to reduce the number of equa-
tions to solve for the primary variable in the first step, by getting rid of the rows of the
system of equations for which the primary variable is known. The process is illustrated
below, in the case when the primary variable is known to be equal to ûp at the pth node.
Initially, the system of equation, is written as:



K11

...

...

Kp 1

...

...

K1Ndof

...

...

...

...

...

...

...

...

...

...

...

...

...

...

K1 p

...

...

Kp p

...

...

KNdof p

...

...

...

...

...

...

...

...

...

...

...

...

...

...

K1Ndof

...

...

KpNdof

...

...

KNdof Ndof





u1

...

up−1

ûp

up+1

...

uNdof



=



F1 +Q1

...

Fp−1 +Qp−1

Fp +Qp

Fp+1 +Qp+1

...

FNdof +QNdof


(4.54)
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We then replace the pth row and the pth column of the stiffness matrix by zeros and
ones, as follows:



K11

...

...

0

...

...

K1Ndof

...

...

...

...

...

...

...

...

...

...

0

...

...

...

0

...

0

1

...

...

0

...

...

...

0

...

...

...

...

...

...

...

...

...

...

K1Ndof

...

...

0

...

...

KNdof Ndof





u1

...

up−1

0

up+1

...

uNdof



+



K1 p

...

Kp−1 p

1

Kp+1 p

...

KNdof p



ûp =



F1 +Q1

...

Fp1 +Qp−1

ûp

Fp+1 +Qp+1

...

FNdof +QNdof


(4.55)

We then put the second term on the left hand-side to the rirght-hand side:



K11

...

...

0

...

...

K1Ndof

...

...

...

...

...

...

...

...

...

...

0

...

...

...

0

...

0

1

...

...

0

...

...

...

0

...

...

...

...

...

...

...

...

...

...

K1Ndof

...

...

0

...

...

KNdof Ndof





u1

...

up−1

0

up+1

...

uNdof



=



F1 +Q1−K1 p ûp

...

Fp1 +Qp−1−Kp−1 p ûp

0

Fp+1 +Qp+1−Kp+1 p ûp

...

FNdof +QNdof −KNdof p ûp


(4.56)
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We notice that one equation is “0=0”, so we can rid of it to obtain the following reduced
system of equations:

K11

...

...

...

...

K1Ndof

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

K1Ndof

...

...

...

...

KNdof Ndof





u1

...

up−1

up+1

...

uNdof



=



F1 +Q1−K1 p ûp

...

Fp1 +Qp−1−Kp−1 p ûp

Fp+1 +Qp+1−Kp+1 p ûp

...

FNdof +QNdof −KNdof p ûp


(4.57)

After solving for the primary variables, there are two ways to calcualte the secondary
variables:

From the condensed equations:

{Q} = [K]{u} − {F} (4.58)

From the elementary contributions:

QI = Σi=IQ
e
i (4.59)

If u is the primary variable and adudx is the secondary variable:

QI = Σi=Ia
duI
dx

(4.60)

Using the elementary contributions may lead to an accumulation of approximation errors
made on the nodal values of the dependent variable, and is thus less accurate than using
condensed equations. However, using the elementary contributions is less computation-
ally expensive, because it does not require using any matrix product. It also requires less
memory, since calculating the seconday variables from the elementary contributions does
not require using the values of the coefficients of the stiffness matrix, which are sometimes
modified and destroyed during the stiffness inversion process. As a result, unknown nodal
values of the seconday variables are most often calculated from the elementary contribu-
tions - a process called post-processing.

When the secondary variable (e.g., force) is not applied at the location of a node of
an element, one can use an interpolation to express the imposed secondary variable as
a function of different forces applied at the neighboring nodes (Figure 4.2). Using the
coordinate of the application point xF : A simple solution is:

Q̂a = F
(

1− xF−xa
xb−xa

)
Q̂b = F xF−xa

xb−xa

(4.61)
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Figure 4.2 An example where a force is not applied at a node of the mesh.

Figure 4.3 Forces applied outside ot the nodes of a 2D mesh.

so that Q(xa) = F if xF = xa, Q(xb) = F if xF = xb, and Q(xa) + Q(xb) = F in all
cases (F applied on the element). In more than 1D, an interpolation is needed on each face
of the element (Figure 4.3).

4.3 Applications of the FEM for 1 variable in 1D

4.3.1 Heat and mass transfer

Heat transfer
The balance of heat fluxes is expressed as:

−kA∂T
∂x

+βA(T − T∞) = Q0 (4.62)

in whichQ0 represents a heat source,−kA∂T
∂x represents conductive flow and βA(T−T∞)

represents convective flow. The conservation of energy is expressed as:

divQ = ρCp
∂T

∂t
(4.63)

so that:

− ∂

∂x

(
kA

∂T

∂x

)
+ βP (T − T∞) −Aq0 = ρCp

∂T

∂t
(4.64)

In steady state:

− ∂

∂x

(
kA

∂T

∂x

)
+ βP (T − T∞) = Aq0 (4.65)
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If there is convection on the whole surface of the element (Figure 4.4):

− ∂

∂x

(
kA

∂T

∂x

)
+ βP (T − T∞) = Aq0 (4.66)

Figure 4.4 Examples of bodies subjected to convection heat transfer. Image taken from [18]

For bodies that present axis-symmetry, like in Figure 4.5:

The transfer equation written for an elementary surface of the section;

There is no convection at the element perimeter;

Convection happens only at the outer boundaries of the system.

In cylindrical coordinates:∫
r

∫
θ

∫
z

f(r)dV =

∫ R

0

∫ 2Π

0

∫ 1

0

f(r)dr rdθ dz = 2π

∫ R

0

f(r)rdr (4.67)
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Figure 4.5 Heat transfer through a cylindrical composite. Image taken from [18]
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The governing equation is:

−1

r

d

dr

(
kr
dT

dr

)
= q0(r) (4.68)

In spherical coordinates:∫
r

∫
θ

∫
φ

f(r)dV =

∫ R

0

∫ 2Π

0

∫ Π

0

f(r)dr rdθ rsinφdφ = 4Π

∫ R

0

f(r)r2dr (4.69)

The governing equation is:

− 1

r2

d

dr

(
kr2 dT

dr

)
= q0(r) (4.70)

Fluid Transfer
For fluid transfer (Figure 4.6), we start by expressing the water mass conservation equation:

∂(ρw)

∂t
+ div (ρw vw) = 0 (4.71)

For an incompressible fluid:

div (vw) = 0 (4.72)

The water balance of momentum is written as follows:

div (pwδ) + fw = aw(x, t) (4.73)

For a Newtonian fluid, the resulting force that resists the flow due to the fluid’s viscosity
is:

fw = −µw∇2vw (4.74)

Thus, in static conditions:

∇pw − µw∇2vw = 0 (4.75)

Thus, the governing equation in 1D is:

µw
d2vwx
dy2

=
dpw
dx

, µw
d2vwx
dy2

= f(y) (4.76)

Using Ritz Method:

∀ = 1..N,

[∫ y2

y1

µ
dΨi

dy

dΨj

dy
dy

]
vxj = −

∫ y2

y1

Ψi(y)f(y)dy +Qi (4.77)
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Figure 4.6 1D Newtonian fluid flow in a pipe. Image taken from [18]
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4.3.2 Bars and beams

Bar elements
Beam elements are subject to deflection and undergo deflection. By contrast, a bar element
is only loaded axially. The dependent variable in a bar element is an axial displacement.
The governing equation is:

− d

dx

(
EA

du

dx

)
= f(x) (4.78)

The weak formulation is:

∀w ' δu,

∫ xb
xa
EAdw

dx
du
dxdx −

∫ xb
xa
w(x)f(x)dx − [w(x)EAdu

dx ]xbxa = 0

(4.79)

in which the secondary variable has the physical dimension of a traction force, and is
expressed as:

Q = EA
du

dx
(4.80)

After introducing the approximation u(x) '
∑N
i=1 uiΨi(x), one gets the following ele-

mentary equations:

∀i = 1, 2,

[∫ xb

xa

EA
dΨi

dx

dΨj

dx
dx

]
uej =

∫ xb

xa

Ψi(x)f(x)dx + [Qi(x)]xbxa (4.81)

In a matrix form:
[Ke] {ue} = {F e} + {Qe} (4.82)

in which the force vector is:

{F e} =

∫ xb

xa

{Ne}f(x)dx (4.83)

and the stiffness matrix is:

[Ke] =

∫ xb

xa

AE{Be} ⊗ {Be}dx (4.84)

where we used the following notation:

ueN (x) = {Ne(x)} · {ue} =


Ψ1(x)

Ψ2(x)

...

ΨN (x)

 ·

ue1

ue2

...

ueN

 (4.85)

εeN (x) =
dueN (x)
dx = {dN

e(x)
dx } · {ue}

= {Be(x)} · {ue} =


dΨ1(x)/dx

dΨ2(x)/dx

...

dΨN (x)/dx

 ·

ue1

ue2

...

ueN


(4.86)
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For a linear bar element of length le that is made of a homogeneous material of Young’s
modulus E and that has a cross-section of uniform area Ae:

Ke
ij =

∫ xb

xa

EA
dΨi

dx

dΨj

dx
dx (4.87)

[Ke] =
EAe
le

 1

−1

−1

1

 (4.88)

Euler-Bernouilli beam elements
In a beam deflection problem (Figure 4.7, the goal is to find the deflection w(x), and the
deflection angle, noted Ψ(x) in the following. The governing equations are:

− d
dx

[
GAKs

(
ψ + dw

dx

)]
+ cf w(x) = q(x)

− d
dx

(
EI dψdx

)
+GAKs

(
ψ + dw

dx

)
= 0

(4.89)

In Euler-Bernouilli’s beam model (Figure 4.8), it is assumed that the cross section remains

Figure 4.7 Beam deflection problem. Image taken from [18]

perpendicular to the beam axis, so that ψ = dw
dx . In other words, the problem has to be
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solved for only 1 dependent variable, the deflection w. The governing equation is:

d2

dx2

(
EI

d2w

dx2

)
+ cf w(x) = q(x), 0 < x < L (4.90)

Two integration by parts are needed for the two primary variables w and dw/dx. The

Figure 4.8 Euler-Bernouilli’s assumptions. Image taken from [18]

two primary variables are related by a differential operator. As a result, Hermite interpo-
lation polynomials will be needed. The maximum order of the differential operator in the
integral equations of the variational method is 2, so it is necessary to choose interpolation
polynomials of order 2 at least. However, the minumum number of degrees of freedom per
element is 4 (two degrees of freedom for a minimum of two nodes), so the interpolation
polynomials should be of order 3 at least (a cubic polynomial has four independent coeffi-
cients). The interpolation functions for the two-noded Euler-Bernouilli element are of the
form:

Ψe
j(x) = a3x

3 + a2x
2 + a1x + a0 (4.91)
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with:
dΨe

j(x)

dx
= 3a3x

2 + 2a2x + a1 (4.92)

Noting xe and xe+1 the coordinates of the two nodes of the element, the coeffiicents of the
interpolation polynomilals can be found by solving the following system of equations:

w(xe)

[dw/dx](xe)

w(xe+1)

[dw/dx](xe+1)


=



1

0

1

0

xe

1

xe+1

1

xe
2

2xe

xe+1
2

2xe+1

xe
3

3xe
2

xe+1
3

3xe+1
2





a0

a1

a3

a4


(4.93)

And we obtain: 

Ψe
1(x) = 1 − 3

(
x−xe
le

)2

+ 2
(
x−xe
le

)3

Ψe
2(x) = −(x− xe)

(
1− x−xe

le

)2

Ψe
3(x) = 3

(
x−xe
le

)2

− 2
(
x−xe
le

)3

Ψe
4(x) = −(x− xe)

[(
x−xe
le

)2

− x−xe
le

]
(4.94)

The variational formulation is obtained as follows:

d2

dx2

(
EI

d2w

dx2

)
+ cf w(x) = q(x), 0 < x < L (4.95)

After two integration by parts:

∀f ' δw,

∫ xe+1

xe

(
EI d

2f
dx2

d2w
dx2 + cff(x)w(x) − f(x)q(x)

)
dx

−f(xe)Q
e
1 −

(
df
dx

)
(xe)Q

e
2 − f(xe+1)Qe3 −

(
df
dx

)
(xe+1)Qe4

(4.96)

with:

Qe1 =

[
d

dx

(
EI

d2w

dx2

)]
(xe) = −V (xe), Qe3 = −

[
d

dx

(
EI

d2w

dx2

)]
(xe+1) = V (xe+1)

(4.97)

Qe2 =

[
−EI d

2w

dx2

]
(xe) = M(xe), Qe4 =

[
d

dx

(
−EI d

2w

dx2

)]
(xe+1) = −M(xe+1)

(4.98)
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The general form of the matrix equation over one element is as follows: K





U1 = w(xe)

U2 = dw/dx(xe)

U3 = w(xe+1)

U4 = dw/dx(xe+1)


=



F1 +Q1

F2 +Q2

F3 +Q3

F4 +Q4


(4.99)

With a Finite Element Method based on Ritz Method:

Ke
ij =

∫ xe+1

xe

(
EI

d2Ψe
i

dx2

d2Ψe
j

dx2
+ cfΨe

i (x)Ψe
j

)
dx (4.100)

If E, I and cf are constant over the element:

[Ke] =
2EI

(le)3



6

−3le

−6

−3le

−3le

2(le)
2

3le

(le)
2

−6

3le

6

3le

−3le

(le)
2

3le

2(le)
2


+
cf le
420



156

−22le

54

13le

−22le

4(le)
2

−13le

−3(le)
2

54

−13le

156

22le

13le

−3(le)
2

22le

4(le)
2


(4.101)

F ei +Qei =

∫ xe+1

xe

Ψe
i (x)q(x)dx +Qei (4.102)

If the load q is constant (=q0) over the element:

{F e +Qe} =
q0le
12



6

−le

6

le


+



Q1

Q2

Q3

Q4


(4.103)

Timoshenko beam elements
In Timoshenko’s beam model (Figure 4.9), the orientation of the cross section of the beam
is not known, i.e. ψ 6= dw/dx. The deflection problem has to be solved for two inde-
pendent variables, w(x) and ψ(x). The formulation of the problem is based on the two
following governing equations, for 0 ≤ x ≤ L:

− d
dx

[
GAKs

(
ψ + dw

dx

)]
+ cf w(x) = q(x)

− d
dx

(
EI dψdx

)
+GAKs

(
ψ + dw

dx

)
= 0

(4.104)
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The variational formulation of Timoshenko’s beam deflection problem is the following:

Figure 4.9 Assumptions made in Timoshenko beam’s model.



∀f ' δw,∫ xe+1

xe

(
df
dxGAKs

(
ψ + dw

dx

)
+ cff(x)w(x) − f(x)q(x)

)
dx

−
[
f(x)GAKs

(
ψ + dw

dx

)] xe+1
xe = 0

∀g ' δψ,∫ xe+1

xe

(
dg
dxEI

dψ
dx + g(x)GAKs

(
ψ + dw

dx

))
dx

−
[
g(x)EI dψdx

]
xe+1
xe = 0

(4.105)

The secondary variables are the shear force (conjugate to w) and the bending moment
(conjugate to ψ). Since the problem needs to be solved for two independent degrees of
freedom, two families of Lagrange interpolation functions are needed:

we(x) = ΣNj=1w
e
jf
e
j (x), ψe(x) = ΣMj=1ψ

e
jg
e
j (x) (4.106)

In general, the interpolation orders N and M are different. After introducing the expres-
sions of the interpolation functions in the variational formulation, one obtaines to coupled
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integral equations, which can be expressed in the form of a matrix equation of the form:

 [K11]

[K21]

[K12]

[K22]



{w}

{ψ}

 =


{F 1 +Q1}

{F 2 +Q2}

 (4.107)

The first block row is related to the first equation of deflection:

∀f ' δw,∫ xe+1

xe

(
df
dxGAKs

(
ψ + dw

dx

)
+ cff(x)w(x) − f(x)q(x)

)
dx

−
[
f(x)GAKs

(
ψ + dw

dx

)]xe+1

xe
= 0

(4.108)

With Ritz Method:

∀i = 1..N,[∫ xe+1

xe

(
dfei
dx GAKs

dfej
dx + cffi(x)fj(x)

)
dx
]
wj +

[∫ xe+1

xe

(
dfei
dx GAKsg

e
j′

)
dx
]
ψj′

=
∫ xe+1

xe
fi(x)q(x)dx +

[
fi(x)GAKs

(
ψ + dw

dx

)]xe+1

xe
(4.109)

K11
ij =

∫ xe+1

xe

(
dfei
dx GAKs

dfej
dx + cffi(x)fj(x)

)
dx

K12
ij =

∫ xe+1

xe

(
dfei
dx GAKsg

e
j

)
dx

F 1
i =

∫ xe+1

xe
fi(x)q(x)dx

Q1
i =

[
fi(x)GAKs

(
ψ + dw

dx

)]xe+1

xe

(4.110)

The second block fow is related to the second equation of deflection:

∀g ' δψ,∫ xe+1

xe

(
dg
dxEI

dψ
dx + g(x)GAKs

(
ψ + dw

dx

))
dx −

[
g(x)EI dψdx

]xe+1

xe
= 0

(4.111)

With Ritz Method:

∀i = 1..M,[∫ xe+1

xe

(
dgei
dx EI

dgej
dx +GAKsgi(x)gj(x)

)
dx
]
ψj +

[∫ xe+1

xe

(
geiGAKs

dfe
j′

dx

)
dx
]
wj′

=
[
gi(x)EI dψdx

]xe+1

xe
(4.112)
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K22
ij =

∫ xe+1

xe

(
dgei
dx EI

dgej
dx +GAKsgi(x)gj(x)

)
dx

K21
ij =

∫ xe+1

xe

(
geiGAKs

dfej
dx

)
dx

F 2
i = 0

Q2
i =

[
gi(x)EI dψdx

]xe+1

xe

(4.113)

Each dependent variable is differentiated only once in the integral equations. There is a
minimum of two nodal values to match for each beam element (minimum two nodes per
element). So the minimum order possible for the interpolation polynomials is 1 (linear
interpolation functions). That said, the angle of deflection ψ has the physical dimension
of the derivative of the deflection w. So the order of interpolation of w should exceed
that of ψ by one. So since the minimum order of the interpolation polynomials for ψ is 1
(linear functions), the minimum order of the interpolation polynomials for w should be 2
(quadratic functions). A consistency node is added in the middle of the element, just for
the deflection degree of freedom. The other two nodes at the ends of the beam element
both have two d.o.f. (deflection and deflection angle). For a quadratic interpolation of
the deflection and a linear interpolation of the deflection angle, and for EI, GAKs and cf
constant over the element:

[K11] =
GAKs

3le


7

−8

1

−8

16

−8

1

−8

7

 +
cf le
30


4

2

−1

2

16

2

−1

2

4

 (4.114)

[K12] = [K21]T =
GAKs

6


−5

4

1

−1

−4

5

 (4.115)

[K22] =
EI

le

 1

−1

−1

1

 +
GAKsle

6

 2

1

1

2

 (4.116)
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The general form of the elementary equation is:

 Ke(5x5)





w1

wc

w2

ψ1

ψ2



=



F 1
1 +Q1

1

F 1
c +Q1

c

F 1
2 +Q1

2

F 2
1 +Q2

1

F 2
2 +Q2

2



(4.117)

The equation related to the additional consistency node:

Ke
22wc = F 1

c +Q1
c −Ke

21w1 −Ke
23w2 −Ke

24ψ1 −Ke
25ψ2 (4.118)

is used as a boundary condition on wc to get condensed equations of the form:

 K̂e(4x4)





w1

w2

ψ1

ψ2


=



F̂ 1
1 +Q1

1

F̂ 1
2 +Q1

2

F̂ 2
1 +Q2

1

F̂ 2
2 +Q2

2


(4.119)

To avoid adding consistency nodes, the same order of interpolation can be used for both
the deflection and the deflection angle. If a linear interplation is used for both w and ψ,
then dw/dx is constant over the beam element while ψ varies linearly over that element.
We note that the shear energy stored in one element is:

Eshear =

∫ xe+1

xe

GAKs

2

(
dw

dx
+ ψ

)2

dx (4.120)

If the shear energy has to be computed by a numerical integration, one integration term is
sufficient to evaluate the terms in dw/dx (up to order 1 only, in ψ dwdx ), but one integration
term is not sufficient to integrate exactly the bending energy in ψ2 (order 2). That is why
Timoshenk beam elements with the same interpolation order for the deflection and the
deflection angle are called “reduced integration elements”. For a linear interpolation in
both w and ψ, and for EI and GAKs constant over the element, with cf = 0:

[K11] =
GAKs

le

 1

−1

−1

1

 (4.121)

[K12] = [K21] =
GAKs

2

 −1

1

1

−1

 (4.122)
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[K22] =
EI

le

 1

−1

−1

1

 +
GAKsle

4

 1

1

1

1

 (4.123)

4.4 2D Finite Elements

4.4.1 Variational formulation in 2D

To explain the principle of the FEM in 2D for 1 dependent variable, we take the example
of the following typical second-order partial differential equation:

− ∂

∂x

(
a11

∂u

∂x
+ a12

∂u

∂y

)
− ∂

∂y

(
a21

∂u

∂x
+ a22

∂u

∂y

)
+a00u(x, y) = f(x, y) (4.124)

We start with the variational formulation of the problem. The Weighted integral statement
is written as:

∀w ∼ δu,

0 =
∫

Ω
w(x, y)

[
− ∂
∂x (F1(x, y)) − ∂

∂y (F2(x, y)) + a00u(x, y) − f(x, y)
]
dxdy

(4.125)
with: 

F1(x, y) = a11
∂u
∂x + a12

∂u
∂y

F2(x, y) = a21
∂u
∂x + a22

∂u
∂y

(4.126)

So that we have:

0 =

∫
Ω

w(x, y)

[
− ∂

∂x
(F1(x, y)) − ∂

∂y
(F2(x, y)) + a00u(x, y) − f(x, y)

]
dxdy

(4.127)
The integration by parts is performed as follows:

−w(x, y)∂F1(x,y)
∂x = ∂w(x,y)

∂x F1(x, y) − ∂
∂x (w(x, y)F1(x, y))

−w(x, y)∂F2(x,y)
∂y = ∂w(x,y)

∂y F2(x, y) − ∂
∂y (w(x, y)F2(x, y))

(4.128)

According to the divergence theorem:
∫

Ω
∂
∂x (w(x, y)F1(x, y)) dxdy =

∮
Γ
w(x, y)F1(x, y)nxds

∫
Ω

∂
∂y (w(x, y)F2(x, y)) dxdy =

∮
Γ
w(x, y)F2(x, y)nyds

(4.129)

where n is the unit vector normal to the surface of the domain:

n = nxex + nyey (4.130)
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The weak formulation is obtained as follows:

∀w ∼ δu,

∫
Ω
∂w(x,y)
∂x

(
a11

∂u
∂x + a12

∂u
∂y

)
dxdy +

∫
Ω
∂w(x,y)
∂y

(
a21

∂u
∂x + a22

∂u
∂y

)
dxdy

+
∫

Ω
[a00w(x, y)u(x, y) − w(x, y)f(x, y)] dxdy

−
∮

Γ
w(x, y)

[
nx

(
a11

∂u
∂x + a12

∂u
∂y

)
+ ny

(
a21

∂u
∂x + a22

∂u
∂y

)]
ds = 0

(4.131)

The primary variable is:
u(x, y) (4.132)

The secondary variable is:

qn = nx

(
a11

∂u

∂x
+ a12

∂u

∂y

)
+ ny

(
a21

∂u

∂x
+ a22

∂u

∂y

)
(4.133)

The Finite Element Method provides an approximate solution of the problem over each
element of the mesh:

u(x, y) ' ue(x, y) = ΣNj=1u
e
jΨ

e
j(x, y) (4.134)

In 2D, the interpolation property is written as follows:

Ψe
i (xj , yj) = δij (4.135)

In Ritz Method, the weight functions used in the variational formulation are assumed to be
equal to the interpolation functions:

∀i = 1..N, wi(x, y) = Ψe
i (x, y) (4.136)

Using Ritz method, the variational formulation can thus be written as:

∀w ∼ δu,∫
Ω
∂w(x,y)
∂x

(
a11

∂u
∂x + a12

∂u
∂y

)
dxdy +

∫
Ω
∂w(x,y)
∂y

(
a21

∂u
∂x + a22

∂u
∂y

)
dxdy

+
∫

Ω
[a00w(x, y)u(x, y) − w(x, y)f(x, y)] dxdy

−
∮

Γ
w(x, y)

[
nx

(
a11

∂u
∂x + a12

∂u
∂y

)
+ ny

(
a21

∂u
∂x + a22

∂u
∂y

)]
ds = 0

(4.137)

∀i = 1..N,

ΣNj=1

[∫
Ωe

∂Ψi(x,y)
∂x

(
a11

∂Ψj
∂x + a12

∂Ψj
∂y

)
dxdy

]
uej

+ΣNj=1

[∫
Ωe

∂Ψi(x,y)
∂y

(
a21

∂Ψj
∂x + a22

∂Ψj
∂y

)
dxdy

]
uej

+ΣNj=1

[∫
Ωe

[a00Ψi(x, y)Ψj(x, y)] dxdy
]
uej

=
∫

Ωe
Ψi(x, y)f(x, y)dxdy +

∮
Γe

Ψi(x, y)qn(s)ds

(4.138)
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The elementary matrix equations are typically of the following form:

[Ke]{ue} = {F e} + {Qe} (4.139)

Ke
ij =

∫
Ωe

∂Ψi(x,y)
∂x

(
a11

∂Ψj
∂x + a12

∂Ψj
∂y

)
dxdy

+
∫

Ωe
∂Ψi(x,y)

∂y

(
a21

∂Ψj
∂x + a22

∂Ψj
∂y

)
dxdy +

∫
Ωe

[a00Ψi(x, y)Ψj(x, y)] dxdy

F ei =
∫

Ωe
Ψi(x, y)f(x, y)dxdy

Qei =
∮

Γe
Ψi(x, y)qn(s)ds

(4.140)

4.4.2 Linear 2D Finite Elements

Like in 1D, it is convenient in 2D to work with master elements, because master elements
of same shape and same interpolation order will yield the same elementary stiffness ma-
trix. The integration required to calculate the coefficients of the elementary stiffness matrix
needs to be done only once per type of master element used in the mesh. Often times, the
elementary stiffness matrix coefficients are pre-calculated for a catalog of basic master el-
ements. In this course, we will limit our study to triangular and rectangular elements. In
this subsection, we derive the interpolation functions of the linear triangular and rectangu-
lar elements.

Consider a linear triangular element A1A2A3 with Ak(xk, yk). The approximation is:

ue(x, y) = c1 + c2 x+ c3 y (4.141)

Interpolation functions are linear in x and y, so:

Ψi(x, y) = b1 + b2 x+ b3 y (4.142)

According to the 2D interpolation property:
ue1

ue2

ue3

 =

 1

1

1

x1

x2

x3

y1

y2

y3



c1

c2

c3

 ⇒


2Ae c1 = αe1u
e
1 + αe2u

e
2 + αe3u

e
3

2Ae c2 = βe1u
e
1 + βe2u

e
2 + βe3u

e
3

2Ae c3 = γe1u
e
1 + γe2u

e
2 + γe3u

e
3

(4.143)

With Ae the area of the triangular element and, for i 6= j, j 6= k and k 6= i:
αei = xjyk − xkyj
βei = yj − yk
γei = −(xj − xk)

(4.144)

The resulting linear interpolation functions are:

Ψe
i (x, y) =

1

2Ae
(αei + βei x+ γei y) (4.145)
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
αei = xjyk − xkyj
βei = yj − yk
γei = −(xj − xk)

(4.146)

In a local coordinate system (Figure 4.10):

Ψ1(x, y) = 1 − x

a
− y

b
(4.147)

Ψ2(x, y) =
x

a

Ψ3(x, y) =
y

b

For the following governing equation:

Figure 4.10 Local coordinate system of a linear triangular element. Image taken from [18]

− ∂
∂x

(
a11

∂u
∂x + a12

∂u
∂y

)
− ∂

∂y

(
a21

∂u
∂x + a22

∂u
∂y

)
(4.148)

+a00u(x, y) = f(x, y)
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If a00 = a12 = a21 = 0, with a11 = a22 = ke:

[Ke] =
ke

2ab


a2 + b2

−b2

−a2

−b2

b2

0

−a2

0

a2

 (4.149)

If f(x, y) = fe (constant):

{F e} =
fe ab

6



1

1

1


For the linear rectangular element, interpolation functions have a linear term in x, a

linear term in y, and one bilinear term:

Ψi(x, y) = b1 + b2 x+ b3 y + b4 xy (4.150)

In a local coordinate system (Figure 4.11):

Ψ1(x, y) =

(
1− x

a

)(
1− y

b

)
(4.151)

Ψ2(x, y) =
x

a

(
1− y

b

)
Ψ3(x, y) =

x

a

y

b

Ψ4(x, y) =

(
1− x

a

)
y

b

For the governing equation:

− ∂
∂x

(
a11

∂u
∂x + a12

∂u
∂y

)
− ∂

∂y

(
a21

∂u
∂x + a22

∂u
∂y

)
(4.152)

+a00u(x, y) = f(x, y)

If f(x, y) = fe (constant):

{F e} =
fe ab

4


1

1

1

1

 (4.153)
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Figure 4.11 Local coordinate system of a linear reactnagular element. Image taken from [18]

If a00 = a12 = a21 = 0, with a11 = a22 = ke:

[Ke] =
ke

6ab



2
(
a2 + b2

)
a2 − 2b2

−
(
a2 + b2

)
b2 − 2a2

a2 − 2b2

2
(
a2 + b2

)
b2 − 2a2

−
(
a2 + b2

)

−
(
a2 + b2

)
b2 − 2a2

2
(
a2 + b2

)
a2 − 2b2

b2 − 2a2

−
(
a2 + b2

)
a2 − 2b2

2
(
a2 + b2

)


(4.154)

The assembling process in 2D is similar to that in 1D. Figure 4.12 gives an overview of
the procedure for a mesh with different types of 2D elements.

