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CHAPTER 1

REVIEW OF TENSOR ALGEBRA

PROBLEMS

1.1  Prove the following equations:

ax(bxec)=(a-c)b—(a-b)c
(axd)-(bxec)=(a-b)(c-d)—(a-c)b-d)
ax(bxe)+bx(ecxa)+ex(axb)=0

Solution:
See Figure 1.1 for proof of:

ax(bxe)=(a-c)b—(a-b)c
See Figure 1.2 for proof of:
(axd)-(bxe)=(a-b)(c-d)—(a-c)(b-d)
See Figure 1.3 for proof of:
ax(bxe)+bx(ecxa)+ex(axb)=0

Theoretical Geomechanics.
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Figure 1.1  Proof of Problem 1.1 - Equation 1.
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Figure 1.2  Proof of Problem 1.1 - Equation 2.
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Figure 1.3  Proof of Problem 1.1 - Equation 3.
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1.2 For a2 x 2 matrix [A], show that:

det(A) = A11A22 - A12A21

)

For a 3 x 3 matrix, show that:

A22 A23

det(A) = A11 det < A A
32 33

Aoy Az

—Alg det ( A

Solution: see Figure 1.4.
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Figure 1.4  Solution of Problem 1.2.
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1.3  Find the eigenvalues of [A], and for each eigenvalue, find an eigenvector, where:
-3 15
[A] =
3 9
Solution: see Figure 1.5.

M (h-A) o [-3-)) f4-A) —4S
Y IPE O S LAY | S
L. P51 S ) _
b:_,gl?(*izﬂ - E—
(30 = (§

— = {4»3C N
o A, = 618
"L\' — S =

2 i

I\,‘-l?._ ;‘Jl:‘_-—g . s

C‘ﬁ Y A! ;VfL e s =
.. 3_\!'* B, o il Moy [EV};:-———\ =M 1
3\{{-,. + (:[ V;a4 A’Ula — IZ_U‘T . _U[k‘:,\/{,]. {Q.Lulr.)-

-\7‘:-_-_ gvij “‘wmdq,— '7

Eﬁ‘ﬂhs :f_h }:5 9 - |
"..3_'\1.”!,_,.;.- ls Vg o= = 6\[2.7, = T

= S-Uzs.a =V — — —1
l]ﬁ?': Zg’;“j wiadks . _— SR |

Figure 1.5  Solution of Problem 1.3.
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1.4 Let us consider an Euclidian space of dimension 3, with the Cartesian coordinate
system (e1,e2,e3). In the following, tensors noted in lower case are vectors, tensors noted
with capital letters are tensors of order 2 and tensors noted in calligraphic font are tensors
of order 4. Develop the following expressions in index notation:

a-T:b, ab: T, TRA:BR®c

a®b:T:cod, Tia®bRcxd

Solution:
a- T -b= aﬂ}jklbl e; Qe

a®b: T =abjTire; @ e
TRA:B®c="TijjuAmnBumTiopeei D ej Qe e, e, ® e,
a®b:T:c®d=a;bTincidy
Tia®b®cexd= Tijkiabrc;d;

1.5 Prove the formulas given in the following Table:

Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates
Conversion to ) X . x =rcos@sind y=rsingsind
Cartesian x=pcosg y=psing z=z e
. z cos@
Coordinates
Vector A Agi 4 Ayj + Azk A+ Agip + A:Z AF+ Ag0 + Ayip
. W, op, ™ . 19p. . . 13- 1 9.
sradie: =i =+ — =Pt e + =2 e 4] ==
Gradient Ve | 50i + 500 + 57k FrLr o Tr e’ remaae”
i i . . ) ) 1a(PA) .1 2Agsing
Divergence r)ﬁ : dA, , JL lr)(p/\,,] l.mw , .)i 2 or rsin® 90
VA ax dy dz p o dp p g dz 1 a4,
"rsind g
o 1. . 1. . R .
ik - @ == %r L lq)
3 9 2 P P rsin@ rsin@ r
Curl V x A —_— = d 9 2 J d J
dx dy dz —_ = = = = -z
A /\A A dp  dp dz dr a0 dp
xSy e A, pA, A Ar rAa  rApsind
10 (0 1 0. o
1 . . N L ; I 5 == =]+ 5——=5 | sinf=
_aplacian Ph PPy P l’_’( a_,p) L1 P | FFor U ar rsin@ 90 a0
Vi n? Ayt Az pdp \"dp ) plag? Azt 1 ¢
r sin’ @ dp*
Solution:

1.6 A force of magnitude F acts in a direction radially away from the axes origin, at a
point with coordinates (a/3, 2b/3, 2¢/3) on the surface of the ellipsoid of equation:

(B () () -
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Determine the component of the force in the direction normal to the surface.

Solution: see Figure 1.6.
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Figure 1.6  Solution of Problem 1.6.
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1.7 In the following, U is a scalar and a is a vector. Prove the following equations:

div (VU) = AU
V x(VU)=0
V- (Vxa)=0

Vx(Vxa)=V(V-a)-Aa

Solution:
See Figure 1.7 for the proofs of:

div (VU) = AU

V x(VU)=0

V- (Vxa)=0
See Figure 1.8 for the proof of:

Vx(Vxa)=V(V-a)-Aa
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1.8 In the following, U and V are scalars and a and b are vectors. Prove the following
equations:

VUV)=VVU)+UV(V)
V-Ua)=a-VU)+U (V-a)
VxUa)=V{U)xa+U(V xa)
V.(axb)=b-(Vxa)—a- - (Vxb)

Vx(axb)=(V-b)a—(V-a)b+(b-V)a—(a-V)b
Va-b)=ax(Vxb+bx(Vxa)+(b-V)a+(a-V)b

Solution:
See Figure 1.9 for the proofs of:

VUV)=VV{U)+UV(V)
V-Ua)=a-VU)+U (V-a)
Vx(Ua)=V{U)xa+U(V xa)
V.(axb)=b-(Vxa)—a- - (Vxb)
See Figure 1.10 for the proof of:
Vx(axb)=(V-b)a—(V-a)b+(b-V)a—(a-V)b
See Figure 1.11 for the proof of:

V(a-b)=ax(Vxb)+bx(Vxa)+(b-V)a+(a-V)b
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1.9 Homework 1 - Problem 1
We define the third-order permutation tensor e as follows:

0 when two indices are equal
Vi,7,k, €k = ¢ +1 when the indices are 1,2,3 or an even permutation of 1,2,3

—1 when the indices are an odd permutation of 1,2,3

1. Show that the components of the permutation tensor can be calculated as follows:

ik = 50 =)0~ Kk )

2. Calculate hte numerical expression of the following:

0ij0ij;  €ijkCijk; 0ijCijk;  CijkChji

Solution:

1. Letus pose A = (i — j)(j — k)(k — i)/2. By construction, (i — j)(j — k)(k — 1)
is equal to zero whenever two indices are equal. So A = 0 whenever two indices
are equal. Now suppose that i, j and k are all different from one another. There are
six possible sets of indices, including three even permutations: (1,2,3); (3,1,2) and
(2,3,1), and including three odd permutations: (1,3,2); (2,1,3) and (3,2,1). If we test
each of the six sets in the expression of A, we find that A = 1 when permutations are
even and A = —1 for odd permutations. As a result, A = €.

2. Let us calculate the given expressions.

0ij0ij = 6ii =y (1) =3

i=1
Crigr = Y (@gr)’ = >, (1)=6
ik TERTTAY

since there exists six sets of permutations for which the three indices are different
from one another.

0ij€ijk = €iik, = 0
since the permutation tensor is zero whenever two indices are equal.
Cijkerji = Cijk X (—@ijk) = —€ijkCijr = —6

according to the previous calculations.

1.10 Homework 1 - Problem 2
In the following, v and r are vectors and ¢ is a scalar. Prove the following relations:

Vx(Yxv)=V-(V-v)-V*(v)
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x (¢v) = ¢ (¥ x ) — v x Vo
=3
0

\<l

Vxr=

in which r = z;¢; is the position vector, and » = /x;z; is the magnitude of the position
vector. Hint: Use index notations to prove the relations above.