The boundary integrals {Q} are computed on the external boundaries of the domain
only (the other boundary integrals balance each other due to connectivity conditions):

Qei =

∮
Γe

Ψe
i (x, y)qn(s)ds (4.155)

We perform a coordinate change to get x(s), y(s):

Qei =

∮
Γe

Ψe
i (s)qn(s)ds (4.156)

The boundary integral is the sum of 1D integrals defined on the sides of the 2D element. If
the linear element has P sides, each of which being delimited by nodes P1 and P2:

Qei =

P∑
k=1

∫ side k, node P2

side k, node P1

Ψe
i (s)qn(s)ds (4.157)
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Figure 4.12 Assembming elements of different types in 2D.
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Ψi is zero except at the i− th node so the 1D integrals on the sides of the element that do
not contain the i− th node vanish. Example on a triangular element:

Qe1 =

∫
1−2

Ψe
1(s)qn1−2

(s)ds +

∫
3−1

Ψe
1(s)qn3−1

(s)ds (4.158)

4.4.3 Higher-order 2D Finite Elements

In 1D, we established a methodology to calculate sets of independent interpolation func-
tions. The idea is to solve for the coefficients of polynomials of a given order. For example,
if the element has N degrees of freedom, interpolation functions are sounght in the form:

Ψe
j(x) =

N∑
i=1

ceix
i−1 (4.159)

Since the dependent variable is approximated as:

ue(x) '
N∑
j=1

uejΨ
e
j(x) (4.160)

and since in the FEM, the approximate solution is designed to be exact at the nodes, we
have: 

ue1

...

ueN


=


1

...

1

x1

...

xN

...

...

...

xN1

...

xNN





ce1

...

ceN


(4.161)

which is a system of equations that can be solved for the unknown coefficients cei . The
coefficients cei determine the expression of the interpolation functions.

A similar procedure can be adopted in 2D to find the expressions of the interpolation func-
tions of master elements of higher order. Having a library of interpolation functions of
higher order is useful, because it allows computing elementary integrals over standardized
master elements and using a geometric transform to get back to the current element, with
redundant elementary computations. We start with quadratic elements (Figure 4.13). The
general form of the interpolation functions of the quadratic triangular element is:

Ψi(x, y) = b1 + b2 x+ b3 y + b4 xy + b5 x
2 + b6 y

2 (4.162)

The general form of the interpolation functions of the 9-node quadratic rectangular element
is:

Ψi(x, y) = b1 +b2 x+ b3 y +b4 xy +b5 x
2 +b6 y

2 +b7 xy
2 +b8 x

2y +b9 x
2y2 (4.163)

The so-called “serendipity element” is an 8-node rectangular element, similar to the 9-node
rectangular element, but without internal node (Figure 4.14). The serendipity element has
one less degree of freedom than the regular quadratic element so calculations made with
serendipity elements are faster. Besides, the degree of freedom in the center of the element
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is not subjected to continuity conditions, so removing the central node of a rectangular
element does not significantly decrease the accuracy of the FEM solution. The general
form of the interpolation functions of the 8-node quadratic rectangular element is:

Ψi(x, y) = b1 + b2 x+ b3 y + b4 xy + b5 x
2 + b6 y

2 + b7 xy
2 + b8 x

2y (4.164)

Figure 4.13 Quadratic triangular and rectangular elements. Image taken from [18]

Figure 4.14 Serendipity element. Image taken from [18]

It is not straightforward to calculate the bi coefficients using the same method as in 1D,
because it that method requires inverting a large matrix. Here, we present more efficient
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techniques that can be used to find the interpolation functions of quadratic elements and
elements of higher order. For triangular elements, we define area coordinates as follows:

Li =
Ai
A

=
s

h
, i = 1, 2, 3 (4.165)

We verify the interpolation property for a linear element:

Li(xj , yj) = Li(sj) = δij , i, j = 1, 2, 3 (4.166)

Area coordinates can be viwed as linear interpolation functions (Figure 4.15).
If a triangular element has k nodes per side (Figure 4.16, the number of nodes per

element is:

N = k + (k − 1) + ...+ 1 =

k−1∑
i=0

(k − i) (4.167)

N =
k2

2
+
k

2
=

1

2
k(k + 1) (4.168)

There are k unknown coefficients per polynomial interpolation function, so the degree of
the interpolation polynomials is k-1. So, pth-order Lagrange elements are interpolated on
each side by pth-order interpolation polynomials expressed with the boundary coordinate
s. For the pth node on a side that has k equally spaced nodes, we define:

sp =
p

k − 1
∼ s

h
(4.169)

The positions of the nodes are distributed on Pascal’s triangle:

x3

x2

x

x2y

1

xy

y

xy2

y2

y3

At the vertices of the triangle:

ΨI(s) = 1 on sk−1, ΨI(s) = 0 on s0, s1, ..., sk−2 (4.170)

with:
LI(s) =

s

h
= sp for equally spaced nodes (4.171)

A (k−1)th order polynomial allows solving for k-1 roots while satisfying 1 normalization
condition:

ΨI(s) =
LI(s)− s0

sk−1 − s0

LI(s)− s1

sk−1 − s1
...
LI(s)− sk−2

sk−1 − sk−2
= Πk−2

p=1

(
LI(s)− sp
sk−1 − sp

)
(4.172)

Out of the vertices of the triangle:

Ψi(s) = Πk−1
j=1

(
fj
f ij

)
(4.173)

f ij = fj(xi, yi), with fj a function of L1, L2 and L3.
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Figure 4.15 Area coordinates and linear interpolation on a triangular element. Image taken from
[18]
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Figure 4.16 Triangular element of higher order. Image taken from [18]



2D FINITE ELEMENTS 139

Figure 4.17 Interpolation functions of rectangular elements by convolution of 1D interpolation
functions. Image taken from [18]
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Interpolation polynomials of higher-order rectangular elements can be found by doing
a convolution of 1D interpolation functions:

[Ψi(x, y)] = {Ψi(x)}T {Ψi(y)}

Figure 4.17 illustrates the process. However, the convolution technique does not work for
serendipity elements, which do not have internal nodes (Figure 4.18).

Figure 4.18 Construction of rectangular serendipity elements and derivation of their interpolation
functions. Image taken from [18]

We note that if polynomials of pth order are used to interpolate on a rectangular element,
that element must have N = (p+ 1)2 nodes (unless it is a serendipity element). The N =
(p + 1)2 independent monomials that are involved in the expression of the interpolation
polynomials of pth order can be found by using Pascal’s triangle technique, as explained
in Figure 4.19. PAscal’s triangle can also be used to find the monomials involved in the
serendipity elements of higher-order, see Figure 4.20.

4.5 Master elements and numerical integration

4.5.1 Coordinate transformation

In 2D dimensions, the boundaries of the domain are typically irregular. The mesh usually
approximates the shape of the domain, which yields a geometric interpolation. In the same
was as the dependent variable u(x, y is interpolated:

ue(x, y) ' ΣNj=1u
e
jΨ

e
j(x, y) (4.174)

the geometry is also interpolated, i.e. the coordinates of the points inside an element are
interpolated between the coordinates of the nodes of that element:

x ' ΣMj=1x
e
jΨ̂

e
j(ξ, η), y ' ΣMj=1y

e
j Ψ̂

e
j(ξ, η) (4.175)
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Figure 4.19 Pascal’s triangle used to find the monomials involved in the interpolation functions of
a higher-order rectangular elements. Image taken from [18]



142 FINITE ELEMENT METHOD IN LINEAR ELASTICITY

Figure 4.20 Pascal’s triangle used to find the monomials involved in the interpolation functions of
a higher-order rectangular serendipity elements. Image taken from [18]

Three types of elements exist:

If the order of the geometric interpolation is equal to the order of the interpolation of
the dependent variable (M=N), the element is isoparametric (most common);

If the order of the geometric interpolation is less than the order of interpolation of the
dependent variable (M¡N), the element is subparametric (eg, deflection of an Euler-
Bernouilli beam);

If the order of the geometric interpolation is greater than the order of interpolation of
the dependent variable (M¿N), the element is superparametric (scarce).

Interpolation functions are expressed in the local coordinate system of master elements,
and the elementary stiffness of all master elements of the same type are equal. However in
an actual mesh, not all elements have the shape of a master element. For instance, a mesh
may contain distorted quadrilaterals instead of 2x2 square master elements. So in order
to take advantage of redundant formulas over master elements, a coordinate transform is
needed, from the coordinate system of the actual element (x,y) to that of the master element
(ξ, η), and vice versa (Figure 4.21).

The coordinate change is performed by means of the Jacobian matrix [J ], as follows:

x ' ΣMj=1x
e
jΨ̂

e
j(ξ, η), y ' ΣMj=1y

e
j Ψ̂

e
j(ξ, η) (4.176)

[J ] =


∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

 =


ΣMj=1xj

∂Ψ̂j
∂ξ

ΣMj=1xj
∂Ψ̂j
∂η

ΣMj=1yj
∂Ψ̂j
∂ξ

ΣMj=1yj
∂Ψ̂j
∂η

 (4.177)
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Figure 4.21 Principle of the coordinate transform. Image taken from [18]
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[J ] =


∂Ψ̂1

∂ξ

∂Ψ̂1

∂η

∂Ψ̂2

∂ξ

∂Ψ̂2

∂η

...

...

∂Ψ̂M
∂ξ

∂Ψ̂M
∂η





x1

x2

...

xM

y1

y2

...

yM


(4.178)

Computing the stiffness matrix requires computing:
∂Ψei
∂x

∂Ψei
∂y

 =


∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y




∂Ψei
∂ξ

∂Ψei
∂η

 = [J ]−1


∂Ψei
∂ξ

∂Ψei
∂η

 (4.179)

so that the Jacobian matrix must be inversible:

J = det[J ] =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
6= 0 (4.180)

If nodes are numbered in the same sequence (e.g., counter clockwise) in the current and
master elements:

J = det[J ] =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
> 0 (4.181)

Also note this useful formula:

dA = dx dy = J dξ dη (4.182)

4.5.2 Numerical integration

The calculation of the stiffness matrix of higher-order elements can be quite involved, be-
cause of the complex functions to be integrate d(especially for higher-order interpolation),
and/or because of the complex shape of the elements. For this reason, it is necessary to
expedite some of the calculations by using approximation methods. In the following, we
explain the principle of numerical integration, which allows approximating complex inte-
gral expressions.

In 1D, the Newton-Cotes quadrature consists in approximating a function by doing a lin-
ear interpolation between values of that functions reached at equally spaced points (Figure
4.22):

∀r > 1,

∫ b

a

F (x)dx ' (b− a)

r∑
I=1

wI F̂

(
I − 1

r − 1
(b− a) + a

)
(4.183)

A Newton-Cotes quadrature of order r depends on r weight coefficients wI .

r = 1: the numerical approximation provides the exact integral if F is a polynomial
of order r − 1 = 0, i.e. if F=1:∫ b

a

1dx = (b− a)w1 ⇒ w1 = 1
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r = 2: the numerical approximation provides the exact integral if F is a polynomial
of order r − 1 = 1, i.e. if F=1 or F=x:{

(b− a) =
∫ b
a

1dx = (b− a) (w1 + w2)
b2−a2

2

∫ b
a
xdx = (b− a) (w1 a+ w2 b)

⇒ w1 = w2 = 0.5

r = 3: the numerical approximation provides the exact integral if F is a polynomial
of order r− 1 = 2, i.e. if F=1 or F=x or F=x2. We get: w1 = w3 = 1/6; w2 = 4/6.

Newton-cotes quadrature is exact for polynomials F of order r when r is odd, and for
polynomials F or order r − 1 when r is even.

[slideplayer.com]

Figure 4.22 Principle of Newton-Cotes quadrature.

In 1D, the Gauss-Legenre quadrature is written:∫ b

a

F (x)dx =

∫ +1

−1

F̂ (ξ)dξ ' ΣrI=1F̂ (ξI)wI (4.184)

in which F̂ (ξ) is the integrand, expressed on the master element. The Gauss-Legenre
quadrature of order r depends on r weight coefficients wI and r integration points ξI .
The numerical approximation provides the exact integral for polynomials of order p if
r ≥ int

[
p+1

2

]
.

r = 1: F̂ = 1 or F̂ = x:

2 =

∫ +1

−1

1dx = w1 × 1 ⇒ w1 = 2, 0 =

∫ +1

−1

xdx = w1 × ξ1 ⇒ ξ1 = 0

r = 2: F̂ = 1 or F̂ = x or F̂ = x2 or F̂ = x3:

2 =

∫ +1

−1

1dx = w1 + w2, 0 =

∫ +1

−1

xdx = w1ξ1 + w2ξ2
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2

3
=

∫ +1

−1

x2dx = w1(ξ1)2+w2(ξ2)2, 0 =

∫ +1

−1

x3dx = w1(ξ1)3+w2(ξ2)3

⇒ w1 = w2 = 1, ξ1 = − 1√
3
, ξ2 =

1√
3

In 2D, the Gauss-Legendre quadrature allows approximating an elementary integral de-
fined on the rectangular domain Ωe into an integral defined on the rectangular master ele-
ment Ω̂e = [(−1, 1); (1, 1); (1,−1); (−1,−1)]:

∫
Ωe
F (x, y)dxdy =

∫
Ω̂e
F̂ (ξ, η)Jdξdη =

∫ +1

−1

[∫ +1

−1

JF̂ (ξ, η)dη

]
dξ (4.185)

First approximation:∫ +1

−1

[∫ +1

−1

JF̂ (ξ, η)dη

]
dξ'

∫ +1

−1

[
ΣR2

J=1JF̂ (ξ, ηJ)WJ

]
dξ (4.186)

Second approximation:∫ +1

−1

[
ΣR2

J=1JF̂ (ξ, ηJ)WJ

]
dξ'ΣR1

I=1ΣR2

J=1JF̂ (ξI , ηJ)WIWJ (4.187)

The weights and the coordinates of the integration points in 2D, (wI , ξI ) and (wJ , ηJ ), can
be deduced from those in 1D, as explained in Figure 4.23.

Figure 4.23 Link between the 1D and 2D Gauss-Legendre quadratures. Image taken from [18].

For a linear triangular element, for i, j = 1, 2, 3:

Ψi(xj , yj) = Li =
Ai
A
, Ψi(xj , yj) = δij , Σ3

i=1Ψi(xj) = 1 (4.188)
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The linear interpolation of the geometry imposes:∫
Ωe
F (x, y)dxdy =

∫
Ω̂e
F̂ (ξ, η)Jdξdη =

∫
Ω̂e
F̃ (L1, L2, L3)dL1dL2

Then, for or R integration points, we have:∫
Ω̂e
F̃ (L1, L2, L3)dL1dL2'

1

2
ΣRI=1WI F̃ (SI)

SI depends on L1, L2, L3, which gives the coordinates of the integration points.

4.6 FEM for Plane Elasticity

4.6.1 Weak formulation in plane elasticity

In linear elasticity, the constitutive equation is:

εij =
1 + ν

E
σij −

ν

E
σkkδij (4.189)

The balance equations in 2D are:
∂σxx
∂x +

∂σxy
∂y + fx = ρ∂

2ux
∂t2

∂σyx
∂x +

∂σyy
∂y + fy = ρ

∂2uy
∂t2

(4.190)

The boundary conditions are written:
ui = ûi on Γu

σijnj = t̂i on Γσ

(4.191)

Γu ∪ Γσ = Γ, Γu ∩ Γσ = ∅ (4.192)

The relationship between displacement and strains is noted in a matrix form, as follows:
εxx

εyy

2 εxy

 =

 ∂/∂x0

∂/∂y

0

∂/∂y

∂/∂x

{ ux

uy

}
= [B]

{
ux

uy

}
(4.193)

In plane elasticity, the constitutive model takes the following matrix form:
σxx

σyy

σxy

 =

 c11

c12

0

c12

c22

0

0

0

c66



εxx

εyy

2 εxy

 = [De]


εxx

εyy

2 εxy

 (4.194)

in which the coefficients c11, c12, c22 and c66 depend on whether the problem is in plane
stress or plane strain. The weak formulation comprises two equations. From the balance
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equation in the x-direction: ∀w1(x, y) ∼ δux(x, y):∫
Ωe

[
he

[
∂w1

∂x

(
c11

∂ux
∂x + c12

∂uy
∂y

)
+ c66

∂w1

∂y

(
∂ux
∂y +

∂uy
∂x

)]
+ ρw1üx

]
dxdy

=
∫

Ωe
hew1fxdxdy +

∮
Γe
hew1t̂xds

(4.195)
From the balance equation in the y-direction: ∀w2(x, y) ∼ δuy(x, y):∫

Ωe

[
he

[
∂w2

∂y

(
c12

∂ux
∂x + c22

∂uy
∂y

)
+ c66

∂w2

∂x

(
∂ux
∂y +

∂uy
∂x

)]
+ ρw2üy

]
dxdy

=
∫

Ωe
hew2fydxdy +

∮
Γe
hew2t̂yds

(4.196)
in which he is the thickness of the element, with dΩe = hedxdy. There are now two
dependent variables (the displacements in the x- and y- directions). It is convenient to sort
all the displacement degrees of freedom by node as opposed to direction. We note {∆} the
global vector of degrees of freedom (d.o.f.), with ux and uy d.o.f. at each node, and for N
nodes on the mesh:

{∆} =



u1
x

u1
y

u2
x

u2
y

...

uNx

uNy


(4.197)

We define the interpolation matrix as follows:

[Ψ] =

[
Ψ1

0

0

Ψ1

Ψ2

0

0

Ψ2

...

...

ΨN

0

0

ΨN

]
(4.198)

The elementary matrix equations are:(∫
Ωe

[Ψ]T [B]T [De] [B][Ψ]dV
)
{∆} +

(∫
Ωe
ρ[Ψ]T [Ψ]dV

)
{∆̈}

=
∫

Ωe
[Ψ]T {f}dV +

∮
Γe

[Ψ]T {t̂}dS
(4.199)

For assembling purposes, we reorganize the equation in

{
{ux}
{uy}

}
instead of {∆}:

 [M ]

[0]

[0]

[M ]



{üx}

{üy}

 +

 [K11]

[K12]T

[K12]

[K22]



{ux}

{uy}

 =


{F totx }

{F toty }

 (4.200)

4.6.2 Numerical integration in plane elasticity

We have independent d.o.f. ux, uy , so the interpolation will onl depend on nodal values
of the dependent functions, i.e. we will need Lagrange interpolation functions for both
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dependent variables ux(x, y) and uy(x, y). The two dependent variables have the same
physical dimension (displacements), so we will use the same order of interpolation for
both ux and uy:

uex(x, y) '
N∑
j=1

uex jΨj(x, y), uey(x, y) '
N∑
j=1

uey jΨj(x, y) (4.201)

The simplest elements are the linear triangular element and the linear rectangular element,
with 2 d.o.f. per node (N nodes, 2N d.o.f.). Even for linear elements, stiffness and mass
matrices are often computed by a numerical integration. Sometimes, it is possible to calcu-
late [K] analytically for triangular elements (with constant elasticity parameters). For the
vector of external distributed loads {F}, it is usually possible to get analytical solutions,
especially for constant external loads (f0). For boundary integrals, a nuerical integration is
almost always needed:

{Qe} =

∮
Γe

he[Ψ]T {t̂}ds (4.202)

In the global coordinate system:

{Qe} =

∮
Γe

he[Ψ]T


t̂x

t̂y

 ds (4.203)

For the sake of simplicity, {Qe} is often computed in a local coordinate system, related to
the normal and tangential vectors characterizing the boundary Γe:

{Qeloc} =

∮
Γe

he[Ψ]T


t̂n

t̂t

 ds (4.204)

So we need a coordinate change:

{Qe} = [R]T {Qeloc} (4.205)

[R] =


cosα

−sinα
0

0

...

sinα

cosα

0

0

...

0

0

cosα

−sinα
...

0

0

sinα

cosα

...

...

...

...

...

...

 (4.206)

with α the inclination angle of the element surface.

PROBLEMS

4.1 Write the variational formulation of the following problem:

d2

dx2

[
EI

d2u(x)

dx2

]
− q0 = 0, 0 < x < L

u(0) =

[
du(x)

dx

]
x=0

= 0, EI

[
d2u(x)

dx2

]
x=L

= −M0, EI

[
d3u(x)

dx3

]
x=L

= F0
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4.2 Find the expression of the interpolation functions of order 1 is by using the interpo-
lation property. Consider elements with 2 and 3 nodes.

Figure 4.24 Problem 4.2.

4.3 Consider the following boundary value problem:

−d
2u(x)

dx2
− u(x) + x2 = 0, 0 < x < 1

u(0) = u(1) = 0

Provide the FEM equations to solve for the unknown primary and secondary variables
when the domain is discretized with: (a) four linear elements; (b) two quadratic elements
(Figure 4.25).

Figure 4.25 Meshes considered in Problem 4.3.

4.4 Solve the problem of heat transfer through the composite wall shown in Figure 4.26
by using Ritz method, with four linear elements.

− ∂

∂x

(
kA

∂T

∂x

)
+ βP (T − T∞) = Aq0
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Figure 4.26 Heat transfer through a composite wall.

4.5 Solve the problem of heat transfer through the cylindrical canister shown in Figure
4.27 by using Ritz method, with two linear elements.

−1

r

d

dr

(
kr
dT

dr

)
= q0(r)

Figure 4.27 Heat transfer through a cylindrical canister.

4.6 Solve the 1D Newtonian fluid flow problem (Figure 4.6) with Ritz method (Equation
4.77), by using two linear elements, and for the two following sets of boundary conditions:
(a) vx(−L) = vx(L) = 0; (b) vx(−L) = 0, vx(L) = v0.

4.7 Solve the problem of bar elongation shown in Figure 4.28 by using Ritz method,
with two linear elements.

− d

dx

(
EA

du

dx

)
= f(x) (4.207)
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Figure 4.28 Bar element with a non-uniform cross section.

4.8 Solve the problem of beam deflection shown in Figure 4.29 by using two Euler-
Bernouilli elements.

Figure 4.29 fig/C04/Deflection problem with Euler-Bernouilli beam elements.

4.9 Calculate the coefficients of the elementary stiffness matrix and force vector of a
linear trianular element, if the numbering convention in Figure 4.10 is changed such that:
node 1 is (a,0); node 2 is (0,b); node 3 is (0,0).

4.10 Calculate the three boundary integrals Q1, Q2 and Q3 for the linear triangular ele-
ment shown in Figure 4.30.

4.11 Consider a problem described by the Poisson’s equation:

−∇2u = −
(
∂2u

∂x2
+
∂2u

∂y2

)
= f0 in Ω

in the square region shown in Figure 4.31. The boundary conditions are:

u(x, y) = 0 on Γ

We wish to use the FEM to determine u(x, y) on the domain Ω.

1. Show that it is sufficient to solve the problem on 1/8-th of the domain only to deter-
mine the solution everywhere in Ω.

2. Mesh this deduced domain with four linear triangular elements (justify).
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Figure 4.30 Triangular element subject to boundary loads.

Figure 4.31 2D FEM to solve Poisson’s equation
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3. Solve the FEM problem on the reduced domain (i.e. calculate the unknown nodal
values of the primary variable).

4. Post-process the results of the FEM model (i.e. calculate the unknown boundary
integrals of the secondary variable).

4.12 Determine the Lagrange interpolation polynomials for:

a triangular element that has two nodes per side (k = 2)

a triangular element that has three nodes per side (k = 3)

a triangular element that has four nodes per side (k = 4)

4.13 Determine the interpolation function Ψ14 for the triangular element shown in Figure
4.32. Assume that nodes on the sides of the element are equally spaced.

Figure 4.32 A higher-order triangular element. Image taken from [18]

4.14 Calculate the Jacobian of each of the three elements of the mesh shown in Figure
4.33. Explain whether the geometry and numbering conventions are acceptable or not.

Figure 4.33 Meshing problem requiring calculating the Jacobian. Image taken from [18]
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4.15 Determine the conditions on the location of node 3 of the quadrilateral element
shown in Figure 4.34.

Figure 4.34 Finding an acceptable element shape. Image taken from [18]

4.16 Consider the isoparametric quadrilateral element shown iFigure 4.35. Use the
Gauss-Legendre numerical integration scheme of the lowest order possible to calculate
the following integrals:

S00
ij =

∫
Ω

Ψi(x, y)Ψj(x, y)dxdy

S12
ij =

∫
Ω

∂Ψi(x, y)

∂x

∂Ψi(x, y)

∂y
dxdy

Figure 4.35 Evaluating integrals defined on an element of irregular shape. Image taken from [18]

4.17 Show that the weak formulation of a plane elasticity problem takes the form given
in Equations 4.195 and 4.196.

4.18 For the Finite Element in plane elasticity shown in Figure 4.36, determine the sur-
face load vector {Qe}.
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Figure 4.36 Calculation of boundary integrals in plane elasticity.

4.19 In the plane stress problem shown in Figure 4.37, determine the horizontal compo-
nent of the load vector at node 16 (Q16x) and the vertical component of the load vector at
node 11 (Q11y).

Figure 4.37 Calculation of boundary integrals in plane elasticity.



PART II

DEFORMATION AND FLOW IN
POROUS MEDIA





CHAPTER 5

ELEMENTS OF PORO-ELASTICITY

5.1 Single-phase Newtonian fluid flow in a rigid solid skeleton

5.1.1 Equation of continuity of the fluid

Consider the elementary soil volume shown in Figure 5.1. This volume contains solid soil
particles and a single-phased fluid (say, liquid water). The fluid must satisfy the condition
of continuity, or mass balance equation, which states that the net mass or weight flow of
fluid into or out of a geometrically circumscribed volume in a given time interval must be
equal to the storage or loss of storage of fluid in the volume in the interval.

Let us express the continuity condition for the elementary soil volume shown in Figure
5.1, in which the velocity vector of the fluid at the center of the element is noted v. Noting
ρw the mass density of the fluid, the mass flux of the fluid through the face ADHE is:

[
ρw vx −

∂

∂x
(ρw vx)

dx

2

]
dy dz (5.1)

Similarly, the mass flux of fluid through the face BCGF is:

[
ρw vx +

∂

∂x
(ρw vx)

dx

2

]
dy dz (5.2)

Theoretical Geomechanics.
By Chloé Arson Copyright c© 2020

159



160 ELEMENTS OF PORO-ELASTICITY

Figure 5.1 Elementary soil volume: a single-phased incompressible Newtonian fluid flows through
a non-deformable solid skeleton. Image taken from [2].

As a result, the net mass of water entering or leaving the element through faces ADHE and
BCGF is given by the difference between the above two fluxes, namely:[

∂

∂x
(ρw vx)

]
dx dy dz (5.3)

Similarly, for a component of flow that will take place in the z-direction with velocity vy
at the center of the element, the net mass flux parallel to the y-axis is:[

∂

∂y
(ρw vy)

]
dx dy dz (5.4)

And lastly, a component of flow that will take place in the y-direction with velocity vz at
the center of the element, the net mass flux parallel to the z-axis is[

∂

∂z
(ρw vz)

]
dx dy dz (5.5)

Based on the equations above, the rate of mass storage or loss of fluid in the element will
be given by the sum of the net weight fluxes parallel to the three Cartesian axes, i.e.

∂M

∂t
=

[
∂

∂x
(ρw vx) +

∂

∂y
(ρw vy) +

∂

∂z
(ρw vz)

]
dx dy dz (5.6)

where M is the mass of fluid stored in the volume dxdydz. Equation 5.6 is the equation
of continuity, which represents the conservation of matter during the flow process. In
equation 5.6, ∂M

∂t takes into account the storage change due to compression of the soil,
water, and gas constituents of the soil. The relative magnitudes of the different component
storage amounts vary widely for a given soil. If the soil is almost or completely saturated,
the change in the gas volume may be neglected. Since this is usually the case in nature, the
change of storage in an elemental soil volume is principally due to the compressibility of
the soil skeleton and the pore water. At shallow depth only relatively shallow depths (up



SINGLE-PHASE NEWTONIAN FLUID FLOW IN A RIGID SOLID SKELETON 161

to 10 meters) are important to the problem, the fluid compressibility is usually negligible.
In addition, the soil itself may be relatively incompressible, for instance if it consists of a
dense granular material. In the event that the soil structure and pore fluid may reasonably
be assumed to be incompressible, and that no gas exists in the pores, there will be no change
in fluid storage in any soil element during the flow process, and equation 5.6 becomes:

∂

∂x
(ρw vx) +

∂

∂y
(ρw vy) +

∂

∂z
(ρw vz) = 0 (5.7)

Equation 5.7 is the general equation of continuity of flow when the change in storage is
zero; it therefore describes flow conditions which do not change in time and is referred to
as a steady-state equation.

5.1.2 Momentum balance equation

According to the previous chapters, the momentum balance equation of a solid:

divσ + f = ρa(x, t) (5.8)

in which σ is the stress tensor, f is the body force, ρ is the mass density of the solid and
a is the acceleration of the solid at a given point and at a given time. Similarly, the fluid
balance of momentum is:

div(pwδ) + fw = ρw aw(x, t) (5.9)

in which pw is the fluid pore pressure, δ is the second-order identity tensor, fw is the body
force that applies to the fluid, ρw is the mass density of the fluid and aw is the acceleration
of the fluid at a given point and at a given time. In the following, we neglect the gavitational
forces that apply on the fluid, so that fw represents the force exerted by the soil skeleton
on the fluid to resist the flow in the soil capillary.

Let us assume that the pore fluid is Newtonian. A Newtonian fluid is a fluid in which the
viscous stresses arising from its flow, at every point, are linearly proportional to the local
strain rate. The force that resists the flow in the soil capillary, due to the fluid’s viscosity,
is noted fw and is thus expressed as:

fw = −µw∇2(v) (5.10)

in which µw is the dynamic viscosity of the fluid, expressed in Pa.s (or kg.m−1.s−1).
Now combining equations 5.9 and 5.10 and assuming that the acceleration of the fluid is
zero, one gets:

∇2(v) =
1

µw
∇pw (5.11)

Developping equation 5.11 in a Cartesian coordinate system, one gets:(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
vj =

1

µw

∂pw
∂j

, j = x, y, z (5.12)

5.1.3 1D fluid flow in a pipe

It is instructive to apply equation 5.12 to the problem of 1D flow through a rigid pipe. Let
us consider the pipe shown in Figure 5.2, oriented along the x-axis. Equation 5.12 reduces
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to the following governing equation in 1D:

µw
d2vx
dy2

=
dpw
dx

, µw
d2vx
dy2

= f(y) (5.13)

Assuming that the gradient of pore pressure is a known function of y, one can solve for
vx(y). Solving equation 5.13 allows determining the shape of the flow front illustrated in
Figure 5.2.

Figure 5.2 1D Newtonian fluid flow through a rigid pipe. Image taken from [18].

Using the same principles as for the elastic solid, the problem can be solved by the Finite
Element Method, starting with the variational formulation. Using the Galerkin method, the
discretized variational formulation on a single finite element with N degrees of freedom is
expressed as:

∀i, j = 1..N,

[∫ y2

y1

µw
dΨi

dy

dΨj

dy
dy

]
vxj = −

∫ y2

y1

Ψi(y)f(y)dy +Qi (5.14)

in which Ψj is the interpolation function relative to the jth degree of freedom (“node”).
The last term on the right-hand side emerges due to the integration by part:

Q ≡ µw
dvx
dy

5.1.4 2D fluid flow for an irrotational fluid

When individual parcels of a frictionless incompressible fluid initially at rest cannot be
caused to rotate, the fluid is said to be irrotationnal. Mathematically, this condition trans-
lates into:

curl(v) = ∇× v = 0 (5.15)

In Cartesian coordinates, the 2D version of equation 5.15 is:

∂vx
∂y
− ∂vy

∂x
= 0 (5.16)

In cylindrical coordinates:

1

r

(
∂vr
∂θ
− ∂(r vθ)

∂r

)
= 0 (5.17)
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According to Equation 5.6, the continuity condition (or mass conservation equation) in
2D is:

∂M

∂t
=

[
∂

∂x
(ρw vx) +

∂

∂y
(ρw vy)

]
dx dy (5.18)

For an incompressible fluid, this equation becomes:

∂vx
∂x

+
∂vy
∂y

= 0 (5.19)

In cylindrical coordinates, this translates into:

∂vr
∂r

+
1

r

∂vθ
∂θ

= 0 (5.20)

We introduce the stream function Ψ, defined such that:

vx =
∂Ψ

∂y
, vy = −∂Ψ

∂x
(5.21)

vr =
1

r

∂Ψ

∂θ
, vθ = −∂Ψ

∂r
(5.22)

And we introduce the potential function Φ, defined such that:

vx = −∂Φ

∂x
, vy = −∂Φ

∂y
(5.23)

vr = −∂Φ

∂r
, vθ = −1

r

∂Φ

∂θ
(5.24)

Combining equations 5.16 and 5.21 or equations 5.17 and 5.22, one gets:

∇2Ψ = 0 (5.25)

Combining equations 5.16 and 5.23 or equations 5.17 and 5.24, one gets:

∇2Φ = 0 (5.26)

In equations 5.25 and 5.26, we have:

∇2 =
∂2

∂x2
+

∂2

∂y2
(5.27)

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
(5.28)

By construction, equal stream lines and equipotential lines are orthogonal:

−∂Φ

∂x
=

∂Ψ

∂y
,

∂Φ

∂y
=

∂Ψ

∂x
(5.29)

The problem of fluid flow in 2D can be expressed in terms of only own unknown, the
stream function Ψ, or, equivalently, the potential function Φ, instead of two unknowns vx
and vy (or vr and vθ. Formulations in Ψ and Φ are equivalent but the boundary conditions
for Ψ and Φ are different. The FEM for plane elasticty presented in the previous chapters
can easily be adapted to 2D problems of fluid flow with only one dependent variable.
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5.2 Mechanics of a deformable solid skeleton filled with one fluid phase

5.2.1 Mathematical description of the porous medium

Porous media are composite materials made of solid, liquid and gas constituents. Field
variables are defined by phase (solid, liquid, gas) or by species (mineral in the solid, wa-
ter/oil/other in the liquid phase, air/vapor/other in the gas phase). Poromechanical variables
of the composite porous medium as a whole are average functions of space and time. In
space, poromechanical variables are averaged at the scale of a Representative Elementary
Volume (REV) of material. The REV is the minimum volume above which the average
poromechanical variables of interest are stable. Figure 5.3 illustrates the concept of REV
for porosity. Typically, the REV characteristic dimension is 2 orders of magnitude larger
than that of the microscopic inhomogeneities (e.g. grains, pores).

Figure 5.3 Concept of REV: the average field variables of interest (here, porosity) do not vary if
the averages are calculated over the REV or a volume larger than the REV. Image taken from [7].

A constituent in a particular phase is a “constituent” (for instance, liquid water and
vapor are two constituents of the same species). Consider a REV with j constituents. For
the jth constituent, we define:

Volume average of variable ξ(j):

ξ(j)(x, t) =
1

VREV

∫
VREV

ξ(j)(x, t)γ(j)(x, t)dVm (5.30)

Mass average of variable ξ

〈ξ(j)〉(x, t) =

∫
VREV

ρ(x, t)ξ(j)(x, t)γ(j)(x, t)dVm∫
VREV

ρ(x, t)γ(j)(x, t)dVm
(5.31)

In which:
γ(j)(x, t) = 1, x ∈ VREV
γ(j)(x, t) = 0, x 6∈ VREV

(5.32)

Vm is the characteristic volume of a heterogeneity. ρ is the mass density of the material
locate at x at time t.

In this course, we study dry porous media (solid skeleton and voids filled with air),
saturated porous media (typically, a solid skeletong filled with liquid water) and unsatu-
rated porous media (typically, a REV made of a solid skeleton, liquid water and air). The



MECHANICS OF A DEFORMABLE SOLID SKELETON FILLED WITH ONE FLUID PHASE 165

Table 5.1 Common poromechanical variables.

State Variable Driving force Energy density Example constitutive law

Primary Var. Secondary Var.

Solid u(x, t) σ′(x, t) σ′(x, t) : ∇symu(x, t) elastic / poroelastic

Water pw(x, t) qw(x, t) qw(x, t) · ∇pw(x, t) Darcy’s law

Air pa(x, t) qa(x, t) qa(x, t) · ∇pa(x, t) modified Darcy’s law

Heat T (x, t) qh(x, t) qh(x, t) · ∇T (x, t) Fourier’s law

Essential b.c. Natural b.c.

Dirichlet b.c. Neuman b.c.

different forms of water in a typical soil REV are shown in Figure 5.4. Momentum bal-
ance equations are typically expressed by phase (e.g., solid, liquid, gaz) or for multi-phase
components (e.g., liquid+gaz, solid+liquid+gaz). Mass and heat conservation equations
are expressed by species (e.g., solid, water, air). Note that two non-miscible fluids are con-
sidered as two different phases. A mixture of dry air and vapor is usually considered as a
unique phase.

Figure 5.4 The different forms of water in an unsaturated soil. Image taken from [19].

Each constituent is represented by a state variable (primary variable) and a driving force
(secondary variable), related to one another by a constitutuve equation. Table 5.1 gives an
overview of the variables that are the most commonly used in geomechanics. Boundary
conditions (b.c.) are imposed either on the state variable (essential b.c.) or on the driving
force (natural b.c.), not on both. Momentum balance equations, mass conservation equa-
tions and heat conservation equations are solved for the state variables under given initial
and boundary conditions (see Section 5.2.2 for more details on the governing equations of
a porous medium).
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5.2.2 Governing equations of the two-phase isothermal medium

Let us consider a REV made of solid grains and pores filled with liquid water. The balance
of momentum of the REV as a whole is:

divσ + f = (1− φ) as(x, t) + φaw(x, t) (5.33)

The balance of momentum of the liquid is:

div (pwδ) + fw = φaw(x, t) (5.34)

σ, pw: REV stress tensor, water pore pressure
f , fw: volume forces applied to the REV, to the water constituent
as, aw: solid acceleration, water acceleration
φ: porosity (pore volume fraction)
δ: second-order identity tensor

In static problems, in the absence of external forces applied to the REV and neglecting
gravity effects, the balance of momentum of the REV as a whole is:

divσ′ − α∇pw = 0 (5.35)

The balance of momentum of the liquid is:

∇pw + Rw · vws = 0 (5.36)

σ′ = σ + αpw: effective stress
α = 1−K/Ks: Biot’s coefficient
K, Ks: bulk moduli of the solid skeleton, of the solid phase
Rw: resistance to the water flow in the solid pores
vws: flow velocity of water relative to the solid skeleton

For a linear isotropic elastic solid skeleton, the constitutive relation is:

σ′ = De : ε =

(
K − 2

3
G

)
εvδ + 2Gε (5.37)

The pores of common geomaterials are small enough to assume that the liquid flow in
these pores is laminar. We will come back to this statement in Section 5.3. As a result, the
resistance to the water flow in the solid pores can be expressed by means of Darcy’s law,
as follows:

Rw
−1 =

Kw

φµw
(5.38)

De: solid skeleton stiffness tensor
K, G: bulk, shear moduli of the solid skeleton
Kw: water permeability tensor
µw: water viscosity
εv: volumetric deformation: εv = Tr(ε)

Combining momentum balance equations and constitutive equations, we get:
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The momentum balance equation for the REV as a whole:

divσ′ − α∇pw = 0 (5.39)

σ′ = De : ε =

(
K − 2

3
G

)
εvδ + 2Gε (5.40)

De
...∇ε − α∇pw = 0 (5.41)

The momentum balance equation for the liquid phase:

∇pw + Rw · vws = 0 (5.42)

Rw
−1 =

Kw

φµw
(5.43)

vws = −Kw

φµw
· ∇pw (5.44)

Using average mass densities at the scale of the REV, and noting that the time derivative
in reference to a moving particle of phase π is:

Dπf(x, t)

Dt
=

∂f(x, t)

∂t
+ vπ · ∇f(x, t) (5.45)

The mass balance of the solid constituent becomes:

∂(1− φ)ρs
∂t

+ div ((1− φ)ρs vs(x, t)) = 0, vs(x, t) =
∂u(x, t)

∂t
(5.46)

Ds(1− φ)ρs(x, t)

Dt
− ∂u(x, t)

∂t
·∇ ((1− φ)ρs(x, t)) + div

(
(1− φ)ρs

∂u(x, t)

∂t

)
= 0

(5.47)
The mass balance of water becomes:

∂(φ ρw)

∂t
+ div (φρw vw) = 0 (5.48)

Dwφρw(x, t)

Dt
− vw(x, t) · ∇ (φρw) + div (φρw vw) = 0 (5.49)

Noting that, for any scalar β and any vector v, we have:

div (β v) = v · ∇β + β div (v) (5.50)

The mass balance of the solid constituent can finally be expressed as:

Ds(1− φ)ρs(x, t)

Dt
+ (1− φ)ρs div

(
∂u(x, t)

∂t

)
= 0 (5.51)
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The mass balance of water is expressed as:

Dwφρw(x, t)

Dt
+ φρw div (vw) = 0 (5.52)

To summarize, the governing equations for a liquid-saturated porous medium are:

Balance of momentum for REV as a whole:

De
...∇ε − α∇pw = 0 (5.53)

De
...∇2u − α∇pw = 0 (5.54)

Balance of momentum for water:

vws = −Kw

φµw
· ∇pw (5.55)

Mass balance of the solid constituent:

Ds(1− φ)ρs(x, t)

Dt
+ (1− φ)ρs div

(
∂u(x, t)

∂t

)
= 0 (5.56)

Mass balance of water:

Dwφρw(x, t)

Dt
+ φρw div (vw) = 0 (5.57)

The unknowns of the problem are the state variables u (the displacement field) and pw
(the pore pressure). One can see that the system of equations above depends on other un-
knowns: φ, ρs, ρw, vw and vws. Further developments are needed to express φ, ρs, ρw,
vw and vws as functions of u and pw and reduce the system of equations above to two
equations, and solve for the displacement ad pore pressure fields. Below, we provide the
corresponding derivations.

The mass balance of the solid constituent is:

Ds(1− φ)ρs(x, t)

Dt
+ (1− φ)ρs div

(
∂u(x, t)

∂t

)
= 0 (5.58)

(1− φ)

ρs

Dsρs
Dt

− Dsφ

Dt
+ (1− φ) divvs = 0 (5.59)

The mass balance of water is:

Dwφρw
Dt

+ φρw divvw = 0 (5.60)

Dsφρw
Dt

+ vws · ∇(φρw) + φρw divvws + φρw divvs = 0 (5.61)
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Dsφ

Dt
+

φ

ρw

Dsρw
Dt

+
vws

ρw
· ∇(φρw) + φdivvws + φdivvs = 0 (5.62)

Summing equations 5.59 and 5.62, we get:

(1− φ)

ρs

Dsρs
Dt

+ divvs +
φ

ρw

Dsρw
Dt

+
1

ρw
div (φρwvws) = 0 (5.63)

Time derivative of the water density is:

Dsρw
Dt

=
Dwρw
Dt

− vws · ∇ρw (5.64)

Noting K∗w the bulk modulus of water, water compressibility is expressed as:

Dsρw
Dt

=
ρw
K∗w

Dwpw
Dt

− vws · ∇ρw (5.65)

Hence: we have:

(1− φ)

ρs

Dsρs
Dt

+ divvs +
φ

K∗w

Dwpw
Dt

− φ

ρw
vws ·∇ρw +

1

ρw
div (φρwvws) = 0 (5.66)

(1− φ)

ρs

Dsρs
Dt

+ divvs +
φ

K∗w

Dwpw
Dt

− φ

K∗w
vws ·∇pw +

1

ρw
div (φρwvws) = 0 (5.67)

(1− φ)

ρs

Dsρs
Dt

+ divvs +
φ

K∗w

Dspw
Dt

+
1

ρw
div (φρwvws) = 0 (5.68)

The time derivative of the solid density is:

Dsρs
Dt

=
DsTrσ∗

Dt

∂ρs
∂Trσ∗

+
Dspw
Dt

∂ρs
∂pw

(5.69)

with σ∗ = σ − pwδ. We choose linear constitutive laws for the mechanical behavior of
the solid skeleton:

Dsρs
Dt

=
ρs
Ks

Dspw
Dt

− ρs
3(1− φ)Ks

DsTrσ∗

Dt
(5.70)

Dsρs
Dt

=
ρs
Ks

Dspw
Dt

− ρs
3(1− φ)Ks

DsTrσ

Dt
− ρs

(1− φ)Ks

Dspw
Dt

(5.71)

We now use the linear isotropic elasticity law:

Trσ = Trσ′ − 3αpw = 3Kεv − 3αpw (5.72)

Dsρs
Dt

=
ρs
Ks

Dspw
Dt

− ρsK

(1− φ)Ks
divvs +

ρs α

(1− φ)Ks

Dspw
Dt

− ρs
(1− φ)Ks

Dspw
Dt
(5.73)

We finally get:

(1− φ)

ρs

Dsρs
Dt

= −(1− α) divvs +
(α− φ)

Ks

Dspw
Dt

(5.74)
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Now combining equations 5.68 and 5.74, we get:(
(α− φ)

Ks
+

φ

K∗w

)
Dspw
Dt

+ αdivvs = − 1

ρw
div (φρwvws) (5.75)

With the momentum balance equation of water:

vws = −Kw

φµw
· ∇pw (5.76)

... we get:(
(α− φ)

Ks
+

φ

K∗w

)
Dspw
Dt

+ αdiv

(
∂u

∂t

)
=

1

ρw

Kw

µw
div (ρw∇pw) (5.77)

In undrained conditions, ∇ρw = 0 (uniform water pressure distribution).In drained
conditions, ∇ρw = 0 if the permeability of the soil is high enough.Therefore, the combi-
nation of the water momentum balance equation, the solid mass conservation equation and
the water mass conservation equation provides:(

(α− φ)

Ks
+

φ

K∗w

)
Dspw
Dt

+ αdiv

(
∂u

∂t

)
=

Kw

µw
∇2pw (5.78)

... which can be solved for the fields of displacements u and water pore pressure pw if
combined with the momentum balance equation:

De
...∇2u − α∇pw = 0 (5.79)

For a non-viscous elastic porous solid that contains no water (pw = 0), the field of dis-
placements is obtained by solving:

De
...∇2u = 0 (5.80)

and the porosity change is: ∆φ = εv = Tr (∇symu)

5.3 Darcy’s law and the permeability tensor

5.3.1 From Darcy’s law to the Laplace’s equation

In Section 5.2.2, we saw that the general form of Darcy’s law is:

Rw
−1 =

Kw

φµw
(5.81)

and that the momentum balance equation of water is

vws = −Kw

φµw
· ∇pw (5.82)

Darcy carried out experiments on the flow of water through porous sand filter beds, as a
result of which he determined that the superficial velocity of flow was directly related to the
pressure gradient through the bed by a constant of proportionality which included both the
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soil and water properties. In most hydraulic and soil engineering work, it is conventional
to refer to fluid pressures in terms of heads, that is, in terms of the static height of a column
of fluid which would result in a given pressure at a point. Thus, instead of referring to a
fluid pressure p, where p is expressed in e.g. pounds per square foot, we use the term fluid
pressure head denoted by the symbol hp. Pressure and pressure head are related through
the unit weight of the fluid, namely:

hp =
p

γw
(5.83)

for the case of an incompressible fluid, and

hp =

∫
dp

γw
(5.84)

if compressibility must be taken into account. The equations for superficial velocity may
then be expressed as follows:

vx = −kx
∂hp
∂x

(5.85)

vy = −ky
∂hp
∂y

vz = −kz
∂hp
∂z

In these equations, the minus sign indicates that velocity is measured positively in the di-
rection of decreasing pressure. kx, ky and kz are the hydraulic conductivities in directions
x, y and z. It can be seen that such a term implicitly involves the unit weight and viscos-
ity of the pore fluid, besides accounting for the size and geometry of the pores of the soil
through which flow is taking place. In other engineering research fields (i.e. petroleum
engineering) where fluid flow through porous media is of interest, discrimination is made
between the fluid and medium properties, so that, for example:

kx =
γwKx

µ
(5.86)

where Kx is the permeability in the x-direction, which is a function of the porous medium,
and µ is the viscosity of the pore fluid. In the following, we use the capital letter K to refer
to the permeability tensor, and we use k to refer to the hydraulic conductivity. Equations
5.85 describe the velocity in terms of the first and third applied force systems used to
obtain the Navier-Stokes equations, that is to say, the internal pressure gradients and the
fluid viscosity, but do not take into account possible body forces. In soil mechanics work,
as mentioned above, the principal body force of interest is gravity, which can be included
in the equations in the following way:

vx = −kx
[
∂hp
∂x
− Fx
gw

]
(5.87)

vy = −ky
[
∂hp
∂y
− Fy
gw

]

vz = −kz
[
∂hp
∂z
− Fz
gw

]
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where the quantities Fx, Fy and Fz represent the body forces per unit volume due to
gravity in the x-, y-, and z-directions respectively. It will be observed that no consideration
has been given to the directions in which the axes have been taken, so that gravity-force
components may exist in all directions. In their present form, the terms in parentheses in
equations 5.87 are inconvenient for further manipulation, and it would be more useful to
express both pressure and gravity forces in one derivative with respect to direction. This
can be done by considering the height he of any fluid element above an arbitrary zero
datum plane. The potential energy per unit mass of the fluid with respect to the datum is
he, and the force required to move the mass at constant pressure in anyone direction will
be given by the derivative of the energy with respect to the direction. Since this force is
required to overcome the gravitational body force on the mass, we can write:

Fx
gw

= −∂he
∂x

(5.88)

Fy
gw

= −∂he
∂y

Fz
gw

= −∂he
∂z

]

where the negative sign is assigned to denote that the force acts in the direction opposite to
gravity. Substituting equations 5.88 into 5.87, the superficial velocity can be expressed as
follows:

vx = −kx
∂h

∂x
(5.89)

vy = −ky
∂h

∂y

vz = −kz
∂h

∂z

in which h = hp + he is the total pressure head. If the solid grains and the fluid are both
incompressible, the general flow equation 5.78 can be re-written as:

kx
∂2h

∂x2
+ ky

∂2h

∂y2
+ kz

∂2h

∂z2
= 0 (5.90)

Equation 5.90 is frequently called the Laplace’s equation (of fluid flow). In a steady-
state problem, flow takes place in a region with fixed boundaries at which the flow or
head conditions are imposed. The solution to the problem consists of finding a function
h(x, y, z) which satisfies the Laplace’s equation inside the region and which conforms to
the conditions imposed along the edges of the region. At the boundaries of such domains,
the specified condition may be one of three kinds:

(i) A potential boundary along which the total head is constant: h = H (constant);

(ii) An impervious boundary of normal n, along which the fluid is constrained to flow:
∂h
∂n = 0 (no flow across the boundary);
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(iii) A free surface boundary along which flow takes place, and where the total head at
each point is equal to the height of the point above the assumed datum plane since the
pressure in the fluid is equal to the external (usually atmospheric) pressure: ∂h

∂n = 0
and h = f(z) (when the z-axis is directed vertically).

5.3.2 Limitations of Darcy’s law

As can be readily seen, flow through soils as described by Darcy’s law is a viscous phe-
nomenon similar to that on which Hagen-Poiseuille’s law is based. A dimensional analysis
of the related parameters indicates that the pressure drop over the length of a tube (or a
length of porous medium) is (among other relationships) a function of the dimensionless
Reynolds number Re:

Re =
γw
g

vs d

µ
(5.91)

where vs is the average velocity and d is the diameter of the tube. Reynolds first investi-
gated fluid flow through tubes and found that under certain conditions laminar or smooth
flow breaks down and turbulence begins. These conditions are characterized by a limiting
value of Re equal, in tube flow, to about 2,000, although the value in a particular exper-
iment depends on environmental conditions. Below this value the flow is smooth, above
it, it is turbulent. Descriptions of many investigations on laminar, transitional, and turbu-
lent flows in pipes are given in the literature (e.g.,Dryden, 1948). In such studies the flow
occurred in parallel-walled tubes without divergences or breaks in the continuity of the
walls. This is obviously not the case in soils, where the diameter of a continuous pore may
vary quite abruptly from point to point in the medium. The fluid velocity will also change
rapidly as it progresses through the soil, and we may therefore expect, since the conditions
under which the transition from smooth to turbulent flow takes place in pipes in laboratory
investigations are not adhered to, that the transition in soil may not be characterized by the
same Reynolds number. In any event, contrlling the Reynolds number is difficult, because
it involves some values of velocity and pore diameter. If one uses the apparent velocity
given by Darcy’s law and a grain diameter, d, given by the expression:

d = 3

√∑
nsd3

s∑
ns

(5.92)

in which ns is the number of grains of diamter ds occurring in the soil, then it is found
that Darcy’s law holds up to values of Reynolds number of the order of unity. The pore
diameter is thus not directly expressed, but instead an average grain diameter is used. Even
if this value of Reynolds number is only very broadly applicable, there is probably an
uncertainty of at least an order of magnitude about its accuracy (Scheidegger, 1957). If,
in the determination of Reynolds number, the effective diameter of the soil d10 is used,
the limiting Reynolds number is found to be in the range 3 < Re < 10. As pointed out
by Muscat (1946), under normally encountered pressure differences in soils, Darcy’s law
appears to be valid at least up to the size range of medium to coarse sands. For turbulent
flow in coarse soils or under high heads, Scheidegger (1957) presents various dynamic
formulas, which may be applied to water flow through, say, the coarse sections of rock-
filled dams. Note also that the streaming potential generated by flow, particularly in finer-
grained soils, could give rise to small counter-flows along the pore walls in a direction
opposite to that of the main flows, and it may therefore be expected that deviations from
Darcy’s law would be encountered in extremely fine-grained (cohesive) soils. It has been



174 ELEMENTS OF PORO-ELASTICITY

suggested that, as a result of physicochemical interactions between the soil and water in
clays, seepage will not occur until a certain limiting gradient i0 of total head is surpassed
(Poluvarinova-Kochina P. Y., 1952) so that the first equation 5.89 for example, would be
rewritten as follows:

vx = −kx
[
∂h

∂x
− i0 · ex

]
(5.93)

The limiting gradient i0 depends on both the structure and the void ratio of the soil and may
be as large as 20 to 30 in very dense clays. This revision of Darcy’s law is not generally
employed, although the effect it describes may not be negligible in certain soils, particu-
larly if, and this is usually the case, the gradients in the pore water in laboratory tests are
much higher than those generated in the same soil in the field. Theoretical and experimen-
tal investigations of the effect of the revised law, equation 5.93, on transient flow processes
have been carried out by Florin (1951), who was especially interested in the comparison of
field behaviors with predicted quantities based on laboratory tests. Apart from this effect,
one may expect variations to arise in the character of fluid flow if the dimensions of the
pore spaces become generally of the same order of magnitude as the mean molecular free
path length of the fluid. These path lengths are, nevertheless, extremely small in fluids
such as water, and a breakdown in Darcy’s law from such an effect even in cohesive soils
only occurs when the pore fluid is a gas, a circumstance with which we are not concerned.

5.3.3 Permeability in anisotropic geomaterials

Since most soils are formed by settling on a horizontal surface, stratification or layering
occurs through changes in the grain size or in the character of the depositional material.
Thus soils are, for the most part, laid down in alternate layers of fine and coarse particles
as shown in Figure 5.5. The resulting sediment may be a clay with silt, sand, or coarser
or finer clay lenses, or may consist essentially of a granular soil containing layers of silt
or clay. A particular deposit of this type is known as a varved clay and is thought to have
been built up in glacial lakes as a result of summer and winter climatic changes. The
rapid turbulent stream flow of spring and summer bring down all size ranges of the soil
from the terrain through which they pass. The coarser sizes settle out rapidly, even in the
possibly turbulent lake water, whereas the finer clay sizes remain in suspension, probably
in a dispersed state, in the largely salt-free snow and ice melt water. In winter the freezing
of the lake surface gives rise to calmer conditions of subsurface water movement so that
the fine particles settle out. As a result the deposits formed are strongly stratified, with
highly anisotropic properties of permeability, deformability, and shear strength.

In anisotropic soils, the horizontal hydraulic conductivity is greater than the vertical one.
This observation may be explained as follows. In Figure 5.5, thehydraulic conductivity of
the fine particles is taken to be kf , that of the coarser material kc, both being the same in all
directions. The thicknesses of the various layers can be taken to be DL1, DL2, DL3, etc.
The quantity of flow qv , which may occur in a vertical direction through a cross-sectional
area of soil A is then:

qv = kf
Dh1

DL1
A = kc

Dh2

DL2
A = kf

Dh3

DL3
A = kf

Dh4

DL4
A, etc. (5.94)

so that:

Dh1 =
qvDL1

KfA
, Dh2 =

qvDL2

KcA
, etc. (5.95)
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Figure 5.5 Flow through anisotropic soil. Image taken from [2].

where Dh1, Dh2 are head losses in the layers. If the overall head loss is h, and the total
thickness is L, then the quantity of flow can also be written:

qv = kv
h

L
A (5.96)

In other words:
kv =

qvL

hA
(5.97)

Now, h = Dh1 +Dh2 +Dh3 + ..., so that by combining the two above equations, we get:

kv =
Lqv(

qv
A

) [
DL1

kf
+ DL2

kc
+ DL3

kf
+ DL4

kc
+ ...

]
A

=
L[

DL1

kf
+ DL2

kc
+ DL3

kf
+ DL4

kc
+ ...

]
(5.98)

This expression, which represents a harmonic mean hydraulic conductivity, is analogous
to that for electrical conductivities in series.

If water flows horizontally through a cross-sectional area A of the soil (assumed to be
large when compared to the layer thicknesses) of unit depth perpendicular to the paper,
then the quantity of flow, qh, is given by the expression:

qh = kf
h

B
DL1 + kc

h

B
DL2 + kf

h

B
DL3 + kc

h

B
DL4 + ... (5.99)

If qh = kh
h
BA, where B is the width of the region, noting that A = 1× L, then we have:

kh =
1

L
[kfDL1 + kcDL2 + kfDL3 + kcDL4 + ...] (5.100)

namely the arithmetic mean value, corresponding to the total electrical conductivity of
a parallel array of electrical conductivities. In soils in which the hydraulic conductivity
varies from place to place, an average hydraulic conductivity will lie between the arith-
metic and harmonic mean values of the permeabilities, weighted according to the related
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volumes of soil.

When the directional permeabilities are not equal, but the soil is orthotropic, a convenient
substitution may be made which simplifies the problem considerably. One or two (in the
three-dimensional case) of the axes may be transformed by the substitutions:

xt =

[
kz
kx

]1/2

x (5.101)

yt =

[
kz
ky

]1/2

y

where xt and yt are new coordinate axes aligned in the same direction as the former ones,
but with all dimensions altered by the substitution. The Laplace’s equation(Equation 5.90)
is now expressed as:

kz
∂2h

∂x2
t

+ kz
∂2h

∂y2
t

+ kz
∂2h

∂z2
= 0 (5.102)

so that:
∂2h

∂x2
t

+
∂2h

∂y2
t

+
∂2h

∂z2
= 0 (5.103)

Barron (1948) has presented a technique for transforming non-homogeneous anisotropic
flow regions into equivalent non-homogeneous isotropic sections for greater ease of solu-
tion. If a problem deals with two or more soils whose hydraulic conductivities are kmin,1,
kmax,1 and kmin,2, kmax,2, and for which the axes of the maximum and minimum per-
meabilities for the layers are not parallel, Barron transforms the layers by equation 5.101.
Nonetheless, this will usually mean that originally corresponding points on the boundaries
between layers are separated, and Barron brings them together by changing the scale of
one or more layers to attain correspondence.

5.3.4 Link between permeability and microstructure

Darcy’s law resulted from experimental observations; many attempts have been made to
achieve a theoretical confirmation and to determine values of permeability from theoretical
considerations of the size of the soil grains and size and shape of the pore spaces through
which flow occurs. Many of these investigations have begun from the Hagen-Poiseuille
equation for viscous flow through a small capillary tube of radius R, see Figure 5.6.

The average flow velocity through the tube vs is:

vs = −R
2

8µ

dp

dl
(5.104)

A model may then be postulated to consist of a bundle of such tubes arranged in parallel
with a ratio of pore cross section to total area n, to simulate the porosity of a soil, in which
case, vs represents a seepage velocity. Noting the similarity of equations 5.85 and 5.110,
one can write an expression for the coefficient of permeability involving the diameter of the
tubes, the porosity of the bundle, and the viscosity of the fluid. This expression can be used
to attempt to predict the permeability of a given soil. Nonetheless, in practical applications,
there are some differences between the model and soil that become immediately obvious:
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Figure 5.6 Viscous fluid flow throug a capillary. Image taken from [15]

not only is it very difficult to specify the “diameter” of the pores, but one encounters even
greater difficulties in measuring it, since the pores vary greatly in size and may not, indeed,
be continuous throughout the porous medium; generally, the flow in the soil from entrance
to exit does not take place in parallel streams. Although the pore size may be related to the
dimensions of the grains composing the soil, there can be no unique relationship since the
same collection of grains can be arranged in various assemblages containing different pore
sizes. Thus, in attempted correlations between models and nature, some form of average
pore diameter is sought. The concept of average pore diameter was first introduced in the
model of Kozeny and Carman, explained below.