Solution:
For the first relationship:

Pvy 0%y v 0%vs
Vx(Vxuv)-e = <8z16:c2 - 3933 ) N (81‘% - 8:1:15x3>

B ﬁ ovy . % n % _ 9?0, n 0%v4 n 0%vs
Ox1 \Oz1 Oxy Oxs ox? 0z3 0x3

- %(y-g)—f(@-@l

= V(¥ v) -V ¢
and the same result can be obtained for the other components, from which we deduce:
Vx(Vxv)=V-(V-v) -V (1)
For the second relationship, we can use the distributivity of the tensorial product:
Vx(¢v)=Voxv+¢(Vxv)=¢(Vxuv)—vxVe
For the third relationship:

Ox; S ow; ¢ °L 0w o
vor=) Bz 225, 4:28:1:‘2(1):3

=1 i=3 1=1 i=3 =1 vi=1

For the fourth relationship:

Ozz _ Oz 0
8.’52 8.7‘3
Oz, _ Ozs

z X Z - 8.%3 3r1 = 0
Ozy _ Oz 0

6:E1 3$2



CHAPTER 2

ELEMENTS OF CONTINUUM MECHANICS

PROBLEMS

2.1 We consider the 2D domain 0 < z; < L, —c < x2 < c (in Cartesian coordinates).
We define: I = 4c¢®/3. The state of stress in the domain is given as follows:

2 1 2
011 = £_; (xfarg - 31‘3) ;022 = Ij; <3$;’ —Pay + 303> » 012 = % ((¢* = 23) 21)

a. Show that the state of stress is in equilibrium, i.e., div (g) =0.

b. Calculate the state of stress on each of the four sides of the domain.

c. Calculate the resulting force that is applied on the face ©; = x1¢ by the part of the
domain 7 > x19. Calculate the resulting moment at the point (219, 0).

d. Suppose that ¢ << L. Give a loading boundary condition that approximates the stress
field given in the equation above.

e. Numerical application: consider a plane wing (shaped as a parallelepiped) that is 20m
long (i.e., L=20m), and that has a half width c=1 cm. The wing is subjected to a uniformly
distributed lifting surface force p = C,p,V?/2. We give: C,=0.8; V=200 m/s; p,=1

max

kg/m3. Calculate o7}

Solution:
a. Calculate:
o ij (IE 15 1L’2)

Dz, fori=1,2

Theoretical Geomechanics. 19
By Chloé Arson Copyright © 2020
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and verify that div (g) =0.

b. On the top face, x2 = +c and the normal vector is es, therefore the stress tensor
components are:

o12(x1, 22 = +¢) =0, 09(x1,22 =4¢) =0

On the right face, 1 = +L and the normal vector is ej, therefore the stress tensor compo-
nents are:

3p (L3 23 3pL 3
on(z1 = L,z2) = Zp ( c32 - 3(;) o o2(z1 = L,xo) = 012(L, 22) = %c (1 - C;)

On the bottom face, x5 = —c and the normal vector is —es, therefore the stress tensor
components are:

o12(x1,22 = —¢) =0, oz, 29 =—c)=p

On the left face, 1 = 0 and the normal vector is —e, therefore the stress tensor compo-
nents are:

pad
o12(ry =0,22) =0, o22(x1 =0,22) = o5
c. The traction F' on the face of equation 1 = 19 and extending from zo = —C' to

T9 = 4c can be written in terms of the surface distribution of tractions ¢ that are applied

on that face, as follows:
+c

F = tdzo
—c
Note that here, a “’surface” distribution is actually a line distribution, since the problem is
2D. Using the definition of Cauchy’s stress tensor:

“+c
F= / - ndr
—C

IS]

in which here, n = ¢;, and so:

“+c
Vi = 1, 2, Fi = / Uildwg

—C

We find:
Fr =0, Fh=pzxio

The moment about the point of coordinates (x1¢,0), is, by definition:
“+c
M= [ rxtdn,
—C
in which r = (21 — x10)e; + x2e, is the vector position. Since x1 = x1¢ on the face:

“+c
/ (1‘1 — l’lo)UgldIQ = 0

—C
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So the moment reduces to:

+c P +c 2
M= —eg3 / T2011dxy = 763}/ <($1o)2(I2)2 - 3(£E2)4)

—C —C

_ 2p 23 4p, s
M = 633[(3310) C +€315I(C)

M = —63%(,%10)2 + 63%02

d. If the beam is slender, ¢ << L, 011(0,2z2) is of order 0 in L/c while o11(L, z2)
and o12(L, z2) are of order (L/c)? and L/c, respectively. The force that acts on the face
x1 = 0 becomes negligible. Stresses reach a maximum at z; = L. Stresses are almost
uniaxial since 019 is one order of magnitude less than o;;. It can also be noted that o4, is
linear in x5.

e. We find p= 16,000 Pa and:

2

3pL
e 5 MPa

o1 =o11(L,c) ~

2.2 By considering the initial state of stress ¢;; at a point and a general increment of
stress Ao;;, determine which of the stress invariants I allows superposition such that:
Ttinat = Tinitial + Tincremental-

Solution:
The first invariant is the only invariant that is linear in stress and that can satisfy the super-
position equation.

2.3 The stress state at a point is given as:

4 3 2
[c] = |35 1 [kPa]
216

a. Determine the stress invariants /7, I> and I3 at the point.
b. Determine the invariants Jq, Jo and J3 of the deviatoric stress tensor s;;.

Solution:
a. Invariants of [o], calculated with MATLAB:

L=Tr(c)=15 I,= % ((Tr () —Tr (02)) =60, I =det(o) =54
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b. Deviatoric stress tensor [s] = [o] — p[I] with p = Tr([0])/3:

-1 3 2
[s] =13 01 [kPa]
2 11

Invariants of the deviatoric stress, calculated with MATLAB:

1
Ji=Tr(o)=0 J2:§TT(82):15, Js =det(s) =4

2.4 Consider a point in plane stress, at which the state of stress is given by: o, = 2 MPa,

0yy = —1MPa and o, = 0.5 MPa. For the given state of stress:

a. Draw Mohr’s circle.

b. Determine the orientation of the principal planes and the corresponding principal stresses.
c. Determine the state of stress after the element has been rotated through and angle of 30°

clockwise.

Solution:
a. To draw Mohr’s circle (not represented here), calculate the coordinates of the center
C(0avg,0) and calculate the radius F:

1 Txr 2
Oavg = 5 (0us +0yy) = 0.5MPa, R = \/<Uﬁ’) + (04y)? ~ 1.58 MPa

b. Principal stresses, from Mohr’s circle:
01 =0P, =0C + CP, = 049 + R =2.08MPa
09 = 0P, =0C — CP, = 04y — R = —1.08MPa
Orientation of the principal planes, from Mohr’s circle:

AA Oy
CA (Oza — Oyy)/2

1
tan 26, = =73 =0,=9"+kx90° keZ

c. State of stress after rotation by —30, using Mohr’s circle:
0w =CD = 0C+ CD" = 0405 + Rcos (2 30° + 20,) = 829kPa

oyy =CE' =0C —CE' =04y — Rcos (2 30° + 26,) = 171 kPa
Ogry = DD" = Rsin (2 % 30° 4 20,) = 1.55 MPa
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2.5 A steel penstock has a 750-mm outer diameter, a 12-mm wall thickness and connects
a reservoir at A with a generating station at B, as shown in Figure 2.1. Knowing that the
density of water is 1000kg/m®, determine the maximum normal stress and the maximum
shearing stress in the penstock under static conditions. Hint: in a cylindrical pressurized
vessel (i.e., in a cylindrical container that has a radius that is large compared to the thick-
ness of the shell, and in which the pressure inside is larger than the pressure outside), the
hoop stress is equal to pr/t and the longitudinal stress is equal to pr/2t, in which p is
the pressure of the fluid inside the vessel, r is the inner radius of the vessel and t is the
thickness of the shell.

P 4 o8
e __a
| * -——«i\
| \ \
300 H

Figure 2.1 Penstock studied in Problem 2.5.

Solution:

P = pwgh=294MPa

oy = % — 89 MPa

o3 = 0, = 0 MPa

Tmax = 7 ;03 = 44.5 MPa

2.6 Square plates, each of 16-mm thickness, can be bent and welded together in either
of the two ways shown to form the cylindrical portion of a compressed air tank, as shown
in Figure Figure 2.2. Knowing that the allowable normal stress perpendicular to the weld
is 65MPa, determine the largest allowable gage pressure in each case. Use the same hint
as in Problem 2.5.

Solution:
Configuration (a):
It is required that:

pr pr
o1 = 7 < Callow, O02= ?t < Oallow



24 ELEMENTS OF CONTINUUM MECHANICS

Figure 2.2 Compressed air tanks studied in Problem 2.6.

which is satisfied as long as:

pr
7 < Callow

from which we get:

t Callow

= 419kPa

Configuration (b):
A rotation by 45 in the physical plane corresponds to a rotation by an angle of 90° in the
stress plane (in Mohr?s circle). At 90° from P1 (maximum principal stress), the stress in
Mohr7?s circle is:

Uizgézaawzl(?ﬁ ﬂ) _3pr

2\t 2t 4t
As a result, it is required that:
3pr

— <
A = allow

from which we get:
?)Pl < Atoaiiow
4 —  3r

Configuration (b) is 33% more efficient than configuration (a).

= 558 kPa

2.7 Show which of the following strain states satisfies the compatibility condition:

2 2 2
ug =0, €71 = (:171 +x2) €99 = 2 €19 = T1t2
3 = 11 =5 22 = — 12 =
’ a2 a?’ a?
2 2
o 3 (23 + 23) 23w _ r1T213
'LL3 - ) 611 - (13 ) 622 - (13 ) 612 - a3

Solution:
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For the first strain state, we are in plane strain since all the derivatives by x3 are zero and
the displacement along direction 3 is zero. In the expression
3261']' 82€k1 82€ik 82€jl
0x,0x) O0x;0x; O0x;0x 0x;0xy,

2.1

the possible combination of indexes (i,j,k,1) are

1,1,1,1

) ) )

( )

(2,1,1,1) (1,2,1,1) (1,1,2,1) (1,1,1,2)
(2,2,1,1) (1,2,2,1) (1,1,2,2) (2,1,1,2)
(2727271) (17272’2) (271’2’2) (2’2’1’2)
( )

2,2,2,2

and we check that the expression in Equation 2.1 is zero in all cases, which means that the
strain state satisfies the compatibility condition.

For the second strain state, we are not in a plane strain condition because not all the deriva-
tives about x3 are zero. The expression in Equation 2.1 is not zero for all possible combi-
nation of indexes. In particular, for (i,j,k,1)=(1,2,3,2), we have:

82612 + 82632 o 82613 B 82622
8$38$2 8$18$2 8$28$2 8$18$3

A =

1
= L 10-0-0#0
a

The result above shows that the second strain state does not satisfy the compatibility con-
dition.

2.8 Let us consider a vertical beam of length L. = 2m and half-width h=0.2 m, as shown
in Figure 4.6.a. The position vector is given as OP = Xex + Yey in the Cartesian
coordinate system, with —h < X < +hand 0 < Y < L. Consider the deformed
configuration shown in Figure 4.6.b. such that the new position vector is given as:

OP = x((Y,t)+Xe, ((Y,t)), e, =cosbex+sinfey, eg(f)= —sinbex-+cosbey

in which xq(Y, t) and 6(Y, t) will be defined later.

a. Calculate the Green-Lagrange deformation tensor e as a function of (Y, t) and 0(Y, ¢).
b. Calculate the elongation in the e x -direction.

c. Calculate the elongation in the ey -direction, on the vertical axis (X = 0) and on the
lateral sides (X = +h).

d. Calculate the distortion in the direction (e x,ey ) as a function of Y.

e. Now we pose:

wo(Y,1) = %(—ex +e- (0(Y 1), 0(Y,t)= %
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Repeat questions a.-d. above.
f. Now suppose that the deformed configuration is that shown in Figure 4.6.c, in which:

OP = xzy(Y,t) + Xe, (1.10(Y, 1))

Explain the difference between Figure 4.6.b and Figure 4.6.c.

(a)

Figure 2.3 Beam problem studied in Problem 2.8.

Solution:
a. By definition of the Green-Lagrange deformation tensor:

e = S (YT YW+ Y T Y W)

We first calculate the gradient of the displacement field:

0x;
X(H) = (a; 51’j> §i®§j
J

in which Xje, is the position vector in the undeformed configuration and z;e; is the posi-
tion vector in the deformed configuration. Using the notations of the problem, we calculate:

de, (0(Y,t))

Rey t+e,. (0(Y,t))®ex —|—XT®ey —exRex—eyRey

_dzo(Y,t)

v (u) ay

From there, the Green-Lagrange deformation tensor is obtained:

1 diBo(K t) ]

5 dy e (ex ®ey +ey @ex)

dao(Y,t) |2

<|721Y * - 1) LW deo(Yit) L, (dO(Y0) 1. e
2 ay — dy 79 ay yery
b. From Equation 2.2, we see thatex - e - ex = exx = 0.

c. From Equation 2.2, we have:

eyy = ey + - qy

dfco Y,t
(|7d(Y >|2_1> L B0 dao (Y1) ) 2
2 ay  dYy 2
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On the vertical axis (X = 0):

<| dmg(}}’,t) |2 _ 1)

€yy(X = O) = 9

On the lateral sides (X = +h):

(1225522~ 1) iary 1) dao (v, 1) 1, (oY, D)\
dy ) ] ) 2 )

X ==4h) = +h - —h? | ———
evy( ) 2 R S < dy )
If % > 0, the maximum elongation is on the side X = +h. If % < 0, the
maximum elongation is on the side X = —h.

d. Here, we calculate the distortion of the angle (ex, ey ), as follows:
v="TF(ex) - F(ey)—ex-ey = 'F(ex)-F(ey)

in which F' is the gradient of the transport function ¢, which associate a position vector in
the deformed configuration to a vector in the undeformed configuration. We have:

e:%(TF-F—I)

from which we get:
TF F=2e+1

and in particular:

dxo (Y,
"F(ex) Fley) = Fx;Fjy = 2exy = % =

We find that the distortion is zero if the the tangent to the neutral axis is orthogonal to the
deformed section (Bernouilli’s assumption).
e. For the proposed functions x( and 6, we have:

o= ™ (11™) 0 s
T L o ) Y Y

We have: exx = exy = 0 (no elongation in the X-direction and no distortion), eyy =
% (1 + %) ~ 36% according to the figure. Few materials can resist such an elongation
in the direction of the fibers (latex can).
f. In the right figure, the distortion is non-zero: the material points shown in the right figure
experience shear deformation. We can indeed check that:

d:BO (Y7 t)

e e (1.10) = ey(0) - e,.(1.10) # 0

2.9 A cube of granite with sides of length a = 89 mm (see Figure 2.4) is tested in a
laboratory under triaxial stress. Assume E = 80 GPa, v = 0.25. Gages mounted on the
testing machine show that the compressive strains in the material are €., = -138 x 107°
and €,y =¢,, =-510x 10~6. Determine the following quantities:

a. The normal stresses o, 0,y, and o, acting on the x, y, and z faces of the cube;

b. The maximum shear stress 7,4, in the material;

c. The change AV in the volume of the cube;

d. The maximum value of o,, when the change in volume must be limited to -0.11%.
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Figure 2.4  Granite sample studied in Problem 2.9.
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Solution:

a. Using Hook’s law in terms of the Young’s modulus and the Poisson’s ratio:

E
(1+v)(1—2v)

O3 =

(L =v)eis +viej +ene)l, i#4, J#Fk k#i
in which there is no summation on the indices. Numerically:

Oge = —82.6MPa, o,, = —54.7TMPa, o, = —54.7TMPa

b. The cube is in a state of triaxial stress, therefore there is no shear stress on any of the
faces and 0, 0y, and o, are principal stresses. The maximum shear stress is half of the
difference between the major and minor principal stresses, and can therefore be calculated
as follows:

Tmax = w = 13.92MPa

c. Change of volume:
AV = Vi —=Vy=(a+ Aa)(b+ Ab)(c+ Ac) — abc

= (a+ a€zz)(b+ beyy)(c+ ces) — abe
abe [(1 4 €zq) (1 + €yy) (1 +€..) — 1]

Under the small deformation assumption:
AV >~ abc (€gq + €4y + €22) = abce,

Numerically:
€ =—12x10"%, AV = —846 mm?

d. We impose:
et =—-0.11%

Developing the expression of the volumetric strain:
mazx (€gz + €yy + €2.) = —0.11%
Substituting the deformations by their relationship to stress via Hooke’s law:

(1-2v)

7 maz (0w + Oyy +022) = —0.11%

If 0y and o are fixed, then:

0.11%E
= - — 0
xx (1 _ 21/) vy

max
—O0z2

Numerically:
od® = —73 MPa

T
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2.10 Consider a parallelepidic specimen of length L, with a square section of edge length
a. The square section of the specimen lies on the plane (0, 21, z2). The parallelepiped can
slide on the plane but cannot loose contact with the plane. The specimen is loaded at
x3 = L by a uniform compression —F' in the eg direction. The material that makes the
specimen is isotropic and linear elastic,with a Young’s modulus E and a Poisson’s ratio v.
We assume that deformations are very small, and we neglect the gravity and inertia forces.
We give: L=20 cm, a=1 cm, E=200 GPa, v=0.3, F=100 N.

a. Calculate the displacement field at 3 = L if the lateral faces of the specimen are free
of stress.

b. Calculate the displacement field at x5 = L if the specimen is encased in a very rigid
support, within which it can slide. c. Calculate the displacement field at x5 = L if the the
faces z1 + a/2 are fixed and if the other two lateral faces are free of stress.

d. Now suppose that the specimen is encased in a very rogod support and that there is
an initial misfit of 0.01 mm between the lateral faces. What is the required value of the
compression force F for which the lateral faces of the specimen get in contact with the
rigid support?

Solution: see Figure 2.5.
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On cherche une solution ol les déformations sont uniformes et seulement des extensions
E=g, 1,®1+ g, LOIL, +¢&, i,®i,
O =ATrel + 2 €= A (g +g,+8,) I + 20 (5,1, ®f +8,,L,®i, + &, 1,®i,)
O = (A+2W)E +AE+e) 10+ (A2 + A€y +E€,)) 1B, + (A+2L)E+A(Ey+E5)) 1, B,

Cas 1 :0(,)=6(i,)=0, o(i;)=F/S i; , &;,=¢;,=¢;

o(i)= 2(A+Weyt+re,) i;=0 =>g,=-he/2(A+U) =-V &y (v = M2(A+U))
O(i;)= 2hey+(M2)ey)) iy =>Eey=F/S (E = LBAM20)/ W)
o =F/Si.®i,

u; =&y X; (CL en x,=0) => u,(x,=L) = FL/ES

Cas 2: ¢(i,)=F/S i;, g4=0
G =g, (A (1,0, +5,®4,) + (+210) L,®i,)
©(i,)=F/S i, => &, =F/S(A+21) = F(1-2v)(14v)/SE(1-v)
(A=Ev/(1+v)(1-2v}, u=E/2(1+V))

u; =8y X; (CL en x;=0) => u;(x,=L) = (FL/SE) (1-2v)(1+v)/(1-v) ~ 0.4 FL/SE
Cas 3 :e,,=0,0(i,)=0
O = AMEg+ey) i, ®i+ (AA2108,+28,) LB, + (A+2)e+Aey,) L@,

o(i,)= (M2 +Ahey) i, => Em:';‘fv/(.l"'zl-l) =-(V/(1-V)) &y
G (i,)= (A+2e+AE,) |y => (A+2W)eytAey, = F/S => g, = F(1-v)/SE

U, =g, x; (CL en x,;=0) => u(x;=L) = (FL/SE) (1-v®) ~ 0.9 FL/SE

Conclusion : FL/ES, 0.74 FL/SE, 0.9 FL/SE
aucune différence si v=0, énorme différence si v->0.5

Donc réle important de v dés que la piéce n’est pas libre latéralement

Figure 2.5  Solution of Problem 2.10.