The flux in the pipe shown in Figure 5.6 is:

q = −πR
4

8η

∆p

l
(5.105)

According to Darcy’s law:

q = −KA

η

∆p

L
(5.106)

The effective permeability for the block is therefore:

K = −πR
4

8A

L

l
= −πR

4

8Aτ

A

η

∆p

L
(5.107)

in which τ is a tortuosity factor. The porosity is calculated as follows:

φ =
πR2l

AL
=

πR2

A
τ (5.108)

Assitionally, the specific surface area (pore surface area divided by the sample volume) is:

S =
2πRl

AL
=

2πRτ

A
=

πR2τ

A

2

R
=

2φ

R
(5.109)

From there, we establish the so-called Kozeny-Carman relation:

K =
1

2

φ3

S2τ2
=

φ

8τ2
R2 (5.110)
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This relation is exact for pipes that have a circular cross section. Since the actual path of
fluid flow through the medium is not straight but extremely winding and twisted, various
tortuosity factors have been proposed to account for the difference in length between the
flow path of an average water molecule and the distance in a straight line through the
medium. Other models have been suggested incorporating changes in the cross-sectional
area of the tubes to allow for the varying pore diameter in a prototype region. So, in more
general terms, Kozeny-Carman permeability model can be stated as:

κ = B
φ3

S2τ2
=

φ

8τ2
R2 (5.111)

where B is geometric factor that accounts for the irregularities of pore shapes [15]. For an
elliptical cross-section:

K =
1

4

b2

1 + (b/a)2

φ

τ
=

1

2

φ3

S2τ2
(5.112)

For a square cross-section:

K = = 0.562
φ3

S2τ2
(5.113)

For a triangular cross-section (Figure 5.7):

K =
φa2

80τ2
= 0.6

φ3

S2τ2
(5.114)

For a packing of identical spheres of diameter d (Figure 5.7):

K =
1

72

φ3

(1− φ)2τ2
d2 (5.115)

The assumptions implicit in the various models and their drawbacks are thoroughly dis-

Figure 5.7 Different pore geometries. Left: pores of triangular section. Right: pores within a
packing of identical spheres.

cussed by Scheidegger (1957), who points out that the natural heterogeneity of porous
media on a small scale suggests mathematical approaches based on disorder rather than
order. In other words, Scheidegger proposes statistical analyses of flow in granular soils.
In a qualitative analysis along this line, he considers the motion of a small “parcel” of fluid
through the pores of the material. This element of volume is small enough so that it does
not separate or break up in the flow process. Scheidegger, by considering the probability of
a displacement of this parcel in a certain time interval, arrives at an equation corresponding
to Darcy’s law. Broadbent and Hammersley (1957) have also adopted this approach and
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further distinguish between diffusion processes, in which the randomness is inherent in the
fluid, and percolation processes, in which the flow is characterized by the random nature
of the medium through which flow occurs. Further investigations in this direction would
appear to hold promise because of their fundamentally sounder approach to the problem.

In the late 80’s, some models were proposed to relate permeability to flow paths. Be-
low the percolation threshold (p > pc), there exists several clusters (flow paths) of variable
sizes, see Figure 5.8. We note S the average cluster size. Above the percolation threshold,
there exists an infinite cluster (connected flow path). We note P the fraction of sites con-
nected to the infinite cluster. Usually, impossible to get an analytical solution for S and
P , unless strong assumptions are made on the topology of the network. In Bethe lattice

Figure 5.8 Percolation theory and connectivity of the flow path. Image taken from Wikipedia,
2014.

(Figure 5.9), each site is connected by z neighbors, where z is the network coordination
number. Let us pick a site, e.g. O: O is connected to z = 4 sites Ai. Each of these sites Ai
is connected to z − 1 = 3 new sites. A site or a bond is occupied with a probability p. The
reader is invited to solve the problems at the end of this chapter to calcualte the percolation
threshold and the fraction of sites that are part of the infinite cluster.

Figure 5.9 Bethe Lattice with z = 4. Image taken from [11].
.
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5.4 Consolidation problems

5.4.1 The general equation of consolidation

According to Laplace’s equation (Equation 5.90):

kx
∂2h

∂x2
+ ky

∂2h

∂y2
+ kz

∂2h

∂z2
= 0 (5.116)

Recall that this equation was derived from the following expression:

γw

[
kx
∂2h

∂x2
+ ky

∂2h

∂y2
+ kz

∂2h

∂z2

]
=
∂W

∂t
(5.117)

where the net weight flux of water into or out of a soil element was equated to the rate of
storage of water, ∂W∂t , in the element. Nonetheless, if either the porous medium or the fluid
(or both) are compressible, then there will be fluid storage or loss during flow. Until now,
we have established a system of axes and have fixed an element of volume in space with
reference to these axes in order to discuss the flow of fluid through the element. However,
if this element includes soil solids and the soil is compressing, there will be a flow of soil
solids as well as water through the element as time progresses. Therefore, in a rigorous
analysis, we must eventually develop another equation, similar to the expression:[

∂(γwvx)

∂x
+
∂(γwvy)

∂y
+
∂(γwvz)

∂z

]
dxdydz =

∂W

∂t
(5.118)

to express the change of storage of soil solids in the fixed volume element in terms of
the weight flux of solids through its boundaries. Since Darcy’s law has been given for
fluid flowing through an assemblage of stationary soil grains, the superficial velocity of
the fluid vx,y,z is actually measured with respect to the soil. If the soil is moving, vx,y,z
needs to be reformulated with respect to a fixed-volume element in space. In most cases in
practice, the velocity of the moving soil grains is so small that it is negligible with respect
to fluid velocities, although its existence has been taken into account by Florin (1948) in
a study of water flow in a compressing soil. Thus, the analysis as it develops here does
not consider the soil grains to move with relation to the fixed volumetric element in space,
although, in fact, the problem is formulated to evaluate the movement or settlement of the
soil. The process of transient flow of water (or other fluids) through a soil structure which
compresses or expands in time is called consolidation in soil mechanics, although the word
has another meaning in the related discipline of geology.

5.4.2 Terzaghi’s consolidation equation in 1D and 2D

Let us consider a column of soil in which the solid grains and the pore fluid are incom-
pressible (note that the solid skeletong remains compressible). According to Subsection
5.2.2, the governing equation for the solid phase is

−α∇ (pw) + De : ∇ε = 0 (5.119)

and the governing equation for the liquid phase is:(
α− n
Ks

+
n

Kw

)
ṗw + α ε̇v =

1

µw
k : ∇2pw (5.120)
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We note:
S =

α− n
Ks

+
n

Kw
(5.121)

Assuming that the solid phase is linear elastic, we have:

∂pw
∂t

=
αmv

S + α2mv

∂σzz
∂t

+
k

µw(S + α2mv)

∂2pw
∂z2

(5.122)

in which mv is the volume compressibility factor, defined as:

mv =
1

1 + e

∂e

∂σ′
(5.123)

where e is the void ratio (ratio of the volume of voids over the volume of solid in the soil
column), and σ′ = σ−pw is the so-called Terzaghi’s effective stress (here, in 1D). For t¿0,
the vertical stress σzz is maintained constant, so that the pore pressure is governed by the
following equation:

∂pw
∂t

=
k

µw(S + α2mv)︸ ︷︷ ︸
cv

∂2pw
∂z2

(5.124)

Equation 5.124 is known as the Terzaghi’s consolidation equation. The solution of Terza-
ghi’s consolidation equation is plotted in Figure 5.10.

Figure 5.10 Analytical solution of Terzaghi’s consolidation equation.

For the problem of radial flow to the well shown in Figure 5.11, the consolidation equation
is:

∂pw
∂t

= cv

(
∂2pw
∂r2

+
1

r

∂pw
∂r

)
(5.125)
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If one well is used for injection and another well is used for extraction, the distribution of
pore pressure in the subsurfce is as shown in Figure 5.12.

Figure 5.11 Well in an infinite confined aquifer, Theis-Jacob model. Image taken from [20].

Figure 5.12 Consolidation around two wells. Image taken from [20].

5.5 Thermo-elastic behavior of unsaturated porous media

5.5.1 Governing equations

Let us consider a Representative Elementary Volume (REV) of soil that is made of solid
grains, liquid (water) and gas (mixture of air and vapor). We consider that the REV can
be subjected to stress or displacement perturbations, water and gas pore pressure perturba-
tions and temperature perturbations. Assuming that weight is the only external body force
applied to the REV, the momentum balance equation of the REV is:

divσ + (1− n)ρs(g − as) + nSwρw(g − aw) + nSgρg(g − ag) = 0 (5.126)

Isolating the solid phase, we get:

div [σ′−δ(1− n)(Sw pw + Sg pg)] + (1− n)ρs(g − as) + fws + fgs = 0 (5.127)

The net stress applied to the solid skeleton is defined as:

σ′ = σ + δ(Sw pw + Sg pg) (5.128)
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The fluid pressure contributing to the compressibility of the grains is:

−δ(1− n)(Sw pw + Sg pg) (5.129)

The force applied by the liquid flowing in the porous solid skeleton is:

fws = Rwηwvws = nSwRwvws (5.130)

The force applied by the gas flowing in the porous solid skeleton is:

fgs = Rgηgvwg (5.131)

The momentum balance equation of the solid phase is:

div[σ′ − δ (1− n)(Swpw + Sgpg)] + (1− n)ρsg (5.132)
−(1− n)ρsas + Rwηwvws + Rgηgvwg = 0

with:

σ′ Net stress [Pa] (5.133)
δ Second-order identity tensor [-]
n Porosity [-]

Sw, Sg Degree of saturation of liquid water, gas mixture [-]
pw, pg Pore pressure of liquid water, gas mixture [Pa]

ρs Solid mass density [kg/m3]
g Gravity acceleration field [m/s2]

as Acceleration of the solid phase [m/s2]
Rw, Rg Flow dissipation term for liquid, gas [Pa.s/m2]
ηw, ηg Volume fraction of liquid, gas in the REV [-]

vws, vwg Velocity of the liquid in reference to solid, gas [m/s]

We neglect the gradients of fluids velocity and the effects of phase change.Th balance of
momentum of liquid water is:

vws = Rw
−1 : (−grad(pw) + ρw(g − as − aws)) (5.134)

The balance of momentum of the gas mixture is:

vgs = Rg
−1 : (−grad(pg) + ρg(g − as − ags)) (5.135)
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with:

vws, vgs Velocity of the liquid, gas in reference to solid [m/s] (5.136)
Rw, Rg Flow dissipation term for liquid, gas [Pa.s/m2]
pw, pg Pore pressure of liquid water, gas mixture [Pa]
ρw, ρg Mass density of liquid, gas [kg/m3]

g Gravity acceleration field [m/s2]
as Acceleration of the solid phase [m/s2]

aws, ags Acceleration of liquid, gas in reference to solid [m/s2]
ηx Volume fraction of phase x in REV [-]
k Permeability [m2]
µx Dynamic viscosity of phase x [Pa.s]
T Temperature [K]

We recall that the time derivative of a function f(x, t) in reference to moving phase π (with
velocity vπ) is:

Dπf(x, t)

Dt
=

∂f(x, t)

∂t
+ gradf · vπ (5.137)

As a result, the mass balance equation of the solid phase is expressed as:

(1− n)

ρs

Dsρs
Dt

− Dsn

Dt
+ (1− n)divvs = 0 (5.138)

with:

n Porosity [-] (5.139)
ρs Solid mass density [kg/m3]
vs Velocity field of the solid phase in the REV [m/s]

The quantity of liquid water lost through evaporation per unit time per unit volume is:

ρwe
w(ρ) = −ṁ (5.140)

so that the mass balance equation of the liquid phase is:(
α−n
Ks

(Sw)2 + nSw
Kw

)
Dspw
Dt + α−n

Ks
SwSg

Dspg
Dt + αSwdivvs (5.141)

−βsw D
sT
Dt +

(
α−n
Ks

pwSw − α−n
Ks

pgSw + n
)
DsSw
Dt

+ 1
ρw
div (nSwρwvws) = − ṁ

ρw

with:

βs, βw βg Thermal expansion coefficient of solid, liquid, gas [K−1](5.142)
βsw βsw = Sw[(α− n)βs + nβw]

Ks, Kw Compression modulus of solid, water [Pa]
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If grains are incompressible, α = 1 and 1/Ks → 0, and the mass balance equation of the
liquid phase reduces to:

nSw
Kw

Dspw
Dt + Swdivvs − βsw D

sT
Dt + nD

sSw
Dt (5.143)

+ 1
ρw
div (nSwρwvws) = − ṁ

ρw

Now, the mass balance equation of the gas phase is written as:

α−n
Ks

SwSg
Dspw
Dt + α−n

Ks
(Sg)

2D
spg
Dt −

(
n + α−n

Ks
pcSg

)
DsSw
Dt (5.144)

−βs(α− n)Sg
DsT
Dt + αSgdivvs +

nSg
ρg

Ds

Dt

[
1
Rθ (paMa + pvMw)

]
+ 1
ρg
div(nSgρgvgs) = + ṁ

ρg

We introduce the Kelvin-Laplace law - for the Relative Humidity (RH) in the pores:

RH =
pv
pvs

= exp

(
pcMw

ρwRθ

)
(5.145)

with:

pv, pvs Vapor pressure, water vapor saturation pressure [Pa] (5.146)
pc pc = pg − pw : Capillary pressure [Pa]

Mw, Ma Molar mass of liquid water, gaseous air [kg/mol]
R Universal gas constant : R = 8.3144598J.mol−1.K−1

θ Absolute temperature [K]
vgs Velocity field of the gas phase in reference to the solid [m/s]

If grains are incompressible, α = 1 and 1/Ks → 0, and the mass balance equation of the
gas phase reduces to:

−nD
sSw
Dt − βs(α− n)Sg

DsT
Dt + Sgdivvs +

nSg
ρg

Ds

Dt

[
1
Rθ (paMa + pvMw)

]
(5.147)

+ 1
ρg
div(nSgρgvgs) = + ṁ

ρg

The quantity of liquid water lost through evaporation per unit time per unit volume being:

ρwe
w(ρ) = −ṁ (5.148)

the energy balance equation is expressed as:

(ρCp)eff
∂T
∂t +

(
ρwC

w
p vw + ρgC

g
pvg

)
· grad(T ) (5.149)

−div (χeffgrad(T )) = −ṁ∆Hvap
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with:

ρxC
x
p Heat capacity of the x-th phase [J/K] (5.150)

(ρCp)eff (ρCp)eff = ρsC
s
p + ρwC

w
p + ρgC

g
p

χx Thermal conductivity of hte x-th phase [W.m−1.K−1]

χeff χeff = χdry

(
1 + 4

nSwpw
(1− n)ρs

)
∆Hvap ∆Hvap = Hv −Hw

Difference between vapor and liquid water enthalpy [J]

To close the formulation, one needs to introduce constitutive relationships. For the solid
phase, we use the concept of effective stress:

σ′′ = De : ε (5.151)
σ′′ = σ + αδ (Swpw + Sgpg)

α = 1− Ks

K

...not to be confused with the net stress:

σ′ = σ + δ (Swpw + Sgpg) (5.152)

The heat flux is given by Fourier’s law:

qh = −χeffgrad(T ) (5.153)

χeff = χdry

(
1 + 4

nSwpw
(1− n)ρs

)

The transport of water (x=w) and gas (x=g) is assumed to be laminar, so that Darcy’s law
can be applied:

ηxvxs =
krxk

µx
· (−gradpx + ρxg) (5.154)

in which krx is the relative permeability. An additional relationship is needed to relate
the relative permeabilities to the saturation degree (ratio between the volume of liquid
water over the total volume of pores) and the pore pressures. This is the topic of the next
subsection.

5.5.2 The water retention curve (WRC)

The capillary pressure pc is defined as the difference between the gas pore pressure and the
liquid pore pressure:

pc = pg − pw (5.155)

The curve that relates the capillary pressure to the water saturation degree is called the “wa-
ter retention curve” (WRC). Figure 5.13 shows a schematic WRC. The WRC is typically
monotonic; the capillary pressure decreases when the water saturation degree increases.



THERMO-ELASTIC BEHAVIOR OF UNSATURATED POROUS MEDIA 187

Figure 5.13 Water retention curve and interfacial energy. Image taken from [5].

The minimal value of the capillary pressure is the air entry pressure, noted pe. When
pc > pe, Sw starts decreasing when pc increases. Brooks & Corey’s model provides the
following expressions for the relative permeability and the capillary pressure:

ηxvxs =
krxk

µx
· (−gradpx + ρxg) (5.156)

krw = (Se)
(2+3λ)/λ

krg = (1− Se)2(1(Se)
(2+λ)/λ)

pc =
pb

(Se)1/λ

Se =
Sw − Swc
1− Swc

with:

pb Bubbling pressure [Pa] (5.157)
Swc Residual (irreducible) degree of saturation [-]
λ Pore size distribution index [-]

van Genucthen’s WRC is described as follows:

Sw =
(

1 +
(pc
A

)n)−1+1/n

(5.158)
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in which n and A are positive model parameters.
Brutsaert’s model assumes the following equation for the WRC:

Sw =
(

1 +
(pc
A

)n)−1

(5.159)

in which n and A are positive model parameters.

In the case of an experiment with no deformation and no temperature change, the ex-
pression of the REV free energy is of the form [5]:

Ψs = Φ0 U(Sw) (5.160)

in which:

U(Sw) =

∫ 1

Sw

pc(s)ds (5.161)

Φ0 is the initial porosity of the REV and U(Sw) is the energy of the interfaces in the REV
(solid/liquid, solid/gas and liquid/gas interfaces). In isothermal conditions, the equation of
the WRC is of the form pc = pc(Sw). From Equation 5.161, the WRC equation can also
be written as:

pc = − dU

dSw
(5.162)

U(Sw) can be understood as the work that needs to be provided to the interfaces to bring
the specimen from a state of full saturation (Sw = 1) to the current saturation (Sw), per
unit of porous space Φ0dΩ. The interfacial energy can be expressed as:

Φ0 U = γswωsw + γsgωsg + γlwωlw − γslωs (5.163)

with ωs = ωsl + ωsg , and in which the subscripts s, w and g refer to the solid, liquid and
gaseous phases respectively. γ is an interfacial energy, and ωβ is the fraction of interface
of type β (β = sl, sg, lg). The same analysis can be done in non-isothermal conditions
(see [5]).

The WRC can be determined experimentally, by drying the pores while controlling the
capillary pressure. For materials with a low permeability, such as clays and concretes, this
method is quite limited, because the capillary pressure that needs to be applied to empty
the pores is too high. In practice, the WRC can be determined experimentally for satu-
rations above 90%. Under that value, it is necessary to know the sorption isotherm. In
a sorption experiment, the specimen is in equilibrium under a constant temperature, and
under a controlled relative humidity:

hr =
pv
pvs

(5.164)

in which pv is the vapor pressure and pvs is the vapor pressure in a saturated saline solution.
It is possible to control hr by controlling the concentration of the saline solution. The
sorption isotherm is then obtained: hr = hr(Sw). The gas mixture in the specimen is in
equilibrium with the atmostphere, so that pl−patm is the opposite of the capillary pressure.
The thermodynamic equilibrium between liquid water and vapor is thus [5]:

−pc = ρw
RT

Mv
ln(hr) (5.165)



THERMO-ELASTIC BEHAVIOR OF UNSATURATED POROUS MEDIA 189

in which Mv is the mass per mole of vapor (Mv = 18g/mol). Equation 5.165 shows that
the WRC can be found indirectly by measuring Sw while controlling hr.

When the specimen is subjected to reversible transformations, the WRC is bilateral, i.e. the
same curve holds for drying and wetting paths. However, the WRC exhibits hysteresis in
most soils and rocks. Let us start from a dry state (Sw small, pc high). When pc decreases,
the point (Sw, pc) follows the so-called imbibition (or wetting) curve: pc = sI(Sw).
Once Sw = 100%, if pc is increased, (Sw, pc) follows the so-called draining curve:
pc = sD(Sw). The curves sI and sD are different. For a given capillary pressure, the
degree of saturation is smaller during the imbibition path than during the draining path.
Both curves form a reproducible hysteretic loop. If the variation of pc is reversed, the point
(Sw, pc) switches from one curve to the other, as shown in Figure 5.14 (line of equation
Sw = cst). The positivity of the dissipated interface energy is expressed as:

Figure 5.14 Water retention curve during a draining path and during an inmbibition path (solid
lines) the curve− ∂U

∂Sw
(dashed line) is inside the hysteretic loop. The area under that curve (in grey)

represents the variation of interfacial energy per unit of porous volume, U(Sw). Image taken from
[5].

−Φ0

(
pc +

∂U

∂Sw

)
dSw ≥ 0 (5.166)

If the transformation is reversible, then the energy dissipated is zero and −Φ0pcdSw
is equal to the variation of interfacial energy Φ0U . In case of hysteresis, the relation
U(Sw) =

∫ 1

Sw
pc(s)ds no longer holds. The equation above informs on the value of the

thermodynamic force − ∂U
∂Sw

that is conjugated to Sw. We have:

sI ≤ −
∂U

∂Sw
≤ sD (5.167)
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In other words, the point (Sw, − ∂U
∂Sw

) in the plane (Sw, pc) describes a curve that is be-
tween the imbibition and draining WRC. The area of that curve represents the interfacial
energy U(Sw), as illustrated in Figure 5.14. The energy dissipated during a draining path
(AB in Figure 5.15) is, therefore, equal to the area of the surface comprosed between the
draining curve and the curve of equation − ∂U

∂Sw
(Sw). Similarly, the energy dissipated dur-

ing an imbibition path (CD in Figure 5.15) is the area of the surface comprised between
the imbibition curve and the curve of equation − ∂U

∂Sw
(Sw). During a cycle (ABCD), the

energy dissipated is thus equal to the area of the surface comprised between the draining
curve and the imbibition curve.

Figure 5.15 During a draining path (AB), the energy dissipated is equal to the area ABEF. During
an imbibition path (CD), the energy dissipated is equal to the area CDFE. Image taken from [5].
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PROBLEMS

5.1 [FEM for 1D steady fluid flow] Consider the steady laminar flow of a viscous in-
compressible fluid with constant density in a long annular region between two coaxial
cylinders of radii Ri and R0 (see Figure 5.16). The differential equation for this case is
given by:

−1

r

d

dr

(
r µ

dw

dr

)
= f0, f0 =

P1 − P2

L

where w is the velocity along the cylinders (i.e., the z component of velocity), µ is the vis-
cosity, L is the length of the region along the cylinders in which the flow is fully developed,
and P1 and P2 are the pressures at z = 0 and z = L, respectively (P1 and P2 represent the
combined effect of static pressure and gravitational force). The boundary conditions are:

w(r = R0) = w(r = Ri) = 0

1. Write the weak formulation of the problem.

2. Consider two linear elements over the segment [R0, Ri]. Write the two elementary
equations that govern the problem, using Ritz method.

3. Assemble and condense the system of equations.

4. Solve the system of finite element equations for the primary variable and write the
expression of approximate solution over the segment [R0, Ri].

5. Post-process the finite element results to calculate the unknown nodal secondary vari-
ables.

6. Repeat questions 2 and 3 with one quadratic element. Do not solve.

5.2 [FEM for 2D steady fluid flow] Consider the irrotational flow of an ideal fluid
about a circular cylinder with its axis perpendicular to the plane of flow, which takes place
between two long horizontal walls (see figure 5.17). The governing equation is:

−∇2u = 0 (5.168)

Is it more computationally efficient to model the flow problem with the stream function
(u = Ψ) or the flow potential (u = Φ)?

5.3 [FEM for 2D steady fluid flow] Consider the groundwater flow problem governed
by the following equation:

− ∂

∂x

(
a11

∂Φ

∂x

)
− ∂

∂y

(
a22

∂Φ

∂y

)
= f(x, y) (5.169)

Two pumps are used to extract the water brought by a river, modeled as a lineic fluid source.
The boundary and loading conditions are shown in the Figure 5.18. Propose a FEM model
made of linear triangular elements to approximate the distribution of water fluxes.
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Figure 5.16 Viscous incompressible fluid flow in an annular area.

Figure 5.17 Flow around a non-penetrable obstacle in 2D. Image taken from [18].

Figure 5.18 Seepage problem in 2D. Image taken from [18].
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5.4 To account for a percolation porosity, the following modified Kozeny-Carman rela-
tion was established:

K = B
(φ− φc)3

(1 + φc − φ)2
d2

1. Calculate the permeability of a sandstone sample which has porosity 0.32 and an
average grain size of 100 µm. Assume B = 15 and φc = 0.035.

2. Compare the permeabilities κ1 and κ2 of two sandstones that have the same porosity
and pore microstructure, but different average grain sizes, d1 = 80µm and d2 =
240µm.

5.5 We recall that the 1D laminar flow in a pipe of circular cross-section of radius r is:

q = −π r
4

8 η

∆p

L

In a tubular pore of circular cross-section, with radius r, Darcy’s law is expressed as:

q = −K A

η

∆p

L
= K

π r2

η

∆p

L

Consider a unit rock volume that contains N tubular pores of circular cross-section, fol-
lowing an isotropic distribution, with a radius size distribution p(r). Show that the intrinsic
permeability K has the following expression:

κ =
Φ

8

1∫∞
0
f(r)dr

∫ ∞
0

r2f(r)dr

In which Φ is the porosity of the rock sample, and in which the radius volume frequency
f(r) is defined as f(r) = N Lπ r2 p(r).
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Figure 5.19 Pipe model: Unit section S intercepts pipes of various orientations (θ, φ), radius r
and length λ. l is the average spacing between two pipes. Image taken from [10]

5.6 Show that for the pipe model illustrated in Figure 5.19, the intrinsic permeability
above the percolation threshold has the following expression:

K =
π

32

λr4

l
3

in which λ is the average capillary length and r is the average capillary radius. Assume
that the distribution of capillaries centers along the z-axis is homogeneous and isotropic,
and that the probability density functions of r, λ, θ and φ are isotropic and statistically
independent.

5.7 Consider the Bethe Lattice shown in Figure 5.9.

1. What is the percolation threshold pc for this network?

2. What is the average number of sites T to which the origin is connected through a
single branch A ? (T is the average size of the cluster for each branch).

3. Determine the form of the relationship that links S to p and pc.

4. Determine P , the fraction of sites that are part of the infinite cluster. Introduce Q, the
probability that a path starting from the origin is interrupted somewhere.

5.8 Consider a geomaterial in which the pores are penny-shaped, with the geometric
parameters explained in Figure 5.20.

1. Calculate the value of l (average distance between fractures) at the percolation thresh-
old. Assume that the fractures are disk shaped and of radius c = 200µm. Assume
that each fracture is a site that is part of a Bethe lattice.

2. Calculate the maximum value of permeability for a population of identical fractures
with radius c = 200µm and aperture w = 1µm. Given: The permeability of a
network of penny-shaped fractures is:

k =
4π

15
f
w3c2

l
3

In which f is the portion of fractures that form an infinite cluster, and xn is the n-th
moment of probability of the variable x.

5.9 Prove the axis-symmetric consolidation equation (Equation 5.125).
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Figure 5.20 Flow in a network of penny-shaped pores. Image taken from [10].

5.10 Consider a rock specimen filled with oil (mass density ρn, pressure pn, saturation
degree Sn) and water (mass density ρw, pressure pw, saturation degree Sw). The specimen
is cylindrical, with impermeable lateral boundaries. The specimen is subjected to a con-
stant water flow at the base. The initial saturation degree of oil is S0

n = 0.8. We assume
that fluid flow is purely 1D and occurs only in the direction of the axis of the specimen.
The capillary pressure is assumed to be negligible, i.e. ∀z, pn(z) = pw(z) = p(z). The
porosity of the specimen is assumed to remain constant.

1. Provide the governing equations of the water and oil phases.

2. Assume that the fluids are incompressible. Show that the sum of the fluid velocities
v(z) = vn(z) + vw(z) is uniform throughout the sample, i.e. that v(z) does not
depend on the position z in the sample.

3. Show that:
dp

dz
=
−v(z) + (Kwρw/µw +Knρn/µn) g

Kw/µw +Kn/µn

Explain why dp/dz only depends on Sw.
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5.11 The capillary rise in a tube can be calculated by using Jurin’s equation:

γw h = pn − pw

and Laplace’s equation:

pn − pw =
2tn/w cos θw

r

in which h is the height of the capillary rise, γw is the specific weight of the wetting fluid
in the tube (e.g., water), pw is the pressure of the wetting fluid (water), pn is the pressure
of the non-wetting fluid (e.g., air), r is the radius of the tube, tn/w is the surface tension in
the meniscus (e.g., at the water/air interface) and θw is the wetting angle, i.e. the angle that
exists between the normal to the tube wall and the tangent to the meniscus. For a water/air
meniscus under ambient temperature, we have tn/w = 75 mN/m. The porous network
inside a soil specimen is often modeled as a distribution of capillary tubes that are parallel
to each other and that are not connected to one another, so that the equations of Jurin and
Laplace can be applied. With this assumption in mind, let us consider a cylindrical soil
specimen, 5 cm in diameter and 100 cm in height, made of solid grains, liquid water and
gaseous air. The soil porous network is modeled by the bundle of tubes described in Table
5.2. Furthermore, it is assumed that the tubes are perfectly wettable, i.e., θw = 0o.

1. Calculate the porosity of the specimen.

2. Express the capillary rise in a single tube of diameter D (in symbolic formula). Cal-
culate the capillary rise h in each type of tube listed in Table 5.2.

3. Express the relationship between the capillary pressure and the degree of saturation
in water of the specimen. Plot the Water Retention Curve of the specimen.

Table 5.2 Porous network modeled as a bundle of tubes

Tube diameter (µm) Number of tubes

0.1 500

0.5 1,000

1 5,000

5 50,000

10 100,000

50 50,000

100 5,000

500 1,000

1000 500



PROBLEMS 197

5.12 Let us consider two non-deformable cylinders of radius R and of length 1 m in the
direction orthogonal to the sheet of paper (see Figure 5.21). At the contact between the two
cylinders, a water meniscus exists. We assume that the material that makes the cylinders is
perfectly wettable, i.e., θw = 0. The meniscus section is an arc of circle of radius r. The
width of the meniscus relative to the axis that links the two centers of the cylinders is noted
l.

1. Calculate l as a function of r and R. Derive the relation between the water capillary
pressure in the meniscus, R and α = R/r. From there, calculate the attraction force
fu between the two cylinders because of the presence of the meniscus (provide the
expression of fu as a function of α and R).

2. Generalize the result found in question 1 above to a regular cubic packing of cylinders.
Give the expression of the effective stress. What are the limitations of this model?

3. Calculate the porosity, void ratio and dry specific weight of the material (assuming a
regular cubic packing). Assume ρs = 27 kN/m3 (for the solid grains).

4. The capillary cohesion is defined as:

cs = σ′n tan Φ′

in which Φ′ is the friction angle and σ′n is the normal component of the effective stress
(where here, the normal direction is the direction of the segment that links the centers
of both cylinders). Calculate the capillary cohesion of the medium as a function of the
water capillary pressure, for a friction angle of 30o. Plot the variations of the cohesion
for R = 1µm.

5. Calculate the increase in material strength in the vertical direction as a function of the
capillary pressure. Assume hte following:

The stress path is triaxial (σH=cst);

The external forces are given as: fext = 2R×
(
0.75σ2

v + 0.25σ2
h

)
;

The orientation angle of the external forces compared to the vertical is given as:
δext = 60− arctan(0.577× (σH/σv)) (in degrees);

The material strength of the dry medium is 100 kPa, which corresponds to an
external force oriented by an angle of 30o compared to the vertical (normal).

To proceed with the calculation, assume a value of σv and calculate the capillary force
such that σv reaches the material strength.
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Figure 5.21 The menisci between two solid cylinders and the corresponding inter-granular forces.
Image taken after Fleureau’s course notes.



CHAPTER 6

FINITE ELEMENT METHOD IN
PORO-ELASTICITY

6.1 1D eigenvalue and transient problems

6.1.1 Eigenvalue problems

6.1.1.1 Governing equations
Consider a differential equation that includes both space and time derivatives of the depen-
dent variable, as follows:

Ax (u(x, t)) +Bt (u(x, t)) = f(x, t) (6.1)

in which Ax is a linear operator with space derivatives and Bt is a linear operator with
time derivatives. Since the differential operators are linear, it is possible to find the overall
solution of the PDE by summing the solution to the homogeneous differential equation
(without right-hand side member) and a particular solution of the actual differential equa-
tion at stake:

Ax (up(x, t)) +Bt (up(x, t)) = f(x, t) (6.2)

Ax (uh(x, t)) +Bt (uh(x, t)) = 0 (6.3)

With linear operators:
u(x, t) = up(x, t) + uh(x, t) (6.4)

The problem is now to solve for uh(x, t). Often, the space and time variables are separated,
and the solution is sought in the form:

uh(x, t) = U1(x)U2(t) (6.5)

Theoretical Geomechanics.
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uh satisfies the homogeneous governing equation, and with linear operators:

Ax (U1(x)U2(t)) = −Bt (U1(x)U2(t)) (6.6)

− 1

U1(x)
Ax (U1(x)) =

1

U2(t)
Bt (U2(t)) (6.7)

In the equation above, the left-hand side is a function of space only, while the right-hand
side is a function of time only. So the equality can only hold if both sides of the equality
are constants.

If the time operator Bt is a time derivative or order 1, then the PDE is said to be parabolic
(e.g. problem of heat transfer). The solution is then of the form:

− 1

U1(x)
Ax (U1(x)) =

1

U2(t)
Bt (U2(t)) = −λ, λ > 0 (6.8)

U2(t) = Aexp(−λ t) (6.9)

If the time operator Bt is a time derivative or order 2, then the PDE is said to be hyperbolic
(e.g. problem of bar or beam vibration). The solution is then of the form:

− 1

U1(x)
Ax (U1(x)) =

1

U2(t)
Bt (U2(t)) = −ω2 (6.10)

U2(t) = Aexp(−iω t) (6.11)

For both parabolic and hyperbolic equations:

U2(t)Ax (U1(x)) + U1(x)Bt (U2(t)) = 0

For parabolic equations:

Aexp(−λ t)Ax (U1(x)) + U1(x) cstA (−λ) exp(−λ t) = 0 (6.12)

1

cst
Ax (U1(x)) = λU1(x) (6.13)

For example, for a problem of 1D het transfer:

− 1

ρ cAsection

d

dx

(
k Asection

dU1(x)

dx

)
= λU1(x) (6.14)

For hyperbolic equations:

Aexp(−iω t)Ax (U1(x)) + U1(x) cstA
(
−ω2

)
exp(−iω t) = 0 (6.15)

1

cst
Ax (U1(x)) = ω2 U1(x) (6.16)

For example, for the motion of a bar:

− 1

ρAsection

d

dx

(
E Asection

dU1(x)

dx

)
= ω2 U1(x) (6.17)
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The general form of an eigenvalue equation is:

A(u) = β B(u) (6.18)

in which A and B are operators, generally linear, and β is an eigenvalue. Each eigenvalue
defines an eigenmode, and each u associated with an eigenvalue is called an eigenvector
(or eigenfunction):

⇒ U1(x) = C cos(αx) +Dsin(αx) (6.19)

In a matrix form:
([A] − β[B]) {U1} = {0} (6.20)

To get non-trivial solutions {U1}:

det ([A] − β[B]) = 0 (6.21)

The equation above can be solved for the eigenvalues βi. There is one solution {U1} per
mode:

∀i, ([A] − βi[B]) {U1} = {0} (6.22)

From there, it is possible to solve for the eigenvectors, i.e., for the αi coefficients.

6.1.1.2 Eigenvalue problem with a parabolic equation
Consider the following governing equation, for 1D heat transfer:

− d

dx

(
a(x)

dU1

dx

)
+ c(x)U1(x) = λ c0(x)U1(x) (6.23)

The weak formulation is:

∀w ' δU1,
∫ xb
xa

dw
dx

(
a(x)dU1

dx + c(x)w(x)U1(x)
)
dx − λ

∫ xb
xa
c0(x)w(x)U1(x)dx

=
[
w(x)a(x)dU1

dx

]
xb
xa = [w(x)Q(x)] xbxa

(6.24)
Using a Finite Element model based on Ritz method:

([Ke] − λ [Me]) {U1} = {Q} (6.25)

Stiffness Matrix: Ke
ij =

∫ xe+1

xe

(
a(x)

dΨi

dx

dΨj

dx
+ c(x)Ψi(x)Ψj(x)

)
dx(6.26)

Mass Matrix: Me
ij =

∫ xe+1

xe

(c0(x)Ψi(x)Ψj(x)) dx

If the i-th primary variable is imposed, the i-th equation is deleted from the system of
condensed equations.

If a connectivity condition is imposed, Q = 0.

If the i-th secondary variable is imposed, usually a mixed condition of the type Q =
A
(
U1

)
is imposed. The termA

(
U1

)
is moved to the left hand side andA is integrated

in the stiffness matrix.
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Therefore the system of condensed equations is expressed as:(
[K̂] − λ [M̂ ]

)
{U1} = {0} (6.27)

The number of eigenvalues λ increases with the number of degrees of freedom (d.o.f.):

det
(

[K̃] − λ [M̂ ]
)

= 0 (6.28)

For each mode M:
U1

M (x) = ΣNj=1U1
M
j Ψj(x) (6.29)

6.1.1.3 Eigenvalue problem with a hyperbolic equation
Consider the governing equation of a beam vibration problem:

ρAsection
∂2w

∂t2
− ρ I

∂4w

∂t2∂x2
+

∂2

∂x2

(
EI

∂2w

∂x2

)
= q(x, t) (6.30)

The homogeneous solution is:

wh(x, t) = U1(x) exp(−iωt) (6.31)

The governing equation in space is:

−ω2 ρAsection U1(x) + ω2 ρ I
d2U1(x)

dx2
+

∂2

∂x2

(
EI

∂2U1(x)

∂x2

)
= 0 (6.32)

The Finite Element model takes the following form:(
[Ke] − ω2 [Me]

)
{U1} = {Q} (6.33)

The stiffness matrix is:

Ke
ij =

∫ xe+1

xe

EI
d2Ψi

dx2

d2Ψj

dx2
dx (6.34)

The mass matrix is:

Me
ij =

∫ xe+1

xe

(
ρAsectionΨi(x)Ψj(x) − ρ I dΨ

dx

dΨ

dx

)
dx (6.35)

The vector of secondary variables is obtained after two integrations by parts:

Qi =

[
Ψi(x)

d

dx

(
EI

d2U1(x)

dx2

)
− ω2 ρ I Ψi(x)U1(x)

]
xe+1
xe −

[
EI

dΨi

dx

d2U1(x)

dx2

]xe+1

xe
(6.36)

6.1.2 Transient problems

6.1.2.1 Decoupled formulation
Consider now that the nodal values at functions of time, i.e. that the d.o.f. are transient.
That happens when the systems is not free nor forced, for instance when intermittent loads
are applied. Then, a transient regime occurs before the steady state, previously treated as
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an eigenvalue problem. An interpolation in both space and time is needed to approximate
u(x, t). Two options are possible to develop the FEM model:

Coupled Formulation: interpolation functions depending on space and time:

u(x, t) ' ueFEM (x, t) = ΣNj=1û
e
jΨ̂

e
j(x, t) (6.37)

Decoupled Formulation: interpolation performed every time step with interpolation
functions depending on space only:

u(x, t) ' ueFEM (x, t) = ΣNj=1u
e
j(t)Ψ

e
j(x) (6.38)

FE models are mostly based on decoupled formulations, and are therefore formulated in
two steps:

1. Discretization in Space:

∀ts ∈ [0, t], uej(x, ts) = ΣNj=1u
e
j(ts)Ψ

e
j(x) (6.39)

ts = s∆t (6.40)

2. Discretization in Time - often based on Finite Difference schemes.

A decoupled formulation can be used when:

The exact solution can be expressed as:

u(x, t) = f(x)g(t) (6.41)

For a fine time discretization, i.e. for a small ∆t (stability condition).

6.1.2.2 Space discretization
The typical governing equation is:

− ∂

∂x

(
a
∂u

∂x

)
+
∂2

∂x2

(
b
∂2u

∂x2

)
+ c0 u + c1

∂u

∂t
+ c2

∂2u

∂t2
= f(x, t) (6.42)

There are terms requiring 1 integration by parts and terms requiring 2 integrations by parts.
The primary variables are u, ∂u∂x . The secondary variables are:

Q1 = −a∂u
∂x

+
∂

∂x

(
b
∂2u

∂x2

)
(6.43)

Q2 = −b∂
2u

∂x2

The weak formulation is of the form:

∀w ∼ δu, 0 =
∫ xb
xa

(
a∂w∂x

∂u(x,t)
∂x + b∂

2w
∂x2

∂2u(x,t)
∂x2

)
dx

+
∫ xb
xa

(
c0w(x)u(x, t) + c1w(x)∂u(x,t)

∂t + c2w(x)∂
2u(x,t)
∂t2

)
dx

−
∫ xb
xa
w(x)f(x, t)dx−Q1

1w(xa) +Q1
2w(xb)−Q2

1
∂w
∂x (xa) +Q2

2
∂w
∂x (xb)

(6.44)
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For a given time ts, the Finite Element model with Ritz Method is:

0 =
[∫ xb
xa

(
adΨi
dx

dΨj
dx + bd

2Ψi
dx2

d2Ψj
dx2 + c0Ψi(x)Ψj(x)

)
dx
]
uj(ts)

+
[∫ xb
xa
c1Ψi(x)Ψj(x)dx

]
duj
dt (ts) ,+

[∫ xb
xa
c2Ψi(x)Ψj(x)dx

]
d2uj
dt2 (ts)

−
∫ xb
xa

Ψi(x)f(x, ts)dx −Q1
1w(xa) +Q1

2w(xb)−Q2
1
∂w
∂x (xa) +Q2

2
∂w
∂x (xb)

(6.45)

In a matrix form: [K]{u} + [C]{u̇} + [M ]{ü} = {F +Q} (6.46)

Parabolic Equations: [K]{u} + [M1]{u̇} = {F +Q} (6.47)

in which [K] is the stiffness matrix, [M ] is the mass matrix, and [C] is the damping matrix,
assumed to be zero in the following.

6.1.2.3 Time discretization for parabolic equations
A typical time-dependent parabolic equation encountered in engineering is:

a
du(t)

dt
+ bu(t) = f(t), 0 < t < T, u(t = 0) = u0 (6.48)

Note that initial conditions required in order to solve the problem. The time discretization
process is done with an α-family of approximation (this is a Finite Difference type of
approximation):

(1− α)u̇s + αu̇s+1 =
us+1 − us

∆ts+1
, 0 ≤ α ≤ 1 (6.49)

The time discretization can be understood as an approximation of a weighted average of
the derivatives by a linear interpolation of the dependent variable in time. Assuming that
the mass matrix [M ] does not depend on time, the weak formulation at two distinct times
ts and ts+1 is obtained as follows:

[M ]{u̇}s + [K]s{u}s = {F +Q}s

[M ]{u̇}s+1 + [K]s+1{u}s+1 = {F +Q}s+1

(6.50)

Using the FDM interpolation of the time derivatives:

[M ] (α{u̇}s+1 + (1− α){u̇}s) = [M ]
1

∆ts+1
({u}s+1 − {u}s) (6.51)

The resulting equation system is:

∆ts+1 (α{F +Q}s+1 − α[K]s+1{u}s+1)

+∆ts+1 ((1− α){F +Q}s − (1− α)[K]s{u}s) = [M ] ({u}s+1 − {u}s)
(6.52)
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The equations are solved by using a time marching scheme: Given u, F and Q at all times
¡ ts, we determine u at time ts+1 with:

([M ] + α∆ts+1[K]s+1) {u}s+1 =

([M ]− (1− α)∆ts+1[K]s) {u}s

+∆ts+1 (α{F +Q}s+1 + (1− α){F +Q}s)

(6.53)

The preceding numerical scheme is said to be consistent with the problem [M ]{u̇}s +
[K]s{u}s = {F+Q}s if the round-off and truncation errors tend to 0 when ∆t→ 0.

The numerical solution accuracy is measured by norms of the difference between the
exact and approximate solutions.

A time-approximation scheme is said to be convergent if for a fixed time ts, the nu-
merical value {u}s converges to its value {u(ts)} when ∆t→ 0.

A numerical scheme is said to be stable if the approximate solution remains bounded even
for high times. Stability accounts for the accumulation of errors while computing the
current solution (at ts) from anterior solutions (t < ts). To find out in which conditions a
FEM model is stable, consider the solution in the steady state. At this point, loads imposed
do not depend on time and the time marching scheme writes:

([M ] + α∆ts+1[K]s+1) {u}s+1 = ([M ]− (1− α)∆ts+1[K]s) {u}s (6.54)

In addition, the approximation solution in the steady state is expressed as:

uFEM (x, t) =

M∑
k=1

 N∑
j=1

Ukj Ψj(x)

 exp(−λk t) (6.55)

in which M is the number of modes and N is the interpolation order. In particular, the
monomodal approximation writes:

uFEM (x, t) =

N∑
j=1

U1
j Ψj(x)exp(−λ1 t) (6.56)

in which:
([K]− λ1[M ])

{
u1
}

= {0} (6.57)

So that, at all times:

[K]
{
u1
}
exp(−λ1t) = λ1[M ]

{
u1
}
exp(−λ1t) (6.58)

At times ts and ts+1:

[K]
{
u1
}
s

= λ1[M ]
{
u1
}
s
, [K]

{
u1
}
s+1

= λ1[M ]
{
u1
}
s+

(6.59)

Using a constant time step, a constant stiffness matrix and a constant mass matrix, and
injecting in the steady state time marching scheme:

(1 + αλ1∆t) [M ]{u}s+1 = (1− (1− α)λ1∆t) [M ]{u}s (6.60)
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Since the mass matrix is invertible, we get that the FEM model is stable if, and only if:∣∣∣1+(α−1)λ1∆t
1+αλ1∆t

∣∣∣ < 1 (6.61)

Since 0 ≤ α ≤ 1 and λ1 > 0 (λ1 is a physical entity that depends on impedance terms),
we see that the FEM model is unconditionally stable if α ≥ 1/2. If α < 1/2, the scheme is
automatically stable if 1+(α−1)λ1∆t > 0 (but this happens rarely in physical problems).
If α < 1/2 and 1 + (α− 1)λ1∆t ≤ 0, the stability criterion is:

∆t <
2

(1− 2α)λ1
= ∆crit (6.62)

For approximations with more that one mode, note that the subsequence eigenvalues λj are
smaller than λ1, so that if the stability criterion ∆t < 2

(1−2α)λ1
is satisfied, we have ∆t <

2
(1−2α)λj

for all modes j. In other words, for α < 1/2, the FEM model is conditionally
stable and the stability criterion is:

∆t <
2

(1− 2α)λmax
= ∆crit (6.63)

where λmax is the largest eigenvalue of the associated eigenvalue problem (steady state).

6.1.2.4 Time discretization for hyperbolic equations
Hyperbolic Equations contain time-derivatives of order 2. The most common time dis-
cretization scheme is the so-called Newmark’s Scheme, which can be stated as follows:

{u}s+1 = {u}s + ∆t {u̇}s + 1
2 (∆t)

2 {ü}s+γ

{u̇}s+1 = {u̇}s + ∆t {ü}s+α
(6.64)

with:
{ü}s+θ = (1− θ){ü}s + θ{ü}s+1 (6.65)

The general Form of the matrix equation after time discretization is:

[K̂]s+1{u}s+1 = {F̂}s,s+1 (6.66)
[K̂]s+1 = [K]s+1 + coefM ∗ [M ]s+1 + coefC ∗ [C]s+1

{F̂}s,s+1 = {F}s+1 + [M ]s+1{A}s + [C]s+1{B}s
(6.67)


{A}s = coefA1{u}s + coefA2{u̇}s + coefA3{ü}s

{B}s = coefB1{u}s + coefB2{u̇}s + coefB3{ü}s
(6.68)

This system of equations needs to be solved for the unknown {u} at time ts from the
dependent variables {u}, {u̇} and {ü} determined at previous time steps. The stability
conditions are more difficult to establish. Here, they are given without proof, as follows:

for α = 1/2:



1D EIGENVALUE AND TRANSIENT PROBLEMS 207

– if γ = 1/2: constant-average acceleration method, stable

– if γ = 1/3: linear acceleration method, conditionally stable

– if γ = 0: central difference method, conditionally stable

for α = 3/2:

– if γ = 8/5: Galerkin method, stable

– if γ = 2: backward method, stable

For α ≥ 1/2 and γ < α:

∆t < ∆tcrit =

[
1

2
ωmax

2(α− γ)

]−1/2

(6.69)

(
[K]− ω2[M ]

)
{u} = {F +Q} (6.70)

6.1.2.5 Numerical techniques to expedite calculations
For parabolic equations:

([M ] + α∆ts+1[K]s+1) {u}s+1 =

([M ]− (1− α)∆ts+1[K]s) {u}s

+∆ts+1 (α{F +Q}s+1 + (1− α){F +Q}s)

(6.71)

For α = 0:

[M ]{u}s+1 = ([M ]−∆ts+1[K]s) {u}s + ∆ts+1{F +Q}s (6.72)

If [M ] is diagonal:

ui(ts+1) =
1

Mii

Miiui(ts)−∆t

N∑
j=1

Kijujts

 +
∆t

Mii
(Fs +Qs) (6.73)

In general, weighted integral formulations lead to symmetric, positive-definite, non-diagonal
mass matrices (called consistent mass matrices). But there are techniques to diagonalize
the mass matrix:

Row sum lumping:

ML
ii =

N∑
j=1

MC
ij =

N∑
j=1

∫ xb

xa

ρΨi(x)Ψj(x)dx =

∫ xb

xa

ρΨi(x)

 N∑
j=1

Ψj(x)

 dx =

∫ xb

xa

ρΨi(x)dx

(6.74)
The same matrix operators are applied simultaneously to the left and right hand sides
of the time marching scheme. For linear elements:

[MC ] =
ρhe
6

[
2

1

1

2

]
⇒ [ML] =

ρhe
2

[
1

0

0

1

]
(6.75)
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Proportional lumping:

ML
ii =

∫ xb
xa
ρdx∑N

i=1

∫ xb
xa
ρΨi(x)Ψi(x)dx

∫ xb

xa

ρΨi(x)Ψi(x)dx, ML
ij = 0 for i 6= j

(6.76)

6.2 Flow of viscous incompressible fluids

6.2.1 Governing equations

We assume that the flow is slow so that inertial effects are negligible:

v · ∇(v) ' 0 (6.77)

The fluid is assumed to be viscous, i.e. µ 6= 0, and the following constitutive equations
hold:

σxx = τxx − P, σyy = τyy − P, σxy = τxy (6.78)

τxx = 2µ
∂vx
∂x

, τyy = 2µ
∂vy
∂y

, τxx = µ

(
∂vx
∂y

+
∂vy
∂x

)
(6.79)

It is impossible to simplify the momentum equation into:

ρ

2

(
v2
x + v2

y

)
+ P̂ = 0 (6.80)

The fluid is assumed to be incompressible, i.e. ρ = cst and:

∂ρ

∂t
= 0 (6.81)

The 2 equations of momentum conservation are:
ρ∂vx∂t −

∂σxx
∂x − ∂σxy

∂y − fx = 0

ρ
∂vy
∂t −

∂σxy
∂x −

∂σyy
∂y − fy = 0

(6.82)

The fluid mass conservation (continuity equation) is expressed as:

∂vx
∂x

+
∂vy
∂y

= 0 (6.83)

The boundary conditions are of the form:

primary variables: vx, vy

secondary variables: tx, ty

tx = σxxnx + σxyny, ty = σxynx + σyyny (6.84)

In general, the initial conditions are of the form:

vx(x, y, 0) = v0
x(x, y), vy(x, y, 0) = v0

y(x, y) (6.85)
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We develop a Finite Element model based on a decoupled formulation:

∀ts ∈ [0, t], vx(x, y, ts) =

Nx∑
j=1

vx
e
j(ts)Ψj(x, y) (6.86)

∀ts ∈ [0, t], vy(x, y, ts) =

Ny∑
j=1

vy
e
j(ts)Φj(x, y) (6.87)

6.2.2 Space discretization

The weak formulation is obtained as follows:

Weighted Integral Statement:∫
Ω
w1

[
− ∂
∂x

(
2µ∂vx∂x − P

)
− µ ∂

∂y

(
∂vx
∂y +

∂vy
∂x

)]
dxdy

+
∫

Ω
ρw1v̇x(ts)dxdy −

∫
Ω
w1fxdxdy = 0

(6.88)

∫
Ω
w2

[
−µ ∂

∂x

(
∂vx
∂y +

∂vy
∂x

)
− ∂

∂y

(
2µ

∂vy
∂y − P

)]
dxdy

+
∫

Ω
ρw2v̇y(ts)dxdy −

∫
Ω
w2fydxdy = 0

(6.89)

Integration by Parts:∫
Ω

[
∂w1

∂x

(
2µ∂vx∂x − P

)
+ µ∂w1

∂y

(
∂vx
∂y +

∂vy
∂x

)]
dxdy

+
∫

Ω
ρw1v̇x(ts)dxdy −

∫
Ω
w1fxdxdy

−
∮

Γ
w1

[(
2µ∂vx∂x − P

)
nx + µ

(
∂vx
∂y +

∂vy
∂x

)
ny

]
ds = 0

(6.90)

∫
Ω

[
µ∂w2

∂x

(
∂vx
∂y +

∂vy
∂x

)
+ ∂w2

∂y

(
2µ

∂vy
∂y − P

)]
dxdy

+
∫

Ω
ρw2v̇y(ts)dxdy −

∫
Ω
w2fydxdy

−
∮

Γ
w2

[
µ
(
∂vx
∂y +

∂vy
∂x

)
nx +

(
2µ

∂vy
∂y − P

)
ny

]
ds = 0

(6.91)

Boundary Conditions:

∀w1(x, y) ∼ δvx(x, y, ts),
∫

Ω

[
∂w1

∂x

(
2µ∂vx∂x − P

)
+ µ∂w1

∂y

(
∂vx
∂y +

∂vy
∂x

)]
dxdy

+
∫

Ω
ρw1v̇x(ts)dxdy −

∫
Ω
w1fxdxdy−

∮
Γ
w1txds = 0

(6.92)
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∀w2(x, y) ∼ δvy(x, y, ts),
∫

Ω

[
∂w2

∂y

(
2µ

∂vy
∂y − P

)
+ µ∂w2

∂y

(
∂vx
∂y +

∂vy
∂x

)]
dxdy

+
∫

Ω
ρw2v̇y(ts)dxdy −

∫
Ω
w2fydxdy−

∮
Γ
w2tyds = 0

(6.93)

Now, if we try to write the weak formulation of the mass conservation equation, the
weighted integral statement is:∫

Ω

w3

(
∂vx
∂x

+
∂vy
∂y

)
dxdy = 0 (6.94)

in which:

w3

(
∂vx
∂x

+
∂vy
∂y

)
dxdy ≡ power (6.95)

so w3(x, y) ∼ ±δP . We cannot balance the orders of the derivatives, so an integration
by parts will not be helpful. There is no boundary integral and therefore, P is not a pri-
mary variable. We thus have 2 primary variables (vx, vy) for 3 independent nodal variables
(vx, vy , P) in 3 independent governing equations. So 3 sets of interpolation functions are
needed. The nodal variables are all independent, i.e. none of them is the derivative of
another, so Lagrange polynomials are needed. Variables vx and vy are the same physi-
cal entity (velocities), and so they require the same interpolation order. According to the
differentiability requirements in the weak formulation, the minimum order of the interpo-
lation polynomials is 1 for vx and vy (linear) and 0 for P (constant over each element). We
note:

vex(x, y, ts) '
N∑
j=1

vx
e
j(ts)Ψj(x, y) (6.96)

vey(x, y, ts) '
N∑
j=1

vy
e
j(ts)Ψj(x, y) (6.97)

P e(x, y, ts) '
M∑
j=1

P ej (ts)Φj(x, y) =

M∑
j=1

P ej (ts)Φj (6.98)

If the Ψj functions are linear and if the Φj function is a constant, the matrix form of the Ritz
Finite Element equations is given in Figure 6.1. Another way to write the Finite Element
equations is as follows:

[M ]{∆̇} + [K11]{∆} + [K12]{P} = {F 1} + {Q1}

[K21]{∆} = {0}
(6.99)

[M ] =

∫
Ωe

ρ[Ψ]T [Ψ]dxdy, [K11] =

∫
Ωe

[Ψ]T [B]T

 2µ

0

0

0

2µ

0

0

0

µ

 [B][Ψ]dxdy

(6.100)
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Figure 6.1 Ritz Finite Element model for a 2D problem of incompressible viscous fluid flow.
Image taken from [18].

[K12] =

∫
Ωe



∂/∂x

∂/∂y


T

[Ψ]


T

{Φ}T dxdy (6.101)

[K21] =

∫
Ωe

{Φ}



∂/∂x

∂/∂y


T

[Ψ]

 dxdy (6.102)

{F 1} =

∫
Ωe

[Ψ]T

{
fx

fy

}
dxdy, {Q1} =

∮
Γe

[Ψ]T

{
tx

ty

}
ds (6.103)

Here, we have a mixed velocity-pressure formulation. A classical way to solve this kind of
problem is to use the continuity equation that applies on the pressure as a constraint and to
solve equations that only depend on the degrees of freedom. This technique is called the
penalty method; it is basically a minimization method. Below, we explain how to use the
penalty method for a 2D problem of incompressible viscous fluid flow.

With the weight functions w1 ∼ δvx, w2 ∼ δvy and w3 ∼ δP , the weak formulation
may be written as: 

Bt(w,v) +Bv(w,v) −Bp(w, P ) = l(w)

−Bp(w3,v) = 0

(6.104)
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{w} =

{
w1

w2

}
, {v} =

{
vx

vy

}
, {f} =

{
fx

fy

}
, {t} =

{
tx

ty

}
(6.105)

Bt(w,v) =

∫
Ωe

ρ{w}T {v̇}dx, Bv(w,v) =

∫
Ωe

{[B]{w}}T [Cµ]{[B]{v}}dx

(6.106)

Bp(w, P ) =

∫
Ωe

[{∂/∂x, ∂/∂y}{w}]T Pdx (6.107)

Bp(w3,v) =

∫
Ωe

w3 [{∂/∂x, ∂/∂y}{v}]dx (6.108)

l(w) =

∫
Ωe

{w}T {f}dx +

∮
Γe

{w}T {t}ds (6.109)

In a steady state problem: 
Bv(w,v) −Bp(w, P ) = l(w)

−Bp(w3,v) = 0

(6.110)

w1 ∼ δvx, w2 ∼ δvy , and ∂vx
∂x +

∂vy
∂y = 0, so ∂w1

∂x + ∂w2

∂y = 0 and Bp(w, P ) = 0,
and finally Bv(w,v) = l(w). Moreover, since Bv(w,v) is symmetric, the problem boils
down to minimizing Iv(v) = 1

2Bv(v,v) − l(v) with Bp(w3,v) = 0 ∀w3, i.e. with
G(v) = ∂vx

∂x +
∂vy
∂y = 0. The problem can thus be formulated as:

Minimize IL(v, λ) defined as:

IL(v, λ) = Iv(v) +

∫
Ωe

λG(v)dxdy (6.111)

in which λ is a Lagrange multiplier. The miimization imposes:

δIL = δvxIL + δvyIL + δλIL = 0 (6.112)

⇒ δvxIL = 0, δvyIL = 0, δλIL = 0 (6.113)

After some computations:
Bv(δv,v) +Bp(δv, λ) = l(δv)

Bp(δλ,v) = 0

(6.114)

The penalty model is similar to the Lagrange problem:

IP (v) = Iv(v) +
γe
2

∫
Ωe

[G(v)]
2
dx (6.115)

in which γe is a penalty parameter, typically chosen as 104µ ≤ γe ≤ 1012µ. A constraint
is thus included in a least-squares sense. The problem is to minimize IP (v): in function
of variations of v only:

δIP = δvxIP + δvyIP = 0 (6.116)
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After some computations:
Bp(δv,v) = l(δv) (6.117)

Two integral equations are gathered in one vector equation because the constraint is already
included in the penalty function. Comparing the weak formulations obtained with both
methods leads to:

λ = γe

(
∂vx
∂x

+
∂vy
∂y

)
≡ −P (6.118)

It is therefore possible to post-compute the pressure distribution from the minimization
coefficient. The weak formulation can be expressed in terms of the velocities only. For
instance, the weak formulation of a transient problem with the penalty method, in which
the continuity condition is included in the momentum equilibrium equations, is:

0 =
∫

Ωe

[
ρδvx

∂vx
∂t + 2µ∂(δvx)

∂x
∂vx
∂x + µ∂(δvx)

∂y

(
∂vx
∂y +

∂vy
∂x

)]
dxdy

+
∫

Ωe

[
γe

∂(δvx)
∂x

(
∂vx
∂x +

∂vy
∂y

)]
dxdy −

∫
Ωe
δvx fx dxdy −

∮
Γe
δvx tx ds

0 =
∫

Ωe

[
ρδvy

∂vy
∂t + 2µ

∂(δvy)
∂y

∂vy
∂y + µ

∂(δvy)
∂x

(
∂vx
∂y +

∂vy
∂x

)]
dxdy

+
∫

Ωe

[
γe

∂(δvy)
∂y

(
∂vx
∂x +

∂vy
∂y

)]
dxdy −

∫
Ωe
δvy fy dxdy −

∮
Γe
δvy ty ds

(6.119)

The Finite Element equations can be expressed as two matrix equations by blocks:[
[M ]

[0]

[0]

[M ]

]{
{v̇x}
{v̇y}

}
+

[
[K11]

[K21]

[K12]

[K22]

]{
{vx}
{vy}

}
=

{
{F 1}
{F 2}

}
(6.120)

The stiffness blocks represent couplings between the derivatives in x and y:

K11
ij = 2

∫
Ωe

µ
∂Ψi

∂x

∂Ψj

∂x
dxdy +

∫
Ωe

µ
∂Ψi

∂y

∂Ψj

∂y
dxdy+

∫
Ωe

γe
∂Ψi

∂x

∂Ψj

∂x
dxdy (6.121)

K22
ij =

∫
Ωe

µ
∂Ψi

∂x

∂Ψj

∂x
dxdy +2

∫
Ωe

µ
∂Ψi

∂y

∂Ψj

∂y
dxdy+

∫
Ωe

γe
∂Ψi

∂y

∂Ψj

∂y
dxdy (6.122)

K12
ij =

∫
Ωe

µ
∂Ψi

∂y

∂Ψj

∂x
dxdy+

∫
Ωe

γe
∂Ψi

∂x

∂Ψj

∂y
dxdy (6.123)

K21
ij =

∫
Ωe

µ
∂Ψi

∂x

∂Ψj

∂y
dxdy+

∫
Ωe

γe
∂Ψi

∂y

∂Ψj

∂x
dxdy (6.124)

Note that there is no space derivative in the mass matrix nor in the force vector:

Mij =

∫
Ωe

ρΨiΨjdxdy (6.125)

F 1
i =

∫
Ωe

Ψi fxdxdy +

∮
Γe

Ψi tx ds (6.126)

F 2
i =

∫
Ωe

Ψi fydxdy +

∮
Γe

Ψi ty ds (6.127)
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6.2.3 Time discretization

The final form of the FE matrix equations obtained with the penalty method is as follows:

∀ts ∈ [0, t], [M ]s{∆̇}s + [K]s{∆}s = {F}s (6.128)

Since the governing equatino is parabolic, the time discretizatin is handled with a α-family
of approximation. Assuming that the mass matrix does not depend on time:

([M ] + α∆t [K]s+1) {∆}s+1 =

([M ]− (1− α)∆t [K]s) {∆}s + α∆t{F}s+1 + (1− α)∆t{F}s+1

(6.129)

In the mixed FE model, the matrix equations contain zeroes, see Figure 6.1. As a result,
the mass matrix equation cannot be inverted, the computations require a lot of iterations
and convergence is difficul to reach. It is then advisable to eliminate the equations in P . In
the mixed FE model:

[M ]{∆̇} + [K11]{∆} + [K12]{P} = {F1} + {Q1}

[K21]{∆} = {0}
(6.130)

In the penalty model:

[M ]{∆̇} + ([K11] + [Kp]) {∆} = {F1} + {Q1} (6.131)

in which a “Penalty Stiffness” was introduced, as follows:

[Kp] =

∫
Ωe

γe



∂/∂x

∂/∂y


T

[Ψ]


T 


∂/∂x

∂/∂y


T

[Ψ]

 dx (6.132)

In the penalty method, the pressure variable does not apprea explicitly in the continuity
equation. The system of equations is time-singular in pressure. As a result, it is impossible
to use explicit time-integration methods.