2.11 Homework 1 - Problem 3
Consider an initial state of stress at a point, given by: 0,,/0., = 0.5, 0y, /0., = 0.75,
O32/02, =025, 04y/0,, =0,0y,/0,, =0,0,, =1.

1. Calculate the invariants of the stress tensor: I, I and I3.

2. Calculate the magnitude of the principal stresses o, 02 and o3. Calculate the angles
of orientation of the principal planes.

3. The state of stress at the point is changed by application of the following stress in-
crements: Ao,, =0, Acyy/0., = —0.25, Aoy, /0., = 0.25. Draw the initial and
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final Mohr cirlces. What are the final magnitudes of the principal stresses and the
orientations of the principal planes?

Solution:

1. Calculations can easily be handled with MATLAB:

1
L=Tr(e) =225, L= |(Tr()’-1r (02)} —1.5625, I; = det (o) = 0.3281

2. Solving the characteristic equation with MATLAB, we get:
o1 = 1.1036, o092 =o0y, =0.75, o3 =0.3964

It was expected that o, would be a principal stress, since 0,y = 0y, = 0. Asa
result, e, is a principal direction. The other tow principal directions are in the plane
(e, ,e,). We can find the orientation of the principal axes by calculating first the angle
0, between the normal to the plane subjected to the major principal stress, as follows:

20,

tan(26,) = =1=0,=225°+£k%90°, k€ Z

Ozz — Oxx

One principal plane has a normal oriented by an angle of 22.5° to the x-axis, and
another principal plane is oriented to an angle 112.5° to the x-axis. The unit vectors
that are normal to the principal planes are expressed in the Cartesian base as follows:

0 c0s(22.5°) sin(22.5°)
1, 0 ) 0
0 sin(22.5°) cos(22.5°)

3. The new state of stress is:

0.25 0 0.5
'] =[c+Ac|=|0 0.750
05 0 1

U;y is a principal stress. The other two principal stresses are found by solving the
characteristic equation in MATLAB:

oy =125 o4 = cr;y =0.75, o4 =0

One principal plane is normal to e,. The normal vector of the other two planes is
contained in the plane (e, e ). The orientation of these two normal vectors compared
to the x-axis is found in the same way as in question 2:

/ QUC/IZZ 4 / o o
tan(29p):ﬁ:§ = 0, =26.56° 4+ k*90°, k € Z
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The unit vectors normal to the principal planes are the following:

0 c0s(26.56°) sin(26.56°)
1 0, 0 ; 0
0 sin(26.56°) cos(26.569)

2.12 Homework 1 - Problem 4

Consider a specimen that has the shape of a disc with a diameter d. The disc is subjected
to two forces P that are diametrically opposite, as shown in Figure 2.6. We consider the
following stress field:

o cos cos 0 1
:< 1>er1®er1+( 2)er1®er1_1

a 1 9 d

in which a is a constant that will be defined later, I is the second-order identity tensor and
r1, 2, 01, 02, €,1 and e, are defined in Figure 2.6.

1. Show that div [(cos/7)e, ® e,] = 0, in which 7, § and e,. are the usual coordinates
and coordinate directions used in a cylindrical coordinate system.

2. Deduce from the previous question that the stress field is in equilibrium, i.e. that
divo = 0. Neglect the forces of gravity and inertia.

3. Show that the traction force t = o - 1 is zero on the free surface r = d/2. Consider
points of the free surface that are far from the point of application of the forces P.

4. Calculate the stress tensor on the axis ;3 = 0. Explain why the specimen has a low
resistance in traction on this axis.

Figure 2.6  Schematic of the Brazilian test studied in Problem 4.
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Proof of : div [(cosO/r)e, @ e,] = 0:

div[(cosf/r)e, @ e,] = div[(cosf/r)] - (e, @ e,) + (cosb/r)div [e, ® e,]
(2.2)
in which: e, = cos fle,, +sin fe, (noting x for z; and y for x5 for compactness). We
have ey = — sinfle,, 4 cos fe,, so that:

Oe,
=e
90 o
‘We thus have: 1
Vie] =0xe.®e, —|—;69®€9
1 1
Vier®e,] = ;6T®69®69 +;69®69®6T
And so: 1
dive, ®e,] = —e, (2.3)
r
On the other hand:
cos 0 sin 0
V [(cosO/r)] = e e (2.4)

From equations 2.2, 2.3 and 2.4, we have:

1
div|[(cosf/r)e,. @ e,] = —C(;SzeeT + Co:e;er =0 (2.5)

So we showed that div [(cosf/r)e, @ e,.] = 0.

. Proof of equilibrium: Noting x for x; and y for z» for compactness, we have:

e, = —cost e, +sinb e,
ep, =sinf e, +cosb e,
er, =costhe, +sintr e,

ep, = —sinby e, +cosbs e,

Equation 2.5 is valid for any cylindircal coordinate system, and so:
div,, g, [(cosbi/r1)e,, ®e,] =0

div,, g, [(cosbz/r2)e,, @ e.,] = 0

Note that the two equations above are derived in a different coordinate system than
equation 2.5. To perform the coordinate change and convert a derivation in (r1, 61) or
(72, B2) into a derivation in (7, 6, we introduce the following Jacobian matrices:

ory . 00
or v or .

LL} = 5 1= 1,2
67“7; 601
rof 00
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‘We have:
div, g [(cosb1/r1)e,, ® ey ] =[J)1 - divy, g, [(cosbi/m)e, Qe ] =0
div, g [(cosOz/r2)e,, @ e.,] = [J]2 - div,, e, [(cosbOa/r2)er, @ €] =0

Since: I/d is a constant tensor, we deduce from the two previous equations that:
div,. g0 = 0

which shows that the system is in equilibrium.

. When r = d/2, cosf/r1 = cosby/ro = 1/d. We have n = e, and so the surface
traction is:

a
— 767-

a a
o-n= E(erl er)er + (e er)en 7

d
We have e, - e,, = 0and so e,1 - €,)e,1 + €2 - €,.)e o = e,. So we have:

a
e. ——e. =0

o-n="2
—d T d

So the radial traction force is zero on the circumference of the specimen.

. On the vertical axis (z1 = 0), we have §; = 6 = 0, § = £7/2, e,, = —e, and
er, = €y (using v = x1, y = x2). The stress is:

o 1 1 1 1
7:Hey®ey +Eey®€y —EeI®em—Eey®ey

Take a vetical cut in the specimen and analyze the traction force that applies on the
right side. We have n = —e, and < = e, /d. Similarly, the traction force that applies
on the left side, where n = e,, is ¢ = —e,/d. So the specimen is subjected to a
horizontal force pointing the the left on the left side, and to a horizontal force pointing
to the right on the right side. That means that along the axis z; = 0, the specimen
is subjected to opposite horzontal forces that subject the specimen to traction. That
explains why the specimen has a low resistance to traction along the axis z; = 0.

See Figure 2.7 for more details.
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Eléments de solution
4. Div, ((cosf/r) i,®i,)
On rappelle :
Div (o A) = o Div A + A(V, o) Div,(a®b)= D,a(b) + div,b a
On en déduit
Div, ((cosB/r) i.®i,) = (cosBir) Div, (i,®i,) + (i,®i )}V, (cosbir))
= (cosBir) (D) + divj, i) + (i, V.(cos8/m) i,

V,(cos8/r) = (-sinb/r) igr - (cosB/r’) i, , D,i, = dyi, @iy/r= i, Biyt
Div, {(cos/r) L ®i,) = (cos@r) (0 + (/1) i) - (cosBir’) i, =0
'fr Remarque : avec la formule classique, on trouve le méme résultat :

|
E' do_jor + (1/r) 90,/00 + (0, - Ogy )t = - cos B,/r,” + cos B,/r," =0

\

;2, Sur le pourtour r=d/2, n=e,, cos 8,/r, = cos 8,1, = 1/d, et : (¢, , e,)=0; d'ol:

]\ om=a/d[ (e, e) e, + (e, e)e,- ¢ |=0
3. sur x,=0, 6=0, 0,=6,, r,=r, , cos B, =d/2r, ,r, = (d*/4 + )" ; n=-i, ,
(e, ,-iy)= cosB,, (e,,-i))=-cos@,
o(n) =a [(cos® B,/1)) e, - (cos’ 0./1,) €, + (1/d) iy]
o(n) =a [(cos” B,/r,) (sin B, i, - cos B, &) - (cos” Bulra) (sin 8, ; + cos §, i,) + (1/d) ]
o(n) =a [-2cos® O/r, +(1/d) 11, = a/d [-d%4r," + 1],

donc, il n'y a pas de cisaillement sur cet axe;

si r;=d/2, (au centre), la contrainte normale est max. et vaut: -3a/d

sir =d//2. (au bord), la contrainte normale vaut zéro.