In a steady state, the penalty FEM equations are:

([K11] + [Kp]) {∆} = {F1} + {Q1} (6.133)

with:

[Kp] =

∫
Ωe

γe



∂/∂x

∂/∂y


T

[Ψ]


T 


∂/∂x

∂/∂y


T

[Ψ]

 dx (6.134)

The constraint [Kp]{∆e} has to be as small as possible; γe is chosen large to reach a better
accuracy through the minimization process:

104µ ≤ γe ≤ 1012µ
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If γe is really huge, [K11] becomes negligible compared to [Kp]:

[Kp]{∆} ' {F1} + {Q1} (6.135)

If [Kp] is non-singluar (invertible), then {∆} ' 0 and the momentum equations are not
satisfied. The problem is said to be over-constrained (or “locked”). So the idea is to force
[Kp] to be singular, and invert [K11] + [Kp] (which will be non-singular because [K11] is
non-singular). We then obtained a reduced integration, because the numerical integration
of [Kp] is done with one order less than necessary to get the exact estimation of the matrix.
In steady state, the pore pressure field is calcualted as follows:

in a Mixed FE Model: from the interpolation formulas.

P e(x, y) '
M∑
j=1

PjΦj(x, y) (6.136)

in a Penalty Model: from the mass conservation “constraint”:

P eγ (x, y) ' −γ
N∑
j=1

(
∂Ψj

∂x
vxj +

∂Ψj

∂y
vyj

)
(6.137)

The stress field is obtained from the velocities and pressures, as follows:

σexx ' 2µ

N∑
j=1

∂Ψj

∂x
vxj − P e(x, y), σeyy ' 2µ

N∑
j=1

∂Ψj

∂y
vyj − P e(x, y) (6.138)

σexy ' µ

N∑
j=1

(
∂Ψj

∂y
vxj +

∂Ψj

∂x
vyj

)
(6.139)

6.3 FEM for deformable porous media saturated with one fluid phase

6.3.1 Weak formulation

The governing equations that describe the behavior of a deformable porous medium filled
with a single fluid phase were explained in Section 5.2. The summary of the strong formu-
lation is as follows:
Governing equation for the solid phase:

−α∇ (pw) + De : ∇ε = 0 (6.140)

Governing equation for the liquid phase:(
α− n
Ks

+
n

Kw

)
Dspw
Dt

+ α
∂εv
∂t

=
1

µw
k : ∇2pw (6.141)

Boundary conditions:

u = û on Γu (6.142)
pw = p̂w on Γw

σ · n = t̂ on Γqu

q̂w = −
(
ρw
µw

k : ∇pw

)
· n on Γqw
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Initial conditions:

u = u0 on Γ and in Ω at t=0 (6.143)
pw = pw0 on Γ and in Ω at t=0

The weak formulation for the solid phase, starting from the governing equation in the x-
direction, is obtained as follows. The weighted integral statement is:

∀w ∼ δux,
∫

Ω

(
−αw∇ (pw) + wDe : (∇)

2
u
)
· exdV = 0 (6.144)

Using the divergence theorem, the integration by parts yields:

∀w ∼ δux,
∫

Ω

(−α∇w pw + ∇w ·De : ∇u) · exdV (6.145)

=

∮
Γ

w (De : ε− αpwδ) : (n⊗ ex) dS

Lastly, the boundary conditions are applied:

∀w ∼ δux,
∫

Ω

(−α∇w pw + ∇w ·De : ∇u) · exdV =

∫
Γqu

wσ : (n⊗ ex) dS

(6.146)

∀w ∼ δux,
∫

Ω

(−α∇w pw + ∇w ·De : ∇u) · exdV =

∫
Γqu

w t̂xdS (6.147)

The weak formulation for the solid phase in the other directions of space is obtained in the
same way. For the liquid phase, the weighted integral statement is:

∀w∗ ∼ δpw,
∫

Ω
(w∗)

(
α−n
Ks

+ n
Kw

)
ṗwdV (6.148)

+
∫

Ω
(w∗)α∇u̇ : δ dV =

∫
Ω

(w∗) 1
µw

k : ∇2pw dV

Using the divergence theorem, the integration by parts yields:

∀w∗ ∼ δpw,
∫

Ω
(w∗)

(
α−n
Ks

+ n
Kw

)
ṗwdV +

∫
Ω

(w∗)α∇u̇ : δ dV (6.149)

+
∫

Ω
∇(w∗) 1

µw
k : ∇pw dV =

∮
Γ

(w∗) 1
µw

k : ∇pw n dS

Lastly, boundary conditions are applied as follows:

∀w∗ ∼ δpw,
∫

Ω
(w∗)

(
α−n
Ks

+ n
Kw

)
ṗwdV +

∫
Ω

(w∗)α∇u̇ : δ dV (6.150)

+
∫

Ω
∇(w∗) 1

µw
k : ∇pw dV = −

∫
Γqw

(w∗) 1
ρw
q̂w dS

The overall weak formulation can be written in a matrix form, as follows:∫
Ω

{δu}T [L]T [De][L]{u}dV −
∫

Ω

{δu}T [L]T {m}αpwdV =

∫
Γqu

{δu}T {t̂}dS

(6.151)



FEM FOR DEFORMABLE POROUS MEDIA SATURATED WITH ONE FLUID PHASE 217

∫
Ω

δpw S ṗw dV +

∫
Ω

δpw α {m}T [L]{u̇} dV +

∫
Ω

{∇(δpw)}T 1

µw
[k]{∇pw} dV(6.152)

= −
∫

Γqw

δpw
1

ρw
q̂w dS

in which:

S =

(
α− n
Ks

+
n

Kw

)
(6.153)

{m}T = {1 1 1 0 0 0}T (6.154)

and:
{ε} = [L]{u} (6.155)

with:

[L] =



∂
∂x

0

0

∂
∂y

0

∂
∂z

0

∂
∂y

0

∂
∂x

∂
∂z

0

0

0

∂
∂z

0

∂
∂y

∂
∂x


(6.156)

6.3.2 Space discretization

Displacements and pore pressure are approximated with two different families of interpo-
lation functions, as follows:

u(e) =

N1∑
k=1

ukΨk(x, y, z), p(e) =

N2∑
k=1

pw,kΦk(x, y, z) (6.157)

{
u(e)
x , u(e)

y , u(e)
z

}
= {Ψ1 Ψ2 ...ΨN1

}T


ux,1

ux,2

...

ux,N1

uy,1

uy,2

...

uy,N1

uz,1

uz,2

...

uz,N1

 (6.158)

{
u(e)
x , u(e)

y , u(e)
z

}
= {Nu}T


ux,1

ux,2

...

ux,N1

uy,1

uy,2

...

uy,N1

uz,1

uz,2

...

uz,N1

 (6.159)

p(e)
w = {Φ1 Φ2 ...ΦN2

}T


pw,1

pw,2

...

pw,N2

 = {Np}T


pw,1

pw,2

...

pw,N2

 (6.160)
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For the solid phase:∫
Ω

{Nu}T [L]T [De][L]{Nu}{uk}dV −
∫

Ω

{Nu}T [L]T {m}α{Np}{pw,k}dV (6.161)

=

∫
Γqu

{Nu}T {t̂}dS

For the liquid phase:∫
Ω

{Np}T S {Np}{ṗw,k} dV +

∫
Ω

{Np}T α {m}T [L]{Nu}{u̇k} dV (6.162)

+

∫
Ω

{∇Np}T
1

µw
[k]{∇Np}{pw,k} dV = −

∫
Γqw

{Np}T
1

ρw
q̂w dS

The matrix Finite Element equations after space discretization are: [Ke]

[0]

−[Q]

[H]

 {uk}

{pw,k}

 +

 [0]

[Q]T

[0]

[S]

 {u̇k}{ṗw,k}

 =

 {fu}{fp}
 (6.163)

[Ke] =

∫
Ω

{Nu}T [L]T [De][L]{Nu}dV (6.164)

[H] =

∫
Ω

{∇Np}T
1

µw
[k]{∇Np}dV

[Q] =

∫
Ω

{Nu}T [L]T {m}α{Np}dV

[S] =

∫
Ω

{Np}T S {Np}dV

{fu} =

∫
Γqu

{Nu}T {t̂}dS

{fp} = −
∫

Γqw

{Np}T
1

ρw
q̂w dS

The mass matrix is not symmetric. Below is a technique that can be used to restore the
symmetry of the matrix. For the solid phase:

− ∂

∂t

[ ∫
Ω

{Nu}T [L]T [De][L]{Nu}{uk}dV
]

(6.165)

− ∂

∂t

[
−
∫

Ω

{Nu}T [L]T {m}α{Np}{pw,k}dV
]

= − ∂

∂t

[ ∫
Γqu

{Nu}T {t̂}dS
]

− ∂[Ke]

∂u︸ ︷︷ ︸
[KT]

{u̇k} + [Q]{ṗw,k} = −{ḟu} (6.166)

For the liquid phase:

[H]{pw,k} + [Q]T {u̇k} + [S]{ṗw,k} = {fp} (6.167)
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Therefore, we get: [0]

[0]

[0]

[H]

 {uk}

{pw,k}

 +

 −[KT]

[Q]T

[Q]

[S]

 {u̇k}{ṗw,k}

 =

 −{ḟu}{fp}

 (6.168)

In the undrained limit state, when H ' 0 and S ' 0: −[KT]

[Q]T

[Q]

[0]

 {u̇k}{ṗw,k}

 =

 −{ḟu}{fp}

 (6.169)

The equation in the second row can only be solved if rank[Q]T ≥ N2.

The equation in the first row can only be solved if rank[KT] ≥ N2, i.e. if N1 ≥ N2.

As a result, the interpolation order for the displacement field has to be greater than
that of the pore pressure field (See Figure 6.2).

Figure 6.2 Allowed interpolations for modeling a deformable porous solid filled with one fluid
phase.

6.3.3 Time discretization

The time discretization scheme is as follows:(
d[X]

dt

)
n+θ

=
[X]n+1 − [X]n

∆t
[X]n+θ = (1− θ)[X]n + θ [X]n+1 (6.170)

The FE matrix equations before time discretization are:

[Ke]{uk}n+θ − [Q]{pw,k}n+θ = {fu}n+θ (6.171)

∆t[H]{pw,k}n+θ + ∆t[QT ]{u̇k}n+θ + ∆t[S]{ṗw,k}n+θ = ∆t{fp}n+θ (6.172)

After time discretization, the FE equations are:

θ[Ke]n+θ{uk}n+1 − θ[Q]n+θ{pw,k}n+1 (6.173)
= (θ − 1)[Ke]n+θ{uk}n + (1− θ)[Q]n+θ{pw,k}n + {fu}n+θ

θ∆t[H]n+θ{pw,k}n+1 + [QT ]n+θ{uk}n+1 + [S]n+θ{pw,k}n+1(6.174)
= −(1− θ)∆t[H]n+θ{pw,k}n + [QT ]n+θ{uk}n + [S]n+θ{pw,k}n + ∆t{fp}n+θ
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The time marching scheme can be stated as follows:[
θ[Ke]

[QT ]

−θ[Q]

[S] + θ∆t[H]

]
n+θ

{
{uk}
{pw,k}

}
n+1

=

[
(θ − 1)[Ke]

[QT ]

(1− θ)[Q]

[S]− (1− θ)∆t[H]

]
n+θ

{
{uk}
{pw,k}

}
n

+

{
{fu}
∆t{fp}

}
n+θ

(6.175)
In steady state, there is no more coupling between the mechanical and hydraulic equations: [Ke]

[0]

−[Q]

[H]

 {uk}

{pw,k}

 +

 [0]

[Q]T

[0]

[S]

 {u̇k}{ṗw,k}

 =

 {fu}{fp}
 (6.176)

⇒

 [Ke]

[0]

−[Q]

[H]

 {uk}

{pw,k}

 =

 {fu}{fp}
 (6.177)

6.3.4 Stability criteria

The time marching scheme on the symmetric FE equations is:[
−[KT]

[QT ]

[Q]

[S] + θ∆t[H]

]
n+θ

{
{uk}
{pw,k}

}
n+1

=

[
−[KT]

[QT ]

[Q]

[S]− (1− θ)∆t[H]

]
n+θ

{
{uk}
{pw,k}

}
n

+ ∆t

{
{ḟu}
{fp}

}
n+θ

(6.178)

which is of the form:

([B] + θ∆t[C]) {X}n+1 = ([B]− (1− θ)∆t[C]) {X}n + ∆t{F}n+θ (6.179)

For {F} = {0}, we have {X}n+1 = λ{X}n. So the system is stable only if: |λ| < 1.

Let us note µ1, µ2,..., µm the distinct complex eigenvalues of [B]−1[C], and {Ψ}j the
corresponding eigenvectors. For j = 1..m:

(1 + µjθ∆t) {Ψ}Tj {X}n+1 = (1− µj(1− θ)∆t) {Ψ}Tj {X}n (6.180)

Stability is ensured if and only if |λ| < 1. Conditions of stability are detailed in Figure 6.3.

Note that for a hyperbolic governing equation with a damping term, the Finite Element
equaitons after time discretization are:[

M

0

0

0

]{
ü

p̈

}
+

[
C

QT
0

S

]{
u̇

ṗ

}
+

[
K

0

−Q
H

]{
u

p

}
= −

{
f

q

}
(6.181)
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Figure 6.3 Stability criteria for a Finite Element model of deformable porous solid filled one fluid
phase. Image taken from [?].

The time discretization scheme is [26]:

pn+1 = pn + (1− θ)∆tṗn + θ∆tṗn+1 (6.182)
∆pn+1 = ∆tṗn +θ∆t∆ṗn+1

u̇n+1 = u̇n + (1− β1)∆tün + β1∆tün+1

∆u̇n+1 = ∆tün +β1∆t∆ün+1

un+1 = un + ∆tu̇n +
1

2
∆t2ün +

1

2
β2∆t2∆ün+1

∆un+1 = ∆tu̇n +
1

2
∆t2ün +

1

2
β2∆t2∆ün+1

Writing FEM equations in terms of variations of dofs, at time n+ 1:

M∆ün+1 + C∆u̇n+1 + K∆un+1 −Q∆pn+1 + fn+1 = 0 (6.183)
QT∆u̇n+1 + S∆ṗn+1 + H∆pn+1 + qn+1 = 0

with:

∆pn+1 = ∆tṗn +θ∆t∆ṗn+1 (6.184)
∆u̇n+1 = ∆tün +β1∆t∆ün+1

∆un+1 = ∆tu̇n +
1

2
∆t2ün +

1

2
β2∆t2∆ün+1
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M + β1∆tC +

1

2
β2∆t2K

)
∆ün+1 − θ∆tQ∆ṗn+1 + Fn = 0 (6.185)

QTβ1∆t∆ün+1 + (S + θ∆tH) ∆ṗn+1 + Qn = 0

1

β1∆t

(
M + β1∆tC +

1

2
β2∆t2K

)
β1∆t∆ün+1 −Qθ∆t∆ṗn+1 + Fn = 0(6.186)

−QTβ1∆t∆ün+1 −
(

1

θ∆t
S + H

)
θ∆t∆ṗn+1 −Qn = 0

Fn and Qn depend on variables at time n and on predictable force terms. We now have a
symmetric matrix. We can solve for ∆ün+1 and ∆ṗn+1: 1
β1∆t

(
M + β1∆tC + 1

2β2∆t2K
)

−QT

−Q

−
(

1
θ∆tS + H

)
 β1∆t∆ün+1

θ∆t∆ṗn+1

 =

 Fn

Qn


(6.187)

Stability is unconditional when [26]:

β2 ≥ β1, β1 ≥
1

2
, θ ≥ 1

2
(6.188)

6.3.5 Partitioned systems of equations

Different space interpolation schemes can be considered for different degrees of freedom.
In the same way, different time interpolation schemes can be used for different degrees of
freedom. Degrees of freedom can be gathered based on physical meaning (e.g., displace-
ments vs. pore pressure) or based on any other mathematical consideration (e.g. stability
on certain parts of the mesh). Let us consider a general parabolic matrix equation:

[C]{ȧ} + [K]{a} + {f} = {0} (6.189)

which is partitioned into two (or more) families of degrees of freedom, as follows:[
C11

C21

C12

C22

]{
ȧ1

ȧ2

}
+

[
K11

K21

K12

K22

]{
a1

a2

}
+

{
f1

f2

}
=

{
0

0

}
(6.190)

with the two following time discretization schemes:

a1 = a1n + τα1 (6.191)
a2 = a2n + τα2

Inserting the above into each of the partitions and using different weight functions:

C11α1 + C12α2 + K11 (a1n + θ∆tα1) + K12 (a2n + θ∆tα2) + f1 = 0(6.192)
C21α1 + C22α2 + K21

(
a1n + θ∆tα1

)
+ K12

(
a2n + θ∆tα2

)
+ f2 = 0(6.193)

Thre is unconditional stability of the whole system only if θ ≥ 1/2, θ ≥ 1/2.

There is conditional stability id ∆t ≤ ∆tcrit for each partitioned system considered
without its coupling terms.
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The principle of the implicit-explicit partition is as follows:

Noting h is the element size, the critical time step is proportional to h2 for a parabolic
governing equation, and proportional to h for a hyperbolic governing equation.

If a single explicit scheme were to be used with very small elements occurring in one
partition, the time step would become too small to ensure computational efficiency.

Therefore it may be advantageous to use an explicit scheme for a part of the domain
with larger elements while maintaining an unconditionally stable algorithm with the
same time step in the partition in which elements are small (or very stiff).

For this reason, implicit-explicit partitions are frequently used.

If a parabolic equation is split into an implicit (I) system and an explicit (E) system:

[CI ]{ȧI} + [CE ]{ȧE} + [KI ]{aI} + [KE ]{aE} + {f} = {0} (6.194)

Vectors {aE} and {aI} are obtained iteratively [26].

Calculation of implicit vector of d.o.f. at time n+ 1, iteration j:

(aI)
(j)
(n+1) = (aI)(n) + (1− θ)∆t(ȧI)(n) + θ∆t(ȧI)

(j)
(n+1) (6.195)

Calculation of explicit vector of d.o.f. at time n+ 1, iteration j:

(aE)
(j)
(n+1) = (aE)(n) + (1− θ)∆t(ȧE)(n) + θ∆t(ȧE)

(j−1)
(n+1) (6.196)

At time n+ 1, iteration j, the system of equations can be written in the form:

([CI ] + θ∆t[KI ]) {(ȧI)(j)
(n+1)} + [CE ]{(ȧE)

(j)
(n+1)} + {F}(j−1)

(n+1) = {0} (6.197)

in which {F}(j−1)
(n+1) depends on variables obtained at time n or at iteration j − 1. There is

unconditional stability for the implicit part if θ ≥ 0.5. There is conditional stability for the
explicit part if ∆t < ∆tcrit (which depends on element size).

Partitioned systems of equations are typically resolved in a staggered fashion. For instance,
consider the following partition:[

C11

0

0

C22

]{
ȧ1

ȧ2

}
+

[
K11

K21

K12

K22

]{
a1

a2

}
+

{
f1

f2

}
=

{
0

0

}
(6.198)

where a1 and a2 are discretized in time with the same parameter θ. A staggered algorithm
will solve the first and second partitions separately. The unknowns the first system (a1) are
obtained iteratively with assumed values of the unknowns of the second system (a2), and
vice versa:

1. Assume a2 = a2 = a2n.



224 FINITE ELEMENT METHOD IN PORO-ELASTICITY

2. Solve the fist equation for α1, with a1 = a1n + τα1:

C11α1 + K11(a1n + θ∆tα1) = −f1 −K12a2n (6.199)

3. Use the value of α1 to solve the second equation for α2:

C22α2 + K22(a2n + θ∆tα2) = −f2 −K21(a1n + θ∆tα1) (6.200)

4. Repeat 2. and 3. until convergence is reached.

This scheme is unconditionnally stable if θ ≥ 1/2. Accuracy is lost in the staggering
process, but the scheme converges and is more computationally efficient (it allows parallel
computing for instance).

6.3.6 Infinite elements (for aquifer problems)

Aquifer problems such as the one shown in Figure 6.4 require modeling ”infinite aquifers”
in very large domains, which involves high computational costs. If the domain size is
reduced accuracy decreases. In transient problems, some errors only emerge after a certain
time and therefore, truncating the domain is sometimes acceptable for studies of flow in
the short term. Alternatively, infinite elements (IE) can be used.

Figure 6.4 Radial flow to a well in an infinite confined aquifer. Image taken from [20].

Decay function finite elements are defined with 2D interpolation functions Ψ(x, y) that are
maintained in one direction (e.g., x), and multiplied by a decay function in the other (e.g.,
y). At node i for instance:

Φi(x, y) = Ψi(x, y) × fi(y) (6.201)

with Φi(xi, yi) = 1 and Φi →∞ λ (where λ is the far field condition). Some examples of
far field functions are given below:

fi(y) = exp

(
yi − y
L

)
, y ≥ 0 (6.202)

fi(y) =

[
yi − y0

y − y0

]n
(6.203)
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Mapped Infinite Elements (MIE) map a finite domain into an infinite domain, thanks to
well-chosen interpolation functions. An example is given in 1D in Figure 6.5. The element
in the actual coordinate system (x) has inifinite dimensions while the mater element in the
reference coordinate system (ξ) has length 2. The coordinate x is mapped as:

x(ξ) = M1(ξ)x1 +M2(ξ)x2, M1(ξ) =
−2ξ

1− ξ
, M2(ξ) =

1 + ξ

1− ξ
(6.204)

in which the weight functions satisfy the partition of unity:

M1(ξ) +M2(ξ) = 1 (6.205)

We have:

ξ = 1− 2a

x− (x1 − a)
= 1− 2a

r
, a = x2 − x1 = x1 − x0 (6.206)

The field variables (displacements, pressures, temperatures) are then interpolated using

Figure 6.5 Principle of a Mapped Infinite Element.

the standard interpolation functions:

U(ξ) =

n+1∑
i=1

Ni(ξ)Ui = α0 + α1ξ + α2ξ
2 + ...+ αnξ

n (6.207)

Using Equation 6.206, we can express the field variable as a function of the global coordi-
nate r:

U(r) = β0 +
β1

r
+
β2

r2
+ ...+

βn
rn

(6.208)

The mapping functions for 2D MIEs are givent in Figure 6.6.

6.4 FEM for deformable non-isothermal unsaturated porous media

6.4.1 Balance equations

In the following, we consider a REpresentattive Elementary Volume (REV) made of a solid
skeleton (s) + liquid water (w) + water vapor (v) + gaseous dry air (a). We note (g) the
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Figure 6.6 Mapped Infinite Elements in 2D.

with gas mixture vapor (v) + air (a). Assuming that weight is the only external body force
applied to the REV, the REV momentum balance equation is:

divσ + (1− n)ρs(g − as) + nSwρw(g − aw) + nSgρg(g − ag) = 0 (6.209)

Isolating the solid phase:

div [σ′−δ(1− n)(Sw pw + Sg pg)] + (1− n)ρs(g − as) + fws + fgs = 0 (6.210)

The net stress applied to the solid skeleton is defined as:

σ′ = σ + δ(Sw pw + Sg pg) (6.211)

Fluid pressure contributing to the compressibility of the grains:

−δ(1− n)(Sw pw + Sg pg

The force applied by the liquid flowing in the porous solid skeleton is:

fws = Rwηwvws = nSwRwvws

The force applied by the gas flowing in the porous solid skeleton is:

fgs = Rgηgvwg (6.212)

The momentum balance equation for the solid phase is thus:

div[σ′ − δ (1− n)(Swpw + Sgpg)] + (1− n)ρsg (6.213)
−(1− n)ρsas + Rwηwvws + Rgηgvwg = 0
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with:

σ′ Net stress [Pa]
δ Second-order identity tensor [-]
n Porosity [-]

Sw, Sg Degree of saturation of liquid water, gas mixture [-]
pw, pg Pore pressure of liquid water, gas mixture [Pa]

ρs Solid mass density [kg/m3]
g Gravity acceleration field [m/s2]

as Acceleration of the solid phase [m/s2]
Rw, Rg Flow dissipation term for liquid, gas [Pa.s/m2]
ηw, ηg Volume fraction of liquid, gas in the REV [-]

vws, vwg Velocity of the liquid in reference to solid, gas [m/s]

We neglect the gradients of fluids velocity and the effects of phase change. The balance of
momentum of liquid water is:

vws = Rw
−1 : (−grad(pw) + ρw(g − as − aws)) (6.214)

The balance of momentum of the gas mixture is:

vgs = Rg
−1 : (−grad(pg) + ρg(g − as − ags)) (6.215)

with:

vws, vgs Velocity of the liquid, gas in reference to solid [m/s]
Rw, Rg Flow dissipation term for liquid, gas [Pa.s/m2]
pw, pg Pore pressure of liquid water, gas mixture [Pa]
ρw, ρg Mass density of liquid, gas [kg/m3]

g Gravity acceleration field [m/s2]
as Acceleration of the solid phase [m/s2]

aws, ags Acceleration of liquid, gas in reference to solid [m/s2]

We define:
Rx
−1 =

1

ηx

k

µx
(ρx, ηx, T ), x = w, g (6.216)

with:

ηx Volume fraction of phase x in REV [-]
k Permeability [m2]
µx Dynamic viscosity of phase x [Pa.s]
T Temperature [K]
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The mass balance equation of the solid phase is expressed as:

(1− n)

ρs

Dsρs
Dt

− Dsn

Dt
+ (1− n)divvs = 0 (6.217)

with:

n Porosity [-]
ρs Solid mass density [kg/m3]
vs Velocity field of the solid phase in the REV [m/s]

in which it is reminded that the time derivative of a function f(x, t) in reference to a
moving phase π (with velocity vπ) is:

Dπf(x, t)

Dt
=

∂f(x, t)

∂t
+ gradf · vπ (6.218)

The quantity of liquid water that is lost through evaporation per unit time per unit volume
is:

ρwe
w(ρ) = −ṁ (6.219)

Hence the mass balance equation of the liquid phase is:(
α−n
Ks

(Sw)2 + nSw
Kw

)
Dspw
Dt + α−n

Ks
SwSg

Dspg
Dt + αSwdivvs (6.220)

−βsw D
sT
Dt +

(
α−n
Ks

pwSw − α−n
Ks

pgSw + n
)
DsSw
Dt (6.221)

+ 1
ρw
div (nSwρwvws) = − ṁ

ρw

with:

βs, βw βg Thermal expansion coefficient of solid, liquid, gas [K−1]
βsw βsw = Sw[(α− n)βs + nβw]

Ks, Kw Compression modulus of solid, water [Pa]

Note that if grains are incompressible, α = 1 and 1/Ks → 0, and the mass balance
equation of the liquid phase is simplified into:

nSw
Kw

Dspw
Dt + Swdivvs − βsw D

sT
Dt + nD

sSw
Dt (6.222)

+ 1
ρw
div (nSwρwvws) = − ṁ

ρw

The mass balance equation of the gas phase is expressed as:

α−n
Ks

SwSg
Dspw
Dt + α−n

Ks
(Sg)

2D
spg
Dt −

(
n + α−n

Ks
pcSg

)
DsSw
Dt (6.223)

−βs(α− n)Sg
DsT
Dt + αSgdivvs +

nSg
ρg

Ds

Dt

[
1
Rθ (paMa + pvMw)

]
+ 1
ρg
div(nSgρgvgs) = + ṁ

ρg
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The Kelvin-Laplace law (for the Relative Humidity (RH) in the pores) states that:

RH =
pv
pvs

= exp

(
pcMw

ρwRθ

)
(6.224)

with:

pv, pvs Vapor pressure, water vapor saturation pressure [Pa]
pc pc = pg − pw : Capillary pressure [Pa]

Mw, Ma Molar mass of liquid water, gaseous air [kg/mol]
R Universal gas constant : R = 8.3144598J.mol−1.K−1

θ Absolute temperature [K]
vgs Velocity field of the gas phase in reference to the solid [m/s]

If grains are incompessible, α = 1 and 1/Ks → 0 and the mass balance equation of the
gas phase is simplified into:

−nD
sSw
Dt − βs(α− n)Sg

DsT
Dt + Sgdivvs +

nSg
ρg

Ds

Dt

[
1
Rθ (paMa + pvMw)

]
(6.225)

+ 1
ρg
div(nSgρgvgs) = + ṁ

ρg

Lastly, the energy balance equation is:

(ρCp)eff
∂T
∂t +

(
ρwC

w
p vw + ρgC

g
pvg

)
· grad(T ) (6.226)

−div (χeffgrad(T )) = −ṁ∆Hvap

with:

ρxC
x
p Heat capacity of the x-th phase [J/K]

(ρCp)eff (ρCp)eff = ρsC
s
p + ρwC

w
p + ρgC

g
p

χx Thermal conductivity of hte x-th phase [W.m−1.K−1]

χeff χeff = χdry

(
1 + 4

nSwpw
(1− n)ρs

)
∆Hvap ∆Hvap = Hv −Hw

Difference between vapor and liquid water enthalpy [J]

6.4.2 Constitutive equations

The relationships between the primary and secondary variables are given by the constitu-
tive equations. Below are common constitutive models. For the solid phase, we use the
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concept of effective stress, and:

σ′′ = De : ε (6.227)
σ′′ = σ + αδ (Swpw + Sgpg)

α = 1− Ks

K

...not to be confused with the net stress:

σ′ = σ + δ (Swpw + Sgpg) (6.228)

For the heat flux, we typically use Fourier’s law:

qh = −χeffgrad(T ) (6.229)

χeff = χdry

(
1 + 4

nSwpw
(1− n)ρs

)
(6.230)

For hte transport of water (x=w) and gas (x=g) in laminar flow, a common choice is Darcy’s
law with Brooks & Corey’s relative permeability and water retention curve:

ηxvxs =
krxk

µx
· (−gradpx + ρxg) (6.231)

krw = (Se)
(2+3λ)/λ (6.232)

krg = (1− Se)2(1(Se)
(2+λ)/λ) (6.233)

pc =
pb

(Se)1/λ
(6.234)

Se =
Sw − Swc
1− Swc

(6.235)

with

pb Bubbling pressure [Pa]
Swc Residual (irreducible) degree of saturation [-]
λ Pore size distribution index [-]

6.4.3 Weak formulation

The derivation of the weak formulation is lengthy because the governing equations are
coupled. Here, we provide the weak formulation without prrof. The interested reader is
referred to [14, 25] for more details.
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PROBLEMS

6.1 Consider plane wall of thickness L, initially at a uniform temperature T0, which has
both surfaces suddenly exposed to a fluid at temperature T∞. The governing differential
equation is:

k
∂2T

∂x2
= ρc0

∂T

∂t

The initial condition is T (x, 0) = T0 and we consider two sets of boundary conditions:

Set 1: T (0, t) = T∞, T (L, t) = T∞

Set 2: T (0, t) = T∞,

[
k
∂T

∂x
+ β(T − T∞

]
x=L

= 0

Approximate the solution with two linear Finite Elements. Solve for the unknown temper-
atures and heat fluxes.

6.2 Consider a uniform beam of rectangular cross section (B×H), fixed at x = 0 and
free at x = L. We use the Euler-Bernouilli beam theory. Neglecting the rotary inertia
term, the governing equation for beam deflection is:

ρA
∂2w

∂t2
+

∂2

∂x2

[
EI

∂2w

∂x2

]
= q(x, t)

The boundary conditions are:

W (0) = 0,
dW

dx
= 0,

[
EI

d2W

dx2

]
x=L

= 0,

[
EI

d3W

dx3

]
x=L

= 0

Determine the first two flexural frequencies of the beam by using the minimum number of
Euler-Bernouilli beam elements.

6.3 Consider a uniform bar of cross-sectional area A, modulus of elasticity E, mass den-
sity m, and length L. The axial displacement under the action of time-dependent axial
forces is governed by the wave equation:

∂2u

∂t2
= a2 ∂

2u

∂x2
, a =

(
E

m

)1/2

Determine the transient response [i.e., find u(x, t)] of the bar when the end x = 0 is fixed
and the end x = L is subjected to a force P0. Assume zero initial conditions. Use one
linear element to approximate the spatial variation of the solution, and solve the resulting
ordinary differential equation in time exactly to obtain:

u2(x, t) =
P0L

AE

x

L
(1− cosαt), α =

√
3
a

L
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6.4 Consider a simply supported beam (of Young’s modulus E, mass density ρ, area of
cross section A, second moment of area about the axis of bending I , and length L) with
an elastic support at the center of the beam (see Figure 6.7). Determine the fundamental
natural frequency using the minimum number of Euler-Bernoulli beam elements. It is
reminded that in Euler-Bernouilli beam theory, if the rotary inertia term is neglected, the
governing equation for beam deflection is:

ρA
∂2w

∂t2
+

∂2

∂x2

[
EI

∂2w

∂x2

]
= q(x, t)

Figure 6.7 Beam vibration problem

6.5 Consider the transient heat conduction problem governed by the following equation:

∂u

∂t
− ∂2u

∂x2
= 0, 0 < x < 1

with boundary conditions:

u(0, t) = 0,
∂u

∂x
(1, t) = 0

and initial condition:
u(x, 0) = 1

where u is the non-dimensionalized temperature. Discuss the stability of the FEM model
for one linear element and for two linear elements.

6.6 We wish to determine the transverse motion of a beam clamped at both ends and
subjected to an initial deflection, by using Euler-Bernouilli theory. The governing equation
is:

∂2w

∂t2
+
∂4w

∂x4
= 0, 0 < x < 1

with the following boundary conditions:

w(0, t) = 0,
∂w

∂x
(0, t) = 0, w(1, t) = 0,

∂w

∂x
(1, t) = 0

and the following initial conditions:

w(x, 0) = sinπx − πx(1− x),
∂w

∂t
(x, 0) = 0

Establish a stability criterion with the lowest number of Euler-Bernouilli beam elements
possible.
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6.7 Establish a stability criterion for the 1D consolidation problem. Assume that there is
drainage at the top and and that the bottom boundary is impermeable.

6.8 Dual boundary conditions occur in flow problems in which a pressurized fluid reser-
voir is in contact with the domain under study:

If the pore pressure at the boundary is more tensile (i.e. lower) than a prescribed value
p∗, then one needs to apply a fluid flow qn at the boundary.

If the pore pressure at the boundary is more compressive (i.e. greater) than the pre-
scribed value p∗, then one needs to impose the pore pressure p∗ at all nodes of the
boundary.

Figure 6.8 on the left hand-side shows the example of ponding, for which such bound-
ary conditions are necessary. Explain how you would use the dual boundary condition
for a problem of rainfall (Figure 6.8 on the right hand-side) and for a problem of tunnel
excavation in a water saturated rock mass (Figure 6.9).

Figure 6.8 Problems in which a dual boundary condition is needed: ponding (left) and rainfall
(right).

Figure 6.9 Problem in which a dual boundary condition is needed: tunnel excavation.
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6.9 Consider a triaxial compression test performed on a water-saturated soil specimen,
as shown in Figure 6.10. The experiment is undrained, and axis-symmetry is assumed.The
soil is assumed to be linear elastic. Biot’s hydro-mechanical constitutive relationships hold.

Write the strong formulation of the problem (introduce as many constitutive parame-
ters as necessary).

Write the weak formulation of the problem (in cylindrical coordinates).

The specimen is modeled with three rectangular elements, as shown in Figure 6.10.
Calculate the elementary stiffness of each element, assuming that the displacement
field is interpolated with quadratic polynomials, and the pore pressure field is inter-
polated with linear polynomials.

Assemble the elementary equations established in question 2 above.

Discretize the assembled equations in time. Provide the conditions in which the time
marching scheme is stable.

Introduce the boundary conditions in the Finite Element equations, condense the sys-
tem of equations if possible, and solve it for the primary variables.

Post-process the secondary variables.

Figure 6.10 Finite Element model of undrained triaxial compression test performed on water-
saturated soil

6.10 Consider an oedometer test performed on a water-saturated soil specimen, as shown
in Figure 6.11. The specimen is drained at the bottom and it is studied in plane strain. The
soil is assumed to be linear elastic. Biot’s hydro-mechanical constitutive relationships hold.

Write the strong formulation of the problem (introduce as many constitutive parame-
ters as necessary).

Write the weak formulation of the problem.

The specimen is modeled with two triangular elements, as shown in Figure 6.11. Cal-
culate the elementary stiffness of each element, assuming that the displacement field
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is interpolated with quadratic polynomials, and the pore pressure field is interpolated
with linear polynomials.

Assemble the elementary equations established in question 2 above.

Discretize the assembled equations in time. Provide the conditions in which the time
marching scheme is stable.

Introduce the boundary conditions in the Finite Element equations, condense the sys-
tem of equations if possible, and solve it for the primary variables.

Post-process the secondary variables.

Figure 6.11 Finite Element model of drained oedometric test performed on water-saturated soil

6.11 Consider an oedometer test performed on a partially saturated soil specimen, as
shown in Figure 6.12. The specimen is drained at the bottom and it is studied in plane
strain. The soil is assumed to be linear elastic.

Write the strong formulation of the problem (introduce as many constitutive parame-
ters as necessary).

Write the weak formulation of the problem.

The specimen is modeled with two triangular elements, as shown in Figure 6.12. Cal-
culate the elementary stiffness of each element, assuming that the displacement field
is interpolated with quadratic polynomials, and the pore pressure fields is interpolated
with linear polynomials.

Assemble the elementary equations established in question 2 above.

Discretize the assembled equations in time. Provide the conditions in which the time
marching scheme is stable.

Introduce the boundary conditions in the Finite Element equations, condense the sys-
tem of equations if possible, and solve it for the primary variables.

Post-process the secondary variables.
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Figure 6.12 Finite Element model of drained oedometric test performed on partially saturated soil

6.12 We use the FEM to compare two one-dimensional consolidation experiments (see
the column of soil in Figure 6.13):

1. Sw0 = 0.92 (homogeneous initial partial saturation) with a capillary pressure - water
saturation curve independent of temperature;

2. Sw0 = 0.92 (homogeneous initial partial saturation), with a capillary pressure - water
saturation curve that depends on temperature.

A Brooks & Corey relationship is assumed between the capillary pressure, the saturation
degree and the relative permeability. The solid grains and the water are assumed to be
incompressible. The boundary conditions are the following: no lateral displacement or
heat flux on lateral boundaries; at the top: uniform stress, T=343.15 K, pg = patm and
pc chosen to ensure Sw = 0.92; no vertical displacement and no heat flux on the bottom
boundary. The same results were obtained with 9 and 18 8-noded isoparametric elements
with a 3x3 Gaussian integration scheme. The time step was 0.01 days for the first 100
steps, and then the time step was multiplied by 10 every 100 time steps, until 107 days
elapsed. Comment on the results obtained in Figures 6.14-6.17 (in particular, explain the
difference between the profiles obtained in the saturated and unsaturated cases).

Figure 6.13 Unsaturated soil consolidation under non isothermal conditions
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Figure 6.14 Unsaturated consolidation: temperature profiles

Figure 6.15 Unsaturated consolidation: displacement profiles, comparison between saturated and
unsaturated cases
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Figure 6.16 Unsaturated consolidation: water retention curves

Figure 6.17 Unsaturated consolidation: displacement profiles, comparison between the two
unsaturated models (WRC that depends/does not depend on temperature)
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CHAPTER 7

FUNDAMENTAL PRINCIPLES OF
PLASTICITY

Before the theory of plastic stress-strain relations was developed for metals by de Saint-
Venant and Levt in the 1870s, the concept of perfect plasticity had already been used
to solve geotechnical stability problems involving earth pressures and retaining walls by
Coulomb (1770s) and Rankine (1850s). However, without a stress-strain relation, it is not
possible to use the theory of plasticity to estimate deformation [23]. This is why in the
early stage of the development of soil mechanics and geotechnical engineering, almost all
the calculations were concerned with the stability of structures and earthworks. In these
analyses, the soil was considered to be a rigid-perfectly plastic solid, and simple calcu-
lations led to an estimate of the maximum load the structure can sustain before collapse.
In Chapter ??, we will learn how to use some basic assumptions of perfect plasticity to
prevent the collapse of earth structures. In Chapter 8, we will use plasticity stress-strain
relationships to predict soil non-elastic stiffness and deformation. Below, we recall basic
principles of plasticity [12].

7.1 Basic components of a plasticity model

The first and fundamental assumption of plasticity theory is that the strains can be decom-
posed into additive elastic and plastic components:

εij = εeij + εpij (7.1)

The elastic strains εeij can be specified by any of the means used for elasticity, as discussed
in Chapter 3. The rules used to define the plastic strains have become well established over
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many years, but they are based on empirical observation, first of metals and later of many
other materials. The concept of a yield surface is introduced. This is a surface in stress
space, defined through a yield function by f(σij , ...) = 0. For the time being, we shall just
consider this as a function of the stresses, although later we shall consider cases where it
is also a function of other variables.

Changes in plastic strain can occur only if the stress point lies on the yield surface, so
that:

f(σij) = 0 (7.2)

If the stress point falls within the yield surface (which is conventionally defined as the
region where f(σij) < 0), then no plastic strain increments occur, and the response is
incrementally elastic. We refer to this region as “within” the yield surface, even for the
quite common cases where the surface is not closed in stress space. Stress states outside
the yield surface, i. e. for which f(σij) > 0, are not attainable.

When yield occurs at a particular point on the yield surface, it is found empirically
for many materials (at least to a first approximation) that the ratios between the plastic
strain components are fixed, irrespective of the stress increments. One way of defining this
mathematically is to define a flow rule, in which the ratio of strain increments is related
directly to the stress state. This method is sometimes used for models that involve just two
dimensions of stress, but for more complex cases, it becomes very cumbersome, and the
ratios between the strain increments are defined instead by a plastic potential, from which
the flow rule can be derived. The plastic potential, like the yield surface, is a function of
the stresses and other variables, and is usually written g(σij , ...) = 0. The direction of the
plastic strain increment is then defined as normal to the plastic potential:

ε̇pij = λ
∂g(σij , ...)

∂σij
(7.3)

In metal plasticity, it is usual for the yield function f(σij , ...) = 0 and the plastic potential
g(σij , ...) = 0 to be identical functions. This important case is called associated flow or
normality (in the sense that the plastic strain increments are normal to the yield surface, and
not in the sense that normal means that this represents the usual behaviour of materials).
For some materials, notably soils, the empirical evidence for non-associated flow is so
overwhelming that it is essential to address this more complex case.

Figure 7.1 summarizes the basic components of a plasticity model, which can be com-
pletely defined by the following assumptions:

Decomposition of the strain into elastic and plastic components;

Definition of the elastic strains that requires specification of a single scalar function;

Definition of a yield surface f(σij , ...) = 0;

Definition of a plastic potential g(σij , ...) = 0.

The complete stress conditions for plastic and elastic behavior [23] may be stated as:

Elastic: f(σij , ...) = 0 or
∂f

∂σij
dσij < 0 (if unloading) (7.4)

Plastic: f(σij , ...) = 0 and
∂f

∂σij
dσij = 0
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Figure 7.1 The deformation mechanisms inside and on a yield surface plotted in the stress space.

7.2 Principles of perfect plasticity

Figure 7.2 shows typical soil stress-strain curves. The stress-strain behavior of most real
soils is characterized by an initial linear portion. Beyond the linear portion of the stress-
strain curve, the soil is said to exhibit strain hardening (respectively, strain softening) if the
increment of strain is of the same sign (respectively, of opposite sign) as the increment of
stress. Most real soils exhibit a peak or failure stress followed by softening to a residual
stress (“strong strain softening”). In limit analysis, it is necessary to ignore the strain
softening (or work softening) feature of the stress-strain diagram and to take the stress-
strain diagram to consist of two straight lines: the linear portion and a horizontal line. A
hypothetical material exhibiting this property of continuing plastic flow at constant stress
is called ideally plastic or perfectly plastic material.

Figure 7.2 Schematic stress-strain curves for soils. Figure taken from [24].

In perfect plasticity, the yield surface remains fixed in stress space, so there is no hard-
ening (or softening). Thus the yield surface is only a function of the stress f(σij) = 0.
The plastic potential will have the form g(σij ,x) = 0, where x are the dummy variables
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introduced to satisfy the (not strictly necessary) condition that g = 0 at each stress point
on the yield surface. The incremental stress-strain relationship is obtained by combining
the equations below.

The strain decomposition is written in incremental form:

ε̇ij = ε̇eij + ε̇pij (7.5)

The elastic strain rates are defined by an elastic stiffness matrix De
ijkl:

σ̇ij = De
ijklε̇

e
kl (7.6)

The yield surface is written in differential form, noting that during any process in which
the plastic strains are non-zero, not only is f = 0 , but also ḟ = 0 . This incremental form
of the yield surface is usually referred to as the consistency condition:

ḟ =
df

dσij
σ̇ij = 0 (7.7)

Finally, we need the plastic strain rate ratio, obtained from the plastic potential:

ε̇pij = λ
∂g

∂σij
(7.8)

From the equations above, we get:

σ̇ij = De
ijkl (ε̇kl − ε̇

p
kl) = De

ijkl

(
ε̇kl − λ

∂g

∂σkl

)
(7.9)

Now combining equations 7.7 and 7.9, we get:

ḟ =
df

dσij
De
ijkl

(
ε̇kl − λ

∂g

∂σkl

)
= 0 (7.10)

which leads to the solution for the plastic multiplier λ:

λ =

df
dσij

De
ijklε̇kl

df
dσpq

De
pqrs

∂g
∂σrs

(7.11)

Equation 7.11 is then back-substituted into equation 7.9 to give:

σ̇ij = De
ijklε̇kl −

df
dσmn

De
mnabε̇ab

df
dσpq

De
pqrs

∂g
∂σrs

De
ijkl

∂g

∂σkl
(7.12)

With some interchanging of the dummy subscripts, this can be rewritten:

σ̇ij = Dep
ijklε̇kl (7.13)

where Dep
ijkl is the elastic-plastic stiffness matrix defined as:

Dep
ijkl = De

ijkl −
De
ijab

∂g
∂σab

df
dσmn

De
mnkl

df
dσpq

De
pqrs

∂g
∂σrs

(7.14)
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It is important to note that this stiffness matrix is singular, so that it cannot be inverted to
give a compliance matrix. This is a feature common to all perfect plasticity models.

To conclude, given the specification of the elastic behaviour, the yield surface, and the
plastic potential, the incremental constitutive behaviour can be obtained by applying a
purely automatic process to obtain the incremental stress-strain relationship. This is im-
portant because no further ad hoc assumptions are necessary. Note also that the derivation
involves solely matrix manipulation and differentiation. Both processes can be readily
carried out using symbolic manipulation packages.

7.3 Plastic hardening and softening

7.3.1 Incremental response for strain hardening

For strain-hardening plasticity, the yield surface is now also a function of the plastic strains,
the consistency condition takes the form:

ḟ =
∂f

∂σij
σ̇ij +

∂f

∂εpij
ε̇pij = 0 (7.15)

Introducing the flow rule (equation 7.8) in the equation above, one gets:

ḟ =
∂f

∂σij
σ̇ij + λ

∂f

∂εpij

∂g

∂σij
= 0 (7.16)

It is more convenient in this case to obtain the solution for λ in terms of the stress increment
rather than the strain increment (as was used for perfect plasticity):

λ = −
∂f
∂σij

σ̇ij
∂f
∂εpij

∂g
∂σij

(7.17)

The quantity:

h = − ∂f

∂εpij

∂g

∂σij
(7.18)

is often termed the hardening modulus, and we can write λ = 1
h
∂f
∂σij

σ̇ij or ε̇pij = 1
h
∂g
∂σij

∂f
∂σkl

σ̇kl.
The hardening modulus is not a defined parameter of the model, but is derived at a given
stress point in terms of the yield function and plastic potential. It is identically zero in a per-
fect plasticity model. The most convenient way to proceed is to use the elastic compliance
matrix:

ε̇eij = Ceijklσ̇kl (7.19)

so that:
ε̇ij = Ceijklσ̇kl + ε̇pij = Ceijklσ̇kl +

1

h

∂g

∂σij

∂f

∂σkl
σ̇kl (7.20)

which leads to:
ε̇ij = Cepijklσ̇kl (7.21)

where the elastic-plastic compliance matrix is:

Cepijkl = Ceijkl +
1

h

∂g

∂σij

∂f

∂σkl
= Ceijkl −

∂g
∂σij

∂f
∂σkl

∂f
∂εpmn

∂g
∂σmn

(7.22)
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If the stiffness matrix is required, it can be obtained either by numerical inversion of the
compliance matrix, or by solving for the plastic multiplier, as before, in terms of the strains.
Starting with the consistency condition:

ḟ =
∂f

∂σij
σ̇ij +

∂f

∂εpij
ε̇pij =

∂f

∂σij
De
ijkl

(
ε̇kl − λ

∂g

∂σkl

)
+ λ

∂f

∂εpij

∂g

∂σij
= 0 (7.23)

The solution for λ becomes:

λ =

∂f
∂σij

De
ijklε̇kl(

∂f
∂σpq

De
pqrs −

∂f
∂εprs

)
∂g
∂σrs

(7.24)

The solution then proceeds exactly as for the perfectly plastic case, except that this time
De
ijkl takes the form:

Dep
ijkl = De

ijkl −
De
ijab

∂g
∂σab

∂f
∂σmn

De
mnkl(

∂f
∂σpq

De
pqrs −

∂f
∂εprs

)
∂g
∂σrs

(7.25)

Note that if ∂f
∂εprs

= 0, then the equation above reduces to the result for perfect plasticity.
However, the equation for compliance, Equation 7.22, becomes singular in the perfectly
plastic case.

7.3.2 Isotropic hardening

If the yield surface expands (or contracts) but does not translate as plastic straining occurs,
then this is said to be isotropic hardening (or softening) [12]. This is illustrated in Figure
7.3.a for a simple one-dimensional material that hardens linearly and isotropically with
plastic strain. The material yields at A at a stress c, and during plastic deformation AB,
it hardens and the stress increases to c1. It is then unloaded, and reverse yielding occurs
at C when the stress is −c1. Further hardening occurs on CD, so that, when the material
is reloaded, the expansion of the yield surface is such that the yield at E occurs above the
original curve AB, and further hardening occurs along EF. Figure 7.3.b illustrates isotropic
hardening in two dimensions. The surface expands but does not change shape.

The rule of isotropic hardening assumes that the yield surface maintains its shape, cen-
ter and orientation, but expands or contracts uniformly about the centre of the yield surface
[23]. A yield surface with its centre at the origin may be generally described by the fol-
lowing function:

f(σij , β) = f1(σij)−R(β) = 0 (7.26)

where R represents the size of the yield surface, depending on plastic strains through the
hardening parameter β. The two earliest and most widely used hardening parameters are
the accumulated equivalent plastic strain:

β =

∫ [√
2

3

(
ε̇pij ε̇

p
ij

)1/2]
(7.27)

and the plastic work:

β =

∫ [
σij ε̇

p
ij

]
(7.28)
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Figure 7.3 Isotropic hardening: (a) stress-strain curve in one dimension; (b) change of size of
yield surface in two dimensions. Figure taken from [12].

Figure 7.4 shows an example of isotropic hardening where the yield surface is uniformly
expanding during the process of plastic flow when a stress increment is applied from step
i to i+1. The size of the yield surface at any stage of loading is determined as long as an
evolution rule defining the relationship between R and β is defined.

Figure 7.4 Isotropic hardening with uniform expansion of the yield surface. Figure taken from
[23].
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7.3.3 Kinematic hardening

If the yield surface translates, but does not change size, as plastic strain occurs, then this is
said to be kinematic hardening [12]. Figure 7.5.a, which should be contrasted with Figure
7.3.a, shows the response of a simple kinematic hardening material that hardens linearly
with plastic strain. The loading curve OAB is identical to that of isotropic hardening,
but on unloading from B, yield occurs at C’, such that the size of the elastic region is 2c
(the stress at C’ therefore is c1 − 2c). Hardening occurs on reverse loading C’D’, but on
reloading, yield occurs at E’, which falls on the original line AB, and the hardening once
again occurs along E’F’. Figure 7.5.b (which should be contrasted with Figure 7.3.b) shows
the translation of a yield surface for a kinematic hardening model in two dimensions.

Figure 7.5 Kinetic hardening: (a) stress-strain curve in one dimension; (b) translation of yield
surface in two dimensions. Figure taken from [12].

The fact that the yield surface translates in the stress space and its shape and size remain
unchanged can be described by writing the initial yield function as [23]:

f(σij , αij) = f1(σij − αij)−R0 = 0 (7.29)

where αij represents the coordinates of the center of the yield surface, which is also known
as the back stress. R0 is a material constant representing the size of the original yield
surface. It can be seen that as the back stress αij changes due to plastic flow, the yield
surface translates in the stress space while maintaining its initial shape and size. It is clear
now that the formulation of a kinematic hardening model involves assuming an evolution
rule of the back stress αij in terms of εpij , σij or αij . The first simple kinematic hardening
model was proposed by Prager (1955). This classical model assumes that the yield surface
keeps its original shape and size and moves in the direction of plastic strain rate tensor (see
Figure 7.6). Mathematically, it can be expressed by the following linear evolution rule:

α̇ij = c ε̇pij (7.30)

where c is a material constant. Whilst Prager’s model is reasonable for one-dimensional
problems, it does not seem to give consistent predictions for two- and three-dimensional
cases. The reason is that the yield function takes different forms for one-, two- and three-
dimensional cases. To overcome this limitation, Ziegler (1959) suggested that the yield
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surface should move in the direction as determined by the vector σij −αij , see Figure 7.6.
Mathematically, Ziegler’s model can be expressed as follows:

α̇ij = dµ (σij − αij) (7.31)

where dµ is a material constant.

Figure 7.6 Prager’s and Ziegler’s kinematic hardening. Figure taken from [23].

7.3.4 Mixed hardening

The term mixed hardening is used to indicate cases when the yield surface not only expands
or contracts but also translates in the stress space upon plastic loading (see Figure 7.7). This
means that both the centre and size of the yield surface will depend on plastic strain. In
this case, the yield function can be expressed by:

f(σij , αij , α) = f1(σij − αij)−R(β) = 0 (7.32)

where the size of the yield surface can be assumed to be a function of either plastic strain
or plastic work., while either Prager’s rule (Equation 7.30) or Ziegler’s rule (Equation 7.2)
may be used to control the translation of the yield surface upon loading.

7.4 Restrictions on plasticity theories

Two important restrictions on plasticity theories have been applied by many users in the
past, and these are discussed below [12]. Both bear a superficial similarity to thermody-
namic laws, and both lead to normality relationships, but neither embodies any thermody-
namic principles.

7.4.1 Drucker’s Stability Postulate

Drucker (1951) proposed a stability postulate for plastically deforming materials. It can be
stated in a variety of equivalent ways, but represents the idea that, if a material is in a given
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Figure 7.7 Mixed hardening. Figure taken from [23].

state of stress and some external agency applies additional stresses, then “The work done
by the external agency on the displacements it produces must be positive or zero” (Drucker,
1959). If the external agency applies a stress increment δσij that causes additional strains
δεij , then the postulate is that δσijδεij > 0 The product δσijδεij is often called the second
order work.

In the one-dimensional case shown in Figure 7.8.a, the postulate states that the area ABC
must be positive. Strain-softening behaviour is thus excluded. If the external agency first
applies then removes the stress increment δσij , such that the additional strain remaining
after this stress cycle is δεpij , then it also follows from the postulate that δσijδε

p
ij ≥ 0. Thus

in the one-dimensional case shown in Figure 7.8.b, the area ABD must be zero or positive.

Figure 7.8 One-dimensional illustrations of (a,b) Drucker’s postulate and (c) Il’iushin’s postulate.
Figure taken from [12].

In the one-dimensional case, a strain-softening material is mechanically unstable under
stress control, and this is linked to the identification of the Drucker postulate as a “stability
postulate”. Unfortunately, this has led to the interpretation that a material which does not
obey the postulate will exhibit mechanically unstable behavior. The obvious corollary is
that a material which is mechanically stable must therefore obey the postulate. The identifi-
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cation of the postulate with mechanical stability for the multidimensional case is, however,
erroneous. The conclusion that mechanically stable materials must obey Drucker’s postu-
late is therefore equally erroneous

7.4.2 Il’iushin’s Postulate of Plasticity

The postulate of plasticity proposed by Il’iushin (1961) is similar to Drucker’s postu-
late, but significantly, it uses a cycle of strain rather than a cycle of stress. It is simply
stated as follows. Consider a cycle of strain which, to avoid complications from thermal
strains, takes place at constant temperature. It is assumed that the material is in equilib-
rium throughout, and that the strain (for a sufficiently small region under consideration) is
homogeneous. The material is said to be plastic if, during the cycle, the total work done is
positive, and is said to be elastic if the work done is zero. The postulate excludes the pos-
sibility that the work done might be negative. This is illustrated for the one-dimensional
case in Figure 7.8.c, where the postulate states that the area ABE must be non-negative.

The postulate has certain advantages over Drucker’s statement because it uses a strain
cycle. Drucker’s statement depends on consideration of a cycle of stress, which is not
attainable in certain cases such as strain softening. On the other hand, almost all materi-
als can always be subjected to a strain cycle. The exceptions are rather unusual materials
which exhibit “locking” behavior (in the one-dimensional case this involves a response in
which an increase in stress results in a decrease in strain). Such materials rather odd and
conceptual. A more significant limitation is Il’iushin’s assumption that the strain is homo-
geneous. It may well be that for some cases (e. g. strain-softening behavior), homogeneous
strain is not possible, and bifurcation must occur.

PROBLEMS

7.1 Derive the stress-strain relationship for the Drucker-Prager elastic-perfectly plastic
model, described by the following equations:

ε̇ij = ε̇eij + ε̇pij

σ̇ij = De
ijklε̇

e
kl

f(σij) =
√
J2 − α I1 − k

g(σij) =
√
J2 − β I1

in which k, α and β are material constants, with α 6= β.