Résultante (des forces de contact de la partie inférieure x,<0 sur la partie x,>0:
(a/d) Lma [-d't4(d*4 + ) +1]dr=-(ald) d/2=-am/2=P

on en déduit a.

Répartition de 0y, sur l'axe x,=0:

4. Sur I'axe x,=0, 0,=0,=0, 8= 27/2, ¢, = -i,, e,= i, , n =1, (si on regarde l'action de x>0 sur x,<0):
ola=-(lid) i

il n'y a, & nouveau, pas de contrainte de cisaillement. Comme a et d sont positifs, la contrainte normale
est une traction. L essai est intéressant car il est difficile de pratiquer un essai de traction simple sur le
béton, & cause des problémes d'arrimage de I'échantillon & Ia presse.

Figure 2.7  Solution of Problem 2.12.
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2.13 Homework 1 - Problem 5

Taking the axis x3 normal to the sheet of the paper, draw the final configuration of the
displacement fields (u) given below, in which a is a small positive quantity. Calculate the
deformation tensor that contributes to these displacements:

1. w1 =axi,us =axy,uz3 =0
2. up =azo,us =azxy,uz =0
3. uy =axg, up =axg, uz =0

4. vy =aze,u2=—axi,uz =0

Solution: There is no displacement in direction 3, and none of the other displacements
depends on x5, so that all the derivatives du;/Ox3 are zero. As a result, each of the
configurations presented are in plane strain, with the strains remaining in the plane (x1,22).
Additionally, a << 1, so we can make the assumption of small deformation. The final
configurations of the four displacement fields are shown in Figure 2.8. The deformation
tensor is 2 x 2 because we are in plane strain (i.e., the components 33, 23 and 13 are zero)
and it is calculated by using the definition of the linearized deformation tensor since we
are in small deformation. Results are as follows:

1. Gradient of the displacement field:

Deformation tensor:

- zw) - 2]

This is a volumetric deformation.

2. Gradient of the displacement field:

wwl-|0r]

a 0

Deformation tensor:

a0

- zw)- 0]

This is a shear deformation.

3. Gradient of the displacement field:
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Deformation tensor:

Deformation tensor:
1 00
= - \Y4
=5 (L0 +" L) = [0 ’ ]

This is a rotation, which is a rigid body motion. Therefore, there is no deformation.

X, X, X, Xy g
e
1+a a / 1
<= 1+a :
1 1 1 1\
1] |1+a 1
s o ' I
X X, X Xy
1 2 3 4

Figure 2.8 Illustration of the deformations produced by the displacements in Problem 2.13.

2.14 Homework 1 - Problem 6

A constant volume axial compression test is conducted on a soil sample which has initial
dimensions z1, T3, T3 = x3. Assuming that the specimen has lubricated ends and that
it deforms with plane sides, express the strain state in the sample using the Lagrangian
and Eulerian finite strain tensors for a vertical displacement, u; = kx; . Show how the
major principal strains compare with the principal strains under the assumption of small
deformation, as functions of k.

Solution: The specimen is lubricated at top and bottom, its faces remain plane, and the
deformations in direction 2 and 3 are expected to be the same. Therefore it is anticipated
that the specimen will undergo no distortion (or shear), and that it will undergo the same
elongation in directions 2 and 3. Additionally, there is a negative elongation in direction 1,
due to the loading. The displacement field is thus of the form:

u==kxie; +axes +ax3es
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The experiment is conducted under constant volume, so zixox3 = zjzhrh. Since ) =

(1 + k)1, then we have z, = x2/+/(1 + k) and x4, = z3/+/(1 + k) and therefore:

1 1
u=kre +(m—1) To€o +(m—1) Tr3es

The Lagrangian finite strain tensor L is defined as follows:

1 _8ui 8Uj aUk %_

L.. = =
Y2 |0x; Oz Owmy Oxy |
and we calculate: ) )
2k +k* 0 0
1 k
k
K 0 1% |

By definition of the displacement vector, u = @’ — @, in which @’ is the the new position
vector, which can be expressed explicitly as:

' =1 +k)re; +(1+a)zes + (1+ a)zzes

We can now express the displacement vector in terms of the new position vector:

k "ei + &7 ' en + @ 'e
=—x —=x —=
T4k Y T a2 T e ™
k
u:mx’lel +(1—\/1+I<:) Thes +(1—\/1+k> rhes

‘We can now calculate the Eulerian finite strain tensor, which is defined as:

1 |{0u; Ou; Ouy Ouy
E,=- J
5 [823 * o, oz ax;]
We find: )
[# 0 0
[E] = 3 0 —k 0
0 0 -k

In small deformation, the linearized deformation tensor, defined as the symmetric part of
the gradient of displacement in the initial configuration, is:

k 0 0
€l =10 ( 11+k — 1) 0
1
0 0 (v -1)
The major principal strains are ¢;; = k in small deformation, L1; = k + k?/2 in La-

2
grangian finite strain and Fy; = %k)/f in Eulerian finite strain.
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2.15 Homework 2 - Problem 1

Let us consider a cylinder of length L and circular cross-section with radius a. We assume
that the state of stress in the cylinder is given as o0 = ar (ep @ e, + e, ® ep). Gravity
and inertia forces are neglected.

1.

Show that the state of stress satisfies the equations of equilibrium and the boundary
condition on the lateral face (free of stress).

. Calculate the state of stress on the top and bottom faces (z = 0 and z = L). Calculate

the resulting moment about the axis of the cylinder. From there, calculate o as a
function of the loading and as a function of [,,, the polar moment of inertia of the
section.

. Propose an experimental set-up that can create this state of stress. Discuss any chal-

lenge that you anticipate in this set-up.

. Calculate the first two invariants of the stress tensor and of the deviatoric tensor.

Suppose that the constitutive material breaks when the norm of the deviatoric stress
exceeds a certain limit k. Calculate the maximum couple that can be exerted on the
cylinder. Dimension the cylindrical transmission axis of a truck for a couple C' =
3,000 N.m, with k = 120 M Pa (steel).

Now suppose that the cylindrical transmission axis is made of a composite material
with long fibers. In what direction should the fibers be oriented to optimize the design
of the cylindrical transmission axis?

Solution:

1.

Since gravity and inertia forces are neglected, the equation of equilibrium is satsified
if and only if:
divo =0
We have:
(90'1‘]‘ e; = 80‘77 e 80’9]' e+ &rzj e,
al'j 6xj 3%- ale

Since 0, = 0and oy, =099 = 0, = 0,, =0

divo =

8092 aaz@
0z cot 00

Since 0y, = 0,9 does not depend on 6 or z:

divo = e,
divo =0

which shows that the proposed state of stress verifies the conditions of equilibrium.
On the lateral face, r = a and the normal is e,.. With the proposed state of stress, the
tractions on the lateral face are thus:

t=oc(r=a)-e,=aaleg®e,+e,Rey)-e.=0

Hence, the proposed state of stress ensures that the lateral faces are free of stress.
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2. On the top face, z = L and n = +e,. The state of stress is thus:
oy, =e€po(z=L)e,=0, o0p,=ego(z=0L)e,=+4ar, o,,=e,0(z=L)e,=0
Similarly on the borrom face, z = 0 and n = —e,, and the state of stress is:
0y =0, 09,=—-ar, o0,,=0

The resulting moment about the axis of the cylinder is:

M, = (req)x (o-e,)dS :/ (re,) X (areg)dS
S. S

Using cylindrical coordinates:

a 27 4
M, =« (/ r3dr/ d9> e, = Toa e,
r=0 0=0 2

Noting that:

L
2
‘We have:
M. e,
o =
IP

3. The proposed state of stress could be created by fixing the bottom face and subjecting
the top face to a couple equal to M, while leaving the lateral faces free of stress.
Some challenges: (i) Ensuring propoer grip at the top and bottom; (ii) Avoiding con-
centration of stresses for those grips.

4. Stress invariants:
L =Tr(e)=0

1 1
I, = 3 [Tr () = Tr (0'2)} = —§Tr (o?)
with:
o’ =a%r? (eg®e,+e,Reg)(egRe, +e,Rey) = a?r? (egRep+e,Re;)

So that:
I, = —a?r?

The stress tensor is equal to the deviatoric stress tensor, so that [; = J; = 0 and
I2 = 7J2 = 70[2 T2.

5. Here we recall that the norm of a matrix is:
1/2
|A] =Tr (A A7)
As a result, the norm of the deviatoric stress is:

|8|=Tr(32)1/2:\/E:(Za2r2)1/2:\/§ar
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The maximum deviatoric stress is reached at r = a:
Ismax‘ _ \/iaa

If the material breaks when |s™%*| reaches the value k, then the maximum possible

value of « is:
k

T a2

and the maximum couple that can be exerted on the specimen is:

mazx
(0%

mat krma

3
cmaz

— amam II — amaz

D 2*2\/5

For the dimensions given in the problem, we find that the minimum radius of the
cylinder should be: a,,;, = 2.82 cm.

6. It is advised to orient the fibers such that the direction of maximum shear in the
specimen corresponds to the direction of maximum strength of the fibers. Fibers
typically resist the most to tension in the direction of their axis. The maximum shear
stress in the specimen is oriented at an angle of £45° to the specimen axis. Hence, it
is recomended to orient the fibers at 45 to the cylinder axis.

2.16 Homework 2 - Problem 2

For standard triaxial tests (axisymmetric geometry) on soils, a good representation of stress
states in the soil is obtained by introducing the stresses ooet = ok /3 and ¢ = 01 — 03,
which are related to the invariants of the stress tensor /; and .Js, respectively. The stress-
strain behavior can be considered by introducing two measures of strains, €,, and e,
which are energetically compatible with theses stresses such that:

oW = O'ij(seij = Uoctfsevol +q6€s

1. Find an expression for €, to satisfy this relationship. Show that €,,; and €, can be
expressed in terms of the invariants of the strain tensor.

2. Figure 2.9 lists the results of two drained triaxial tests on medium dense sand. Plot the
results (i.e. plot g VS. Toct, @ VS. €, €yor VS. €5 aNd Tpcp VS. €401). How well does the
linear, isotropic elastic model describe the behavior of sands measured in these tests?
(Assume values for the elastic moduli K, G and compare with the measurements).

Solution:

1. We first note that due to the symmetry of the test, the stress and strain tensors take the
following forms:

0'20161@61 +O’362®62 +O’363®63

€E=¢€1e;1Re +€362 X es +€3€3 ®63
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Source: Clough and Seed (1968)

Test 1: ep=1.05 Test 2: ep=1.03
gy (kse)  Opp (ksc) €54 (%) Err (%) Ozz7 (ksc)  opr (ksc) €27 (%)  Err (%)
1.0 1.0 0.0 0.0 1.0 1.0 .0 0.0
1.12 0.94 0.32 -0.09 1.12 1.0 0.19 0.05
1.27 0.865 0.86 -0.24 1.42 1.0 0.44 0.0
1.44 0.78 1.56 -0.46 1.72 L0 1.19 0.0
0.61 1.94 1.0 225 024
1.52 0.74 2.06 0
: 20.93 2.23 1.0 341 -0.59
1.62 0.69 3.23 0 541 10 498 0.86
1.70 0.65 4.19 -1.30 560 1o 665 193
1.75 0.625 5.49 -1.74 277 10 893 193
1.79 0.605 6;87 -2.33 2:86 1‘0 11.52 _2'88
1.81 0.595 8.55 -3.12 2.96 1.0 13.85 -4.04
1.86 0.57 10.89 -4.09 3.00 1.0 16.14 -5.06
1.88 0.56 14.12 -5.71 3.05 1.0 18.37 -7.23
Figure 2.9  Triaxial test data.
in which the loading is done in the first direction. We have:
oW = aij(Seij = 010€1 + 2030¢€3
SW = % (01 4 203) (6€1 + 28e3) + (01 — 03) Fes
To find the expression of ¢,, we proceed by identification, and we find:
2
€ =3 (e1 — €3)
Let us recall that the second invariant of the deviatoric stress tensor can be calculated
as:
1 1[4 1 1
J2 = §TT(82) = 5 § (01 — 03)2 + § (0'3 — 0'1)2 + § (03 — 0’1)2
After simplification:
1
Jy = 3 (01— 03)?
And in the same way, the second invariant of the deviatoric strain tensor is:
1 2
JE = — — €-
1=gla—e)
As a result, we have: 5
€g = g\/ﬁ

Additionally, we can readily see that:

€vor =T (€) = I

2. This question requires plotting the experimental results, fitting them with a linear
elastic law, and calculating the error made by this fit.
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2.17 Homework 2 - Problem 3
When we interpret the results of a triaxial axisymmetric test, we assume a uniform state

of stress in the sample (as described in Problem 2), which requires that the porous stones
(platens) are frictionless.

1. Draw a sketch of the triaxial specimen (with height H and diameter D) and indicate
the boundary conditions which are implied by this assumption. If the piston is rigid
and the sample is made of linear, isotropic (elastic) material, determine the stresses
and strains in the sample in terms of the confining pressure, o3, and the displacement
of the upper piston, §.

2. In areal experiment, there is no slippage between the specimen and the porous stones.
How does this affect the solution of the problem? Can you solve this problem when
o3 =0and v =0?

Solution:
1. Boundary conditions (direction 1 is the loading direction):
» Top surface, z = H, normal +e;: u; = § (controlled displacement), go; =
031 = 0 (no friction);

* Bottom surface, z = 0, normal —e;: u; = 0 (fixed displacement), central node:
ue = ug = 0 (fixed) and rest of the boundary: 21 = 031 = 0 (no friction);

= Lateral surface, r = D/2, normal e,.: o959 = 033 = 0, = o3 (uniform confining
stress) and 012 = 013 = 023 = 0 (no tangential traction on the lateral face).

In the absence of shear stresses, the stresses o1 and o3 are the principal stresses and
the strains €; and e3 are the principal strains. Due to the symmetry of the test, the
stress and strain tensors take the following forms:

g =01€1 X €] +O’3€2 X €2 +O’3€3 X €3
€ = €1€1 &® (5] + €3€9 [o%4] €9 —+ €3€3 & €3
in which o3 is known and in which ¢; is imposed by the boundary conditions:
€1 — 5/H

Next, o1 and €3 can be found by using Hooke’s law, as follows:

a1 = WEHQV) (1 —v)er + 2ves]
We get:

(1—1/)0’3 E
€3 = —7 —

v 0
z EX—(1+V)(1_2;/) (1—v)— +2ves

H



PROBLEMS 45

from which we get:

(I +v)(1—2v) v(l+v) 6
= E BT -y “H
and lastly:
B E § 2%(1+v) 6 1+v)(1-2v)
Ul—m (1—V) —X+2V03:|

H (1-v) " H
E

B
3 202(1 +v) K3
H

o1 = 2voz + =

(I+v)(1-2v)
2. In areal problem, the boundary conditions are:

» Top surface, z = H, normal +e;: u; = J (controlled displacement), uo = uz = 0
(no slippage);

* Bottom surface, z = 0, normal —e;: u; = 0 (fixed displacement), us = usz = 0
(no slippage);

» Lateral surface, = D/2, normal e,: 092 = 033 = 0, = o3 (uniform confining
stress) and 015 = 013 = 023 = 0 (no tangential traction on the lateral face).

In a real test, shear stresses 012 and 013 can develop at the the top and bottom surfaces
of the specimen. The state of stress is not uniform, since 015 and o3 are zero at the
lateral surface for 0 < z < H. Maintaining the axis-smmetry assumption, the stress
and strain tensors are now expressed as:

o =o011€e1 Qe +o3ex ey +03e3Res +013e1 @ ez + 01361 D es

€=¢€1e1 Qe +€e33ex Qe+ €333 QX e3 + €131 Qe +013€1 D €3

with ¢; = §/H and o3 given. The unknowns are o171, 013, €33 and €13, which now
depend on the position in the specimen. It is immossible to solve for the stress and
strain fields in the specimen unless additional assumptions are made. For instance, if
v = 0, then the specimen will not undergo any lateral strains due to the compression
in direction 1 and by the same token, there will not be any friction applied on the top
and bottom platens. As a result: 013 = €13 = 0 and €33 = o3/FE. If, in addition,
o3 = 0, we get e33 = 0, and also: 0y = Fe; = E §/H. So we can solve the problem
if we assume v = 0 and o3 = 0.

2.18 Exam 1 - Problem 1

Let us consider a cylindrical specimen of length L and initial section Sy. We seek to design
a mechanical test in order to reproduce a uniform state of stress & = aes ® ez in the
specimen, by only applying tractions at the boundary of the cylinder. « is a scalar constant
and ej3 is a unit vector parallel to the axis of the cylinder. Inertia forces are neglected.

1. Calculate the forces that need to be applied to the specimen. Propose an experimental
set-up to apply those forces. Comment on the way the specimen will be anchored.
Calculate the value of « as a function of the applied forces.
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. The peak force at failure, noted F'y, is measured during the experiment.What is the

error made on the calculation of the ultimate stress (i.e. the stress at failure) if the
stress is calculated by using the initial cross-section of the specimen (.5p) instead of the
current cross section (noted S;). Calcualte the error for the special case S; = 0.8 Sy.

. Suppose that the stress field induced by gravity is of the form o, = —p g r3e3®e3, in

which p is the specific mass of the material (expressed in kg/m?) and g is the gravity
acceleration. Show that the equilibrium equations are satisfied. At what condition on
the value of «v can the gravity stress be neglected? Now suppose that the material that
makes the specimen is used to design elevator cables. If the maximum stress that can
be applied to the elevator cable is 200 MPa, what is the minimum number of elevators
necessary to reach the bottom of a diamond mine located at a depth of 4 km? Assume
p="T.7x 103 kg/m>.

In the following, gravity forces are neglected. Express the stress components on a
plane of normal n in the specimen. What is the orientation of the plane where the
shear stress is maximum?

. Three simple traction tests are performed with three different materials:

» a material that breaks when the normal stress exceeds a certain resistance R;

* a poly-crystalline material that breaks when the maximum shear stress exceeds
the threshold R;

* a mono-crystalline material that breaks when the shear stress in the direction
moy = %(—17 0,+1) on a plane of normal ng = %(1, 1,1) exceeds the thresh-
old R.

Calculate the maximum force that can be applied to each of the three specimens.
Assume small deformations.

Solution: see Figure 2.10
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1 Essai de traction simple
4 o=0i®i,

Gy =0, 06(31,) =o. _fs O(i;) dS =« S = F. D’ol & ¢:=F/5. On doit appliquer -F & I"autre extrémité.
@Il s’agit ici de S, qui est inconnue. Si les déformations sont petites, on approche §, par S,.

Boussinesq : ¢=F/So Cauchy o=F/S. erreur sur la contrainte a rupture err=S0/8=1.25 (c est
conservatif...)

:.')) O, = -pgx, 1;&@i; . Div, 0 = Div, (-pgx; i;®i,) = -pg (1,®1,)(V,(x,) ) =-pg i, = pesanteur. Donc :
Div.g+pg=0

Si la piéce est suspendue, ou repose sur le bas, la contrainte maximum associée 2 la pesanteur est pgL. 11
faut donc que : a>>pgL. Done que : F>>pgV=P

Ascenseurs”: Lmax=2613 m => au moins 2 ascenseurs sans cornpter le poids des cabines et des passagers

Zt) G(n) = o (is.n) is. 6,,= (E().n) = & (i.n) = o 0y’
Gr= O(N) - Gop 1= ¢ (30) §; - & (13,00 n = o (fn) (i - (i) m)
|od = @ (i;.0) [i; - (i;.0) n|
Max, |65 = ¢ n;* (1 + n* — 2n,%) = o n,*(1-n,") , maximum pour n,=1/2"* , donc pour tous les plans de
normale qui forment un cone orienté & /4 par rapport a la verticale

6) Cas du crystal : résistance max lorsque sur le plan de normale n, : et direction m,
[65] = 0 na My =R => & = Ty /nao(1-150)%) => = SR /{1y mig)=SRV6

Cas du polycristal : résistance max lorsque |G| atteint le cisaillement max ;: 0=R/2 =>F_, =SR2

. Cas de la résistance & la traction : &0 = 0, => F_,=SR

Figure 2.10  Solution of Exam 1, Problem 1.






CHAPTER 3

ANALYTICAL SOLUTIONS OF BOUNDARY

VALUE PROBLEMS IN LINEAR
ELASTICITY

PROBLEMS
3.1 Prove the Navier’s equations of motion in Cartesian coordinates:
or?  Oxdy Oxdz 0r?2  Oxdy O0xdz 0x2  0Oy? 022 Pz =
by 8211, +8721}+82w +G a2u+8721) 8210 @ &4,@ +f—()
Ooxdy  0Oy?  0Oydz O0xdy  Oy? 0Oydz 0x2  0Oy? 022 Ply =
(P P PwN (P P P P e P
0xdz  Oylz 022 0z0y Oydz 022 0x2  Oy? 022 Plz=
Solution: We start with the equilibrium equation:
div(o)+pf=0
A projection along the x-direction provides:
004 _
49
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Now, we recall the constitutive equation, in index notation:
Oij = NT'r (6) 5ij + 2G€ij
Combining the two last equations above, we get:

OTr (e) O€yj
A———=0,,+2 J e =
oz, i +2G oz, +pf. 0

0 O€za ae:cy Oey-
)\% (€xa + €yy +€22) +2G ( e + 3y 5%

We now recall the strain-displacement relationships:

Cow o _ow  _ifouw ov) (o owy 1
em_ax’%y_(‘?y’ezz_az’Emy_Q Oy Oz »r T 9\ 0z T o) T 2

The combination of the two last equations provides:

3 @ n 0%v . 0%w e 827u . *v . 0w . Pu  0*u  O%u
0x2  0z0y 0Ox0z 0x2  Oxdy Oxdz 0Ox%2 0Oy? 022

which is the first of the three Navier’s equations. The two other equations are obtained in

the same way, by projecting the equilibrium equation in directions y and z, respectively.

3.2 We consider a pressurized circular cavity of radius a subjected to a uniform state of
stress at a distance b from the center, as shown in Figure 3.1. We focus on a 2D elasticity
problem (plane strain or plane stress). Find the state of stress around the cavity, between a
and b, by solving the biharmonic equation.

Figure 3.1 Circular pressurized cavity subject to isotropic stress in the far field. Picture taken from
(Brady & Brown, 2004).

Solution: The equilibrium equation in terms of Airy’s stress function is:

VAU =0
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In cylindrical coordinates:

ou e 4+ L 10U LU 6U
or " T a0 T oz
This problem is axis-symmetric. Suppose it is plane stress (the solution for the plane strain
case is left for the reader). Then the equation above reduces to:
dUu

VU(r) = e

VU (r,0,z) =

Using the formulae given in chapter 1 for the gradient of a vector in cylindrical coordinates,
we find:

d?U 1dU
il .1
V(VU(r)) = rer®er + ey e (3.1
so that:
d?U 1 dU

277 _
VU =Tr(V(VU)) = T

From there, we get:

3 2
V(VQU):<dU 1d°U 1dU> )

dr3 rdr2 72 dr

1d3U 1 d2U 1 d2U 2 dU
Vv (V (V?U)) — S — > + —=— | e, ® e,
( ( ) (d rdr3 12 dr? r2 dr? r3 dr)e we
1 /d3U 1d2 1 dU 2
r\ drd r dr2  r2 dr €0 eo
And we finally get:
d*U  24°U 1 d?U 1 dU
4
- — 2
VU= d4+7’d7"3 r2 dr? +r3dr (3.2)

The solution to this equation is not trivial. We listed two of them in the notebook:

= The solution by Timoshenko and Goodier (1970):
U(r) = Aln(r) + Br?in(r) +Cr? + D

= The solution by Barber (2010):
U(rd) = Aln(r) +Cr?* + E

in which A, B, C, D and E are constants. The reader can check that both solutions
satisfy equation 3.2.

Using the relationships between the stress components and Airy’s stress function, and using
equation 3.1:

1dU d?U

—Veg(VU) 7“%’ Jgg:Vm« (VU):W, UTQZV(}T(VU):O
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From which we get:

= For the solution of Timoshenko and Goodier (1970):
A A
O = — + 2Bin(r)+ B+2C, og9 = —2 +2Bin(r)+3B+2C, o0,=0
r

= For the solution of Barber (2010):

A A
Urr:72+207 099:_72"'_207 UT9:0
T T

We now use the boundary conditions to find the unknown constants: o,..(r = a) = p;,
o (r = b) = po. For instance, using the solution of Barber:

(pi — po)a?b? 00 — pob? — p;a?

S G R

At this point, the state of stress is known. The reader can show that the same state of stress
is found if the solution of Timoshenko and Goodier is used.

3.3 Show that in Cartesian coordinates, the stress solution can be expressed in terms of
two complex potentials ¢(z) and 1(z) = x'(z), as follows:

Ogq + Oyy =

2 2 -
G+ g —2[¢0)+ T =R

PU U, U _

9z 9y Zax()y =2[2¢"(2) +¢'(2)]

Oyy — Ogg + 2005y =

Solution: To solve this problem, one has to be able to calculate the second derivatives of
Airy’s stress function, by using the derivation rules that apply to complex functions. To
illustrate the procedure, we provide the details of the calculation of the first order deriva-
tives of Airy’s stress function. The second-order derivations are left to the reader. The final
expressions of the fist and second - order derivatives of Airy’s stress function are provided
in the notebook for reference. We recall that, in virtue of Cauchy-Rieman’s equation, for a
complex function {(2) = £(z) + in(z):
0§ 0§ Om  on 0§ On  On O

4 _> — — =
C(Z)_ax Zay 8y+28x 8x+28x Ay Z@y

Then, noting that z = = + iy and Z = x — iy, we have:

2% - 8% (F¢(2) + 26(2) + x(2) +X(2))

ou

25 = 8(2) +2¢/(2) +9(2) + 26 (2) + X' (2) + X ()



PROBLEMS 53

Similarly:
2% = —Zd)(z) + iz(b/(z’) + Za(z) — Zzal(z) + iX/(Z) o ZY/(Z)

34 At a depth of 750 m, a 10-m diameter circular tunnel is driven in rock having a
unit weight of 26 kN/m? and uniaxial compressive and tensile strengths of 80 MPa and 3
MPa, respectively. Will the strength of the rock on the tunnel boundary be exceeded if: (i)
K=0.37 (ii) K=2?

Solution: This is a problem of free circular cavity subjected to a biaxial state of stress in the
far field. We can solve it by using Kirsch’s equations. At the cavity wall, ¢,,, = 0,9 = 0
(free cavity), and we have:

ogo(r=a) =0, (1+ K +2(1 — K) cos 20)

We have:
0y = —vh = 26 x 10® x 750 = —19.5MPa
() If K =0.3:
ogo(r =a) = —yh (1.3 + 1.4 cos 20)
The maximum tension (counted positive here) occurs when cos20 = —1, and ogp(r =

a) = +0.1vh = 1.95MPa. The maximum tension is below the tensile strength, so there
is no risk of tensile failure at the cavity wall. The maximum compression occurs when
cos20 = +1, and ogpp(r = a) = —2.7yh = —52.7MPa. The maximum compression
is below the compressive strength, so there is no risk of compressive failure at the cavity
wall.
(i) If K = 2:

ogo(r =a) = —yh (3 — 2cos 26)

The maximum value of ogg(r = a) occurs when cos260 = +1. The stress is still nega-
tive for those angles, which means that for K = 2, the cavity is entirely in compression.
Therefore there is no risk of tensile failure at the cavity wall. The maximum compression
occurs when cos 20 = —1, and ogg(r = a) = —5yh = —97.5MPa, which exceeds the
compressive strength. So there is a risk of compressive failure at the cavity wall.

3.5 A gold-bearing quartz vein, 2 m thick and dipping 90°, is to be exploited by a small-
cut-and-fill stoping operation. The mining is to take place at a depth of 800 m, and the
average unit weight of the granite host rock above this level is 29 kN/m?. The strike of the
vein is parallel to the intermediate stress, and the major principal stress is horizontal with a
magnitude of 37 MPa. The uniaxial compressive strength of the vein material is 218 MPa
(in absolute value), and the tensile strength of the host rock is 5 MPa (in absolute value).
What is the maximum permissible stope height before failure occurs?
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Solution: Here, the cross section of the cavity is oriented with its width horizontal, its
height vertical, and the axis of the cavity is orthogonal to the plane of the paper sheet
(parallel to the intermediate stress direction). The width W of the cavity is 2 meters (to
exploit full the vein), and the height H of the cavity is to be determined to avoid failure.
To solve the problem, we use the formulae of the course that give the extremum values of
the orthoradial stress oy, at A (sidewall) and and at B (crown):

W H
UA:p(l—K+2H>, UB:p<K—1+2KW>

In this problem, p = —yh = 29 x 10% x 800 = —23.2MPa, and K = o /p = 37/23.2 =
1.59. Since the horizontal stress is larger than the vertical stress, it is expected that there
will be compression at the crown (B) and tension at the sidewall (A). So to avoid failure at
the wall, one must ensure: 04 < 5MPa and o > 218MPa. From there, we get:

4
—23.2(—-059+4+ =) <5
(-0s9+ ) <

H
—23.2 (0.59 + 3.182) > —218

We get:
4 )
— >059 — —
H ~ 059 23.2
H 218
A8— < — .
3 82 < 23.24—059
and lastly:
H < 5.5m
H <10.7m

So overall, the height of the cavity should not exceed 5.5 meters.

3.6 In Figure 3.2, the uniaxial rock compressive strength is 50 MPa and the correspond-
ing crack initiation stress is . = 16 MPa. Calculate the extent of the failure zone in
tension and compression.

Solution: This is a problem of free circular cavity subjected to a biaxial state of stress in the
far field. We can solve it by using Kirsch’s equations. At the cavity wall, 0., = 0,9 = 0
(free cavity), and we have:

opo(r =a) =p(1+ K +2(1 — K)cos26)
with p = 7.5 MPa (compression counted positive) and K = 1/3:
4p
=3 (

ogo(r = a) 1+ cos 26)
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7.5MPa

2.5MPa —>} [ €<— 2.5MPa

(I

7.5MPa

Figure 3.2  Cavity studied in Problem 3.6.

Failure occurs at the wall in compression if ogp(r = a) > 16MPa, i.e. cos26 > 0.6,
i.e. for —26° < @ > 26°. Failure occurs at the wall in tension if ogg(r = a) < 0MPa,
i.e. 14+cos 26 < 0. This only happens at the crown (8 = 90°) and at the foot (6 = —90°).

3.7 Provided the boundary conditions in Figure 3.3, and knowing that the following
purely frictional strength criterion holds: o7 = d o3 + Cy, Cy = 0, calculate: (i) the extent
of the damaged zone (r.), (ii) the pressure in the damaged zone (p1).

(a) interface between
elastic and
fractured

l domains

K

Figure 3.3  Cavity studied in Problem 3.7. (Brady & Brown, 2004)
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Solution: It is not possible to use a known analytical solution in the damaged zone, since
the behavior of the rock mass is not linear elastic. So we start by establishing the equation
of equilibrium in the damaged zone:

div (o) =0
We calculate the divergence of the stress tensor in cylindrical coordinates:

1
div(c)=V .0 = <§er + ;%60 + 68282) (omre, Qe+ opge, Reg+ o6, Re,)

+{ gper ! ¢ T 3, ( ®e, + ®eq+ ®e.)
e, e e, |- (ogre e, + o€ e 0g-€ e,
g €0 6r€o 6€6 0 62€0

+ ge —i—lge +£e (0.6, @€ +09e,Reg+0,.e,Qe,)
8T’T Taee azz zr€z T z0€z 0 2z2€z z

The full derivation of this expression requires deriving the position vectors e, and ey by
6. We have: e, = cosfe, + sinfe, and ey = —sinfe, + cos e, so that de, /df = eq
and dey/df = —e,.. One can show that the divergence of the stress tensor in cylindrical
coordinates is:

div (0’) —-V.o— <8Urr Opr 18007’ aazr 009) e,

or r+7‘ 00 0z

;89+8T+27‘+82

( 10099 0oy org 009 )
€9

+ aO-zz + 8UTZ + Orz + 180’02
0z ar r r a9 )<

The present problem is plane stress and axis-symmetric, so:

div(e) =V o= (80M + I —069> e,

or r r

do,. ”
+< 0+209)69
or r

The projection of the divergence on the radial axis provides the following equilibrium
equation (often encountered in axis-symmetric problems of cavity expansion):

dGTT' + Orr — 000 -0

dr r

The problem is isotropic so there is no shear stress. Therefore o1 = g9y (compressive hoop
stress) and o3 = o,,. In the damaged zone, the frictional strength criterion is expressed
as: 01 = dos, therefore 099 = do,.. The introduction of that relation in the equation of
equilibrium provides:
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Aoy d
G _ g -1&

Oprr r

Integrating the above equation between r = a (cavity wall) and r» < r, (where r = r, is
the boundary between the damaged zone and the elastic zone, we get:

In (Up) = (-1 (2)

r (d=1)
Orr = Pj (E)

And finally:

At the boundary between the elastic zone and the damaged zone: o,.,, = p; (by definition)
and r = r.. Therefore:

re\ (=1
P1=Di (*)
a
and we get:
1/(d-1)
re =a <p1) (3.3)
Di

So if we find p;, Equation 3.3 provides 7. and we solved the problem. To find p;, we ana-
lyze the state of stress in the elastic zone. The elastic zone can be viewed as a pressurized
circular cavity of internal radius 7., internal pressure p;, and far-field pressure p. We use
the analytical solution seen in class for this case:

Te\ 2
Orr = D+ (7) (pl 7p)
roN2
Opp = DP— (i> (pl *P)
r
Org = 0
At r = r.: the boundary conditions impose: o, = p; and we find 099 = 2p — p;.

In the elastic zone, the material has some cohesion and the strength criterion is therefore
o1 =dos+ Cy,ie. ogg = do,, + Cy. As aresult, we have:

2p—p1 =dp1 + Co

and finally:
_2p—Cy
=i

Then 7. is found from Equation 3.3:

2p_ CO 1/(d—1)
%:a<W+UM>

3.8 InFigure 3.4: Does the plane of weakness affect the elastic stress distribution? Under
which conditions does the rock mass slip along the plane of weakness?
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y
I T plane of weakness

Figure 3.4  Cavity studied in Problem 3.8. (Brady & Brown, 2004)

Solution: This is a problem of free circular cavity subjected to a biaxial state of stress in
the far field. We can solve it by using Kirsch’s equations. The shear stress that is applied
on the plane of weakness is equal to 0,9 at § = 0. According to Kirsch’s equations,
or0(0 = 0) = 0, which means that no shear stress is applied on the plane of weakness, and
therefore, there is no slip on the plane of weakness. According to Kirsch’s equations, the
hoop stress ggy on the plane of weakness at the cavity wall is:

ogo(r =a,0 =90°) =p(1+ K) +2p(1 - K) =p(3 - K)

If K < 3, ggy is compressive (compression counted positive) and the plane of weakness
cannot open; the presence of the plane of weakness does not change the elastic state of
stress. If K' > 3, oyg is tensile and the plane of weakness could open, and disturb the
elastic state of stress.

3.9 InFigure 3.5: Does the plane of weakness affect the elastic stress distribution? Under
which conditions does the rock mass slip along the plane of weakness?
VY

Im

@ — :71 — (b
Ty = 0

ane o s =
plane of weaknes: —S— de-stressed
zone

— — -—
Kp Kp

(K =) (K <n)
— — -

Figure 3.5 Cavity studied in Problem 3.9. (