7.2 Derive the stress-strain relationship for the mixed hardening elastic-plastic model,
described by the following equations:

ε̇ij = ε̇eij + ε̇pij

σ̇ij = De
ijklε̇

e
kl

f(σij , αij , β) = f1(σij − αij)−R(β) = 0

β =

∫ [
σij ε̇

p
ij

]
α̇ij = dµ (σij − αij)

g(σij , αij , β) = f(σij , αij , β)





CHAPTER 8

PERFECT PLASTICITY IN
GEOMECHANICS

8.1 Cohesive soils - Associated flow rule

For cohesive soils [23], the two most widely used plasticity models are those proposed by
Tresca (1864) and von Mises (1913) initially for metals. Experience suggests that under
undrained conditions, fully saturated cohesive soils (i.e. clay) can be modelled accurately
by either Tresca or von Mises plasticity theory.

8.1.1 Tresca model

Tresca’s yield criterion is:

f = σ1 − σ3 − 2Su = 0 (8.1)

where the princpal stresses are ordered such that σ1 ≥ σ2 ≥ σ3 and Su is the undrained
shear strength. From a computational point of view, it is more useful to write the above
equation in terms of the second invariant of deviatoric stress J2 and Lode’s angle θl, as
follows:

f =
√
J2cosθl − Su = 0 (8.2)

As shown in Figure 8.1, The Tresca yield surface is a regular hexagon on a deviatoric
plane, and a cylinder with an hexagonal base in the three-dimensional stress space.

When a saturated clay is loaded under undrained conditions, the volume remains con-
stant. As a result it is suitable to adopt an associated plastic flow rule by treating the yield
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Figure 8.1 Tresca yield surface in the three-dimensional stress space . Taken from Taiebat and
Carter, 2008, Flow rule effects in the Tresca model.

function (Equation 8.2) as the plastic potential as well. Therefore:

g =
√
J2cosθl − Su = 0 (8.3)

The complete relation between a stress rate and a strain rate for an elastic-perfectly
plastic solid may be expressed as follows:

σ̇ij = Dep
ijklε̇kl (8.4)

where the elastic-plastic stiffness matrix Dep
ijkl is defined by:

Dep
ijkl = De

ijkl −
1

H
De
ijmn

∂g

∂σmn

∂f

∂σpq
De
pqkl (8.5)

in which:

H =
∂f

∂σij
De
ijkl

∂g

∂σkl
(8.6)

To determine the complete stress-strain relation for Tresca materials, we need to determine
∂f/∂σij and ∂g/∂σij , which can be obtained using the chain rule:

∂f

∂σij
=

∂f

∂J2

∂J2

∂σij
+
∂f

∂θl

∂θl
∂σij

=
cosθl

2
√
J2

∂J2

∂σij
−
√
J2sinθl

∂θl
∂σij

(8.7)

∂g

∂σij
=

∂g

∂J2

∂J2

∂σij
+
∂g

∂θl

∂θl
∂σij

=
cosθl

2
√
J2

∂J2

∂σij
−
√
J2sinθl

∂θl
∂σij

(8.8)

where ∂J2/∂σij and ∂θl/∂σij are independent of the form of yield functions and plastic
potentials as they only depend on the definitions of the second invariant of deviatoric stress
and Lode’s angle. It is noted from Figure 8.1 that Tresca’s yield function and plastic
potential are not differentiable at certain corner points.

8.1.2 von Mises model

A slightly better alternative to the Tresca yield criterion is the criterion proposed by von
Mises (1913). von Mises suggested that yielding occurred when the second invariant of
deviatoric stress reached a critical value, von Mises’ yield criterion is expressed as follows:

f =
√
J2 − k = 0 (8.9)
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or:

f = (σ1 − σ2)
2

+ (σ2 − σ3)
2

+ (σ3 − σ1)
2 − 6k2 = 0 (8.10)

where k is the undrained shear strength of the soil in pure shear. As shown in Figure 8.2,
the von Mises yield surface is a circle on a deviatoric plane and a cylinder of circular base
in the three-dimensional stress space. Like the Tresca yield surface, the von Mises yield
criterion does not depend on the mean stress. A physical interpretation of the von Mises
yield criterion was that Equation 8.9 implies that yielding begins when the elastic energy
of distortion reaches a critical value (Hill, 1950).

Figure 8.2 von Mises and Tresca yield surfaces in the three-dimensional stress space . Taken from
Wikipedia, Dec. 2019.

By suitably choosing the value of the strength parameter k in Equation 8.9, we can make
the von Mises circle pass through the corners of the Tresca hexagon, as shown in Figure
8.2, which happens when:

k =
Su
cosθl

=
2√
3
Su (8.11)

By comparing Tresca’s and von Mises’ yield criteria, it is obvious that the von Mises
yield criterion generally implies a slightly higher undrained shear strength. The difference
depends on Lode’s angle that indicates the direction of shear stress. For undrained loading,
the plastic volumetric strain is zero so that an associated flow rule is adequate, namely:

g =
√
J2 − k = 0 (8.12)

which, together with Equation 8.9, leads to:

∂f

∂σij
=

∂f

∂J2

∂J2

∂σij
=

1

2
√
J2

∂J2

∂σij
(8.13)

∂g

∂σij
=

∂g

∂J2

∂J2

∂σij
=

1

2
√
J2

∂J2

∂σij
(8.14)
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8.2 Frictional soils - Non-associated flow rule

For cohesive-frictional soil and rock [23], neither Tresca’s nor von Mises’ yield criterion
is adequate. This is because the key feature of yielding of frictional materials is their mean
pressure dependence. In other words, a correct yield criterion for any frictional material
would be a function of the first stress invariant or mean pressure. In this respect, the oldest
and still the most useful yield criterion for cohesive frictional materials is the empirical
proposal made by Coulomb (1773) in his investigations of retaining walls.

8.2.1 Mohr-Coulomb model

The yield criterion proposed by Coulomb (1773) is in terms of shear stress τ and normal
stress σn acting on a plane. It suggests that the yielding begins as long as the shear stress
and the normal stress satisfy the following equation:

|τ | = c+ σn tanφ (8.15)

where c and φ are the cohesion and internal angle of friction for the soil. In terms of the
principal stresses, Coulomb’s yield criterion can be expressed by:

f = σ1 − σ3 − (σ1 + σ3)sinφ− 2c cosφ = 0 (8.16)

for σ1 ≥ σ2 ≥ σ3. In terms of the stress invariants and Lode’s angle, the Mohr-Coulomb
yield criterion in Equation 8.16 can be written as:

f =
√
J2 −

m(θl, φ) sinφ

3
I1 −m(θl, φ) c cosφ = 0 (8.17)

where

m(θl, φ) =

√
3(√

3cosθl + sinθl sinφ
) (8.18)

Alternatively, Equation 8.17 can also be expressed in terms of the generalised shear stress
q and the mean stress p as follows:

f = q −
√

3 pm(θl, φ) sinφ −
√

3m(θl, φ) c cosφ = 0 (8.19)

by noting q =
√

3J2 and p = I1/3. The shape of the Coulomb’s yield surface is similar
to that of Tresca in a deviatoric plane. However, the Coulomb’s yeild surface forms a cone
instead of a cylinder in the three dimensional stress space, as shown in Figure 8.3.

With the Mohr-Coulomb model, it is often assumed that the plastic potential takes the
same form as the yield function (Equation 8.15):

g = |τ | − c− βσn (8.20)

Clearly, if β = tanφ, then the yield surface and plastic potential are identical and the flow
rule becomes associated. In this case, the increment of normal plastic strain is calculated
as:

ε̇pn = λ
∂g

∂σn
= −λ tanφ (8.21)

and the increment of shear plastic strain is:

γ̇p = λ
∂g

∂τ
= sign(τ)λ (8.22)
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Figure 8.3 Coulomb yield surface in the three-dimensional stress space . Taken from Wikipedia,
Dec. 2019.

The rate of plastic work is then determined as:

Ẇ p = σnε̇
p
n + τ γ̇p = −λσn tanφ + λ|τ | (8.23)

For a perfectly frictional material, c = 0 and therefore, from Equation 8.15, |τ |−tanφσn =
0. It follows that for a purely frictional material, Ẇ p = 0. Thus a “frictional” material
with associated flow is not frictional at all. It dissipates no work plastically!

Now consider plastic strains in more detail. It is simple to show from the flow rule that
ε̇pn/γ̇

p = β sign(τ). Since λ is a positive multiplier, it also follows that τ and γ̇p have
the same sign, so that we can write ε̇pn/γ̇

p = β sign (γ̇p) or ε̇pn = β |γ̇p|. For a positive
value of β, the volumetric plastic strain is always positive and the material dilates. The
apparent frictional strength in an associated material is entirely due to this dilation. More
realistically, β < tanφ and Ẇ p = −λσn (tanφ − β), which is positive because the
normal stress is compressive for the material to be frictional: σn < 0. So plastic work if
dissipated if β < tanφ. For β = 0, ε̇pn = 0, and the material deforms at constant volume.
The yield surface and flow vectors for the general case are shown in Figure 8.4.

It is often assumed that the plastic potential takes the same form as the yield function
but the friction angle is replaced by the dilation angle ψ (which is a smaller angle than the
friction angle). Therefore:

g = |τ | − c− σn tanψ (8.24)

or equivalently:

g =
√
J2 −

m (θl, ψ) sinψ

3
I1 −m (θl, ψ) c cosψ = 0 (8.25)

where:

m(θl, ψ) =

√
3(√

3cosθl + sinθl sinψ
) (8.26)

To link the plastic potential and the yield function, a stress-dilatancy equation must be
used which defines the relationship between the angles of friction and dilation. Perhaps
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Figure 8.4 Coulomb frictional yield surface and non associated flow rule (c = 0) . Taken from
[12].
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the most successful stress-dilatancy model is that developed by Rowe (1962), which has
been further simpHfied by Bolton (1986) as follows:

ψ = 1.25 (φ− φcv) (8.27)

where φcv is the angle of friction at the critical state. The above assumption implies a
non-associated flow rule as the angles of friction and dilation are not the same.

The differentiation of the yield function and plastic potential with respect to stress can
be evaluated by the chain rule:

∂f

∂σij
=

∂f

∂I1

∂I1
∂σij

+
∂f

∂J2

∂J2

∂σij
+
∂f

∂θl

∂θl
∂σij

(8.28)

∂g

∂σij
=

∂g

∂I1

∂I1
∂σij

+
∂g

∂J2

∂J2

∂σij
+
∂g

∂θl

∂θl
∂σij

(8.29)

8.2.2 Drucker-Prager model

The von Mises yield criterion is not suitable for modelling the yielding of frictional mate-
rial as it does not include the effect of mean stress as observed in experiments. To over-
come this limitation of the von Mises yield function, Drucker and Prager (1952) proposed
the following revised function for frictional soils:

f =
√
J2 − α I1 − k = 0 (8.30)

where α and k are material constants. On a deviatoric plane, the equation plots as a circle,
as for the von Mises yield surface. However in the three-dimensional principal stress space,
the Drucker-Prager yield surface is a cone whilst the von Mises yield surface is an infinitely
long cylinder. Figure 8.5 shows the shapes of all the yield surfaces covered so far (Tresca,
von Mises, Mohr-Coulomb and Drucker-Prager).

To select the material constants a and k for use in analysis, the Drucker-Prager yield
surface is often matched with the Mohr-Coulomb yield surface using a certain criterion.
Figure 8.5.F shows such a match (the match is different for major and minor vertices).
Mathematically, this condition demands the following relations:

α =
2 sinφ√

3 (3− sinφ)
(8.31)

k =
6c cosφ√

3 (3− sinφ)
(8.32)

As another example, if the Drucker-Prager and Mohr-Coulomb criteria are made to give an
identical limit load for a plane strain problem, then the following relationships must hold
[23]:

α =
tanφ√

9 + 12tan2φ
(8.33)

k =
3c√

9 + 12tan2φ
(8.34)

Because of its simplicity, the Druclcer-Prager yield criterion has been used quite widely in
geotechnical analysis. However experimental research suggests that its circular shape on a
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Figure 8.5 Yield surfaces in 3D stress space. A. Tresca yield surface, B. von Mises yield surface,
C. Mohr Coulomb yield surface, D. Drucker-Prager yield surface, E. comparison between Tresca and
von Mises surfaces in a diaviatoric plane (a plane normal to the space diagonal), and F. comparison
between Mohr Coulomb and Drucker-Prager surfaces in a deviatoric plane. Taken from [8].

deivatoric plane does not agree well with experimental data. For this reason care is needed
when the Drucker-Prager plasticity model is used in geotechnical analysis.

To complete the formulation of the Drucker-Prager plasticity model, we need to define
a plastic potential. As for the case of the Mohr-Coulomb plasticity model, we may adopt a
plastic potential that is in the same form as the yield function, namely:

g =
√
J2 − α′ I1 = constant (8.35)

where the angle of friction needed to be replaced by the angle of dilation, and

α′ =
2sinψ√

3 (3− sinψ)
(8.36)

in which ψ denotes the angle of dilation.
The differentiation of the yield function and plastic potential with respect to stress can

be evaluated by the chain rule:

∂f

∂σij
=

∂f

∂I1

∂I1
∂σij

+
∂f

∂J2

∂J2

∂σij
= −α ∂I1

∂σij
+

1

2
√
J2

∂J2

∂σij
(8.37)

∂g

∂σij
=

∂g

∂I1

∂I1
∂σij

+
∂g

∂J2

∂J2

∂σij
= −α′ ∂I1

∂σij
+

1

2
√
J2

∂J2

∂σij
(8.38)

8.2.3 Hoek-Brown model

In addition to the linear Mohr-Coulomb yield criterion, a number of researchers have also
used non-linear yield criteria to analyse rock mechanics problems. A most popular devel-
opment has been the empirical non-linear criterion proposed by Hoek and Brown (1980) to
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describe the yield and failure behaviour of rock masses [23]. The yield of rock is assumed
to be governed by the Hoek and Brown criterion in the following form:

f = σ1 − σ3 −
√
mY σ3 + s Y 2 = 0 (8.39)

where σ1 and σ3 are the major and minor principal stresses; Y the uniaxial compressive
strength of the intact rock material; and mands are constants depending on the nature of
the rock mass and the extent to which it is broken prior to being subjected to the prin-
cipal stresses σ1 and σ3. The Hoek-Brown criterion offers some advantages over other
approaches in determining the overall strength of in-situ rock masses because it is based
on one simple material property, Y , and rock mass quality data that may be systematically
collected and evaluated during site investigation.

For the convenience of numerical applications, the Hoek-Brown criterion may also be
expressed in terms of stress invariants by the following equation:

f = 4 J2 cos
2θl + g(θl)

√
J2 − α I1 − k = 0 (8.40)

where:

g(θl) = mY

(
cosθl +

sinθl√
3

)
(8.41)

k = s Y 2 (8.42)

Figure 8.6 illustrates the shape of the Hoek and Brown yield surface in 2D and in 3D.

Figure 8.6 Hoek and Brown yield surface in 2D and in 3D.

The non-associated flow rule can be obtained by adopting a simplified Hoek-Brown
criterion as the plastic potential [23]:

g = 3J2 +

√
3m′ Y

2

√
J2 −

m′ Y

3
I1 = 0 (8.43)

where m′ is a reduced Hoek-Brown parameter m. Since the plastic potential is not a
function of Lode’s angle, it plots as a circle on a deviatoric plane.
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The differentiation of the yield function and plastic potential with respect to stress can
be evaluated by the chain rule:

∂f

∂σij
=

∂f

∂I1

∂I1
∂σij

+
∂f

∂J2

∂J2

∂σij
+
∂f

∂θl

∂θl
∂σij

(8.44)

∂g

∂σij
=

∂g

∂I1

∂I1
∂σij

+
∂g

∂J2

∂J2

∂σij
(8.45)

PROBLEMS

8.1 A material element is subjected to proportional loading. The principal stresses are
given by (2σ, σ, 0) where σ is an increasing stress value.

1. Find the magnitude of σ where the material begins to yield, according to Tresca’s
criterion.

2. Adopting the associated flow rule, find also the plastic strain rate ε̇pij at onset of yield-
ing expressed in terms of the plastic multiplier λ̇.

3. If the effective plastic strain rate ε̇peff is defined as:

ε̇peff =

√
2

3
ε̇pij ε̇

p
ij ,

how is ε̇peff related to λ̇?

4. Now suppose that the principal stresses are given by (σ, σ, 0). What problem is
encountered is you should determine ε̇pij?

8.2 The stress at a point is given by:

[σij ] =

30

45

60

45

20

50

60

50

10

 MPa

Determine the stress invariants I1, J2, J3 and the Lode angle θ.

8.3 A material is to be loaded to a stress state

[σij ] =

 50

−30

0

−30

90

0

0

0

0

 MPa

What should be the minimum uniaxial yield stress of the material so that it does not fail,
according to (a) Tresca criterion; (b) von Mises criterion? What do the theories predit when
the yield stress of the material is 80MPa?

8.4 A material element is subjected to proportional loading. The principal stresses are
given by (2σ, σ, 0) where σ is an increasing stress value.
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1. Find the magnitude of σ where the material begins to yield, according to von Mises’s
criterion.

2. Adopting the associated flow rule, find also the plastic strain rate ε̇pij at onset of yield-
ing expressed in terms of the plastic multiplier λ̇.

3. If the effective plastic strain rate ε̇peff is defined as:

ε̇peff =

√
2

3
ε̇pij ε̇

p
ij ,

how is ε̇peff related to λ̇?

4. Repeat the three questions above when the principal stresses are given by (σ, σ, 0).

8.5 Prandtl-Reuss equations are obtained by combining Hooke’s law with a flow rule
that assumes that the plastic strain increments are proportional to the principal deviatoric
stresses si:

ε̇p1
s1

=
ε̇p2
s2

=
ε̇p3
s3

= λ̇ ≥ 0

In Cartesian coordinates, it is common to express the flow rule above in the following
alternate form:

ε̇pxx − ε̇pyy
sxx − syy

=
ε̇pxx − ε̇pyy
σxx − σyy

=
ε̇pyy − ε̇pzz
syy − szz

= ... = λ̇ ≥ 0

In terms of actual stresses, one can show that:

ε̇pxx =
2

3
λ̇

[
σxx −

1

2
(σyy + σzz)

]
, ε̇pyy =

2

3
λ̇

[
σyy −

1

2
(σzz + σxx)

]

ε̇pzz =
2

3
λ̇

[
σzz −

1

2
(σxx + σyy)

]
, ε̇pxy = λ̇σxy, ε̇pyz = λ̇σyz, ε̇pzx = λ̇σzx

The Prandtl-Reuss equations are the full elastic-plastic stress-strain relations that are ob-
tained by combining the previous equations with Hooke’s law:

ε̇xx =
1

E
[σ̇xx − ν (σ̇yy + σ̇zz)] +

2

3
λ̇

[
σxx −

1

2
(σyy + σzz)

]

ε̇yy =
1

E
[σ̇yy − ν (σ̇zz + σ̇xx)] +

2

3
λ̇

[
σyy −

1

2
(σzz + σxx)

]

ε̇zz =
1

E
[σ̇zz − ν (σ̇xx + σ̇yy)] +

2

3
λ̇

[
σzz −

1

2
(σxx + σyy)

]
ε̇xy =

1 + ν

E
σ̇xy + λ̇σxy, ε̇yz =

1 + ν

E
σ̇yz + λ̇σyz, ε̇zx =

1 + ν

E
σ̇zx + λ̇σzx

ε̇ij =
1 + ν

E
σ̇ij −

ν

E
δij σ̇kk + λ̇sij
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Consider the uniaxial straining of a perfectly plastic isotropic von Mises material specimen.
There is only one non-zero strain, εxx. One only need consider two stresses, σxx, σyy, since
σzz = σyy by isotropy.

1. Write down the two relevant Prandtl-Reuss equations.

2. Evaluate the stresses and strains at first yield.

3. For plastic flow, show that σ̇xx = σ̇yy and that:

σ̇xx
ε̇xx

=
E

3(1− 2ν)

8.6 Mohr-Coulomb’s yield criterion:

1. Show that the magnitude of the hydrostatic stress vector is ρ =
√

3c cot Φ for the
Mohr-Coulomb yield criterion when the deviatoric stress is zero.

2. Show that, for a Mohr-Coulomb material, sin Φ = (r−1)/(r+1) where r = fY c/fY t
is the compressive to tensile strength ratio.

3. A sample of concrete is subjected to a stress σ11 = σ22 = −p, σ33 = −Ap where
the constant A > 1. Using the Mohr-Coulomb criterion and the result of the previous
question, show that the material will not fail provided A < fY c/p+ r.

8.7 A material element is subjected to proportional loading. The principal stresses are
given by (2σ, σ, 0) where σ is an increasing stress value.

1. Find the magnitude of σ where the material begins to yield, according to Mohr-
Coulomb’s criterion.

2. Adopting the associated flow rule, find also the plastic strain rate ε̇pij at onset of yield-
ing expressed in terms of the plastic multiplier λ̇.

3. If the effective plastic strain rate ε̇peff is defined as:

ε̇peff =

√
2

3
ε̇pij ε̇

p
ij ,

how is ε̇peff related to λ̇?

4. Now suppose that the principal stresses are given by (σ, σ, 0). What problem is
encountered is you should determine ε̇pij?

8.8 Durcker-Prager’s yield criterion:

1. Show that the magnitude of the hydrostatic stress vector is ρ = |ρ| = k/
√

3α for the
Drucker-Prager yield criterion when the deviatoric stress is zero.

2. Given the yield stresses σt and σc in uniaxial tension and compression, respectively,
find the yield stress in shear resulting from the following yield criteria: (a) Tresca; (b)
von Mises; (c) Mohr-Coulomb; (d) Drucker-Prager.
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8.9 A material element is subjected to proportional loading. The principal stresses are
given by (2σ, σ, 0) where σ is an increasing stress value.

1. Find the magnitude of σ where the material begins to yield, according to Drucker-
Prager’s criterion.

2. Adopting the associated flow rule, find also the plastic strain rate ε̇pij at onset of yield-
ing expressed in terms of the plastic multiplier λ̇.

3. If the effective plastic strain rate ε̇peff is defined as:

ε̇peff =

√
2

3
ε̇pij ε̇

p
ij ,

how is ε̇peff related to λ̇?

4. Repeat the three questions above when the principal stresses are given by (σ, σ, 0).

8.10 Conventional triaxial compression tests (σ1, σ2 = σ3) were conducted on cylindri-
cal rock specimens. The test results are reported in the following table.

σ1 (MPa) σ2 = σ3 (MPa)

48.3 1.7

53.7 2.8

56.7 3.4

70.8 6.9

70.9 6.9

94.8 13.8

94.7 13.8

94.9 13.8

115.8 20.7

115.9 20.7

Direct tension tests gace a tensile strength of σt = 3.4 MPa. We want to model the rock
strength. Use plots to estimate the failure criterion parameters and discuss the
applicability of the (a) Linear Mohr-Coulomb criterion; (b) Non-linear Hoek-Brown
criterion.





CHAPTER 9

INTRODUCTION TO THE CRITICAL STATE
THEORY

9.1 The need for isotropic hardening in soil plasticity models

When it comes to soil modeling [23], perfect plasticity is limiting. Work-hardening shows
potential because both shear and consolidation loading influence the yielding of soils. Ac-
cordingly, some authors proposed to include a cap to the Mohr-Coulomb yield surface.
Current plastic compaction (or density) can be used as a hardening parameter to determine
the evolution of cap surfaces. The introduction of work-hardening into soil mechanics led
to the generalization of the family of soil models developed at Cambridge (e.g., the Cam-
Clay model). Many more of these models have been proposed since then. A key feature
of all these models has been the concept of critical states. The critial state theory (CST)
anticipates that an ultimate, perfectly plastic state (the critical state) will be reached after
large deformation.

Schofield and Wroth (1968) describe the concept of critical states in the following way:
“The kernel of our idea is the concept that soil and other granular materials, if continuously
distorted until they flow as a frictional fluid, will come into a well-defined critical state
determined by two equations:

q = M p (9.1)

Γ = v + λ ln(p) (9.2)

The constants M , Γ and λ represent basic soil material properties and the parameters q, v,
and p are defined in due course.”
As a result the critical states depend on the mean effective stress p, shear stress q and soil
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specific volume v and are shown graphically in Figure ?? as two straight lines (now known
as the critical state lines CSL), where e denotes the void ratio.

Figure 9.1 Concept of critical states. Taken from [23].

Schofield and Wroth (1968) further explain that at the critical state, soils behave as a
frictional fluid so that yielding occurs at constant volume and constant stresses. In other
words, the plastic volumetric strain increment is zero at the critical state, since elastic strain
increments will be zero due to the constant stress condition at the critical state. Also it was
assumed that the critical state lines are unique for a given soil regardless of stress paths
used to bring them about from any initial conditions.

9.2 Cam-Clay model (saturated soil)

In the following, we explain how a critical state-based, strain hardening plasticity model
can be formulated, taking the Cam-Clay model as an example. For simplicity, we will
only present the case of a triaxial test, that is, when two effective principal stresses are
equal and the directions of principal stresses are fixed with respect to the material element.
The generalization to a general three-dimensional case can be found in [23] (Section 6.10).
Assuming compressive stresses and strains as positive, the two effective stress variables
normally used in critical state soil mechanics are:

p =
1

3
(σ′1 + 2σ′3) , q = σ′1 − σ′3 (9.3)

where σ′1 and σ′3 denote effective vertical and radial stresses respectively. The correspond-
ing strains are:

εp = ε1 + 2ε3, εq =
2

3
(ε1 − ε3) (9.4)

9.2.1 Work equation and plastic potential

The plastic work per unit volume of a triaxial sample with the externally applied mean and
shear stresses p and q is:

Ẇp = pε̇pp + qε̇pq (9.5)

where εpp and εpq are the volumetric and shear plastic strains, respectively. It is assumed that
all the plastic work, defined by Equation 9.5, is dissipated entirely in friction, namely:

Ẇd = M p ε̇pq (9.6)
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where M is the ratio of q/p at the critical state. The energy conservation then requires:

Ẇp = Ẇd (9.7)

which leads to the following work equation for the Cam-Clay model:

pε̇pp + qε̇pq = M p ε̇pq (9.8)

The above work equation can be rearranged as:

q

p
+
ε̇pp
ε̇pq

= M (9.9)

Now let us assume that there exists a plastic potential for the soil that depends on both the
mean and shear stresses:

g = g(p, q) = 0 (9.10)

from which we can write the following:

ε̇pp = λ
∂g

∂p
, ε̇pq = λ

∂g

∂q
(9.11)

By noting that the plastic strain is normal to the plastic potential, it can be shown that:

ε̇pp
ε̇pq

= − q̇
ṗ

(9.12)

By substituting Equation 9.12 into Equation 9.9, we obtain:

q

p
− q̇

ṗ
= M (9.13)

which may be integrated to give an equation for the plastic potential:

g = g(p, q) =
q

pM
+ ln

(
p

p0

)
= 0 (9.14)

where p0 is a constant which indicates the size of the plastic potential. Physically, it repre-
sents the mean stress when q/p = 0, as illustrated in Figure 9.2.

9.2.2 Associated plastic flow rule and yield criterion

In developing the Cam clay model, it was assumed that the soil obeys an associated flow
rule so that the yield function is identical to the plastic potential. Hence

f = f(p, q, p0) =
q

pM
+ ln

(
p

p0

)
= 0 (9.15)

where p0 is the preconsolidation pressure (see Figure 9.2) served as the hardening param-
eter that changes with the plastic strain.
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Figure 9.2 The normal consolidation line (NCL), critical state lines (CSL) and yield surface (plastic
potential). Taken from [23].
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9.2.3 Plastic hardening law - volumetric hardening

It is clear from equation 9.15 that the size of the yield surface is represented by the precon-
solidation pressure p0 (Figure 6.2). In Cam clay, p0 is assumed to change with the plastic
volumetric strain in the following manner:

ṗ0 =
v p0

λ− χ
ε̇pp (9.16)

where χ is a material constant that represents the slope of elastic loading and unloading
lines in a v − lnp plot (see Figure 9.2).

9.2.4 Elastic component of the model

In Cam clay, it was assumed that the bulk modulus is proportional to the mean pressure p:

K =
v p

χ
(9.17)

The second elastic constant can be chosen by using either an assumed constant value of
Poisson’s ratio ν or an assumed constant value of shear modulus G. As it is usually more
convenient to specify a value of Poisson’s ratio, the shear modulus may therefore be as-
sumed to vary with stress level in the same form as K:

G =
3(1− 2ν)

2(1 + ν)
K (9.18)

From a theoretical point of view, it would be preferable to assume a constant value of shear
modulus, because the use of a constant Poisson’s ratio would lead to a non-conservative
model in the sense that it may not conserve energy during closed stress cycles.

9.2.5 The complete stress-strain relation

From equation 9.11 and noting that the hardening parameter p0 in Cam clay is assumed to
depend only on the plastic volumetric strain, we obtain the following equation:

∂f

∂p
ṗ+

∂f

∂q
q̇ +

∂f

∂p0

∂p0

∂εpp
λ
∂g

∂p
= 0 (9.19)

The above equation gives the expression for the non-negative plastic multiplier:

λ = −
∂f
∂p ṗ+ ∂f

∂q q̇
∂f
∂p0

∂p0
∂εpp

∂g
∂p

=
1

Kp

(
∂f

∂p
ṗ+

∂f

∂q
q̇

)
(9.20)

where:
Kp = − ∂f

∂p0

∂p0

∂εpp

∂g

∂p
(9.21)

Equation 9.20 can be substituted into equation 9.11 to give the expression for the plastic
strain increments:

ε̇pp = λ
∂g

∂p
=

∂g
∂p

Kp

(
∂f

∂p
ṗ+

∂f

∂q
q̇

)
(9.22)
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ε̇pq = λ
∂g

∂q
=

∂g
∂q

Kp

(
∂f

∂p
ṗ+

∂f

∂q
q̇

)
(9.23)

By adding the elastic strain increments, we can obtain the following elastic-plastic relations
between stress increments and strain increments:

ε̇p = ε̇ep + ε̇pp =
1

K
ṗ +

∂g
∂p

Kp

(
∂f

∂p
ṗ+

∂f

∂q
q̇

)
(9.24)

ε̇q = ε̇eq + ε̇pq =
1

3G
q̇ +

∂g
∂q

Kp

(
∂f

∂p
ṗ+

∂f

∂q
q̇

)
(9.25)

For Cam clay, all the differentiations needed to define the incremental stress-strain relations
9.24 and 9.25 are given as follows:

∂f

∂p
=
∂g

∂p
= − q

M p2
+

1

p
(9.26)

∂f

∂q
=
∂g

∂q
=

1

M p
(9.27)

∂f

∂p0
= − 1

p0
(9.28)

∂p0

∂εpp
=
λ− χ
v p0

(9.29)
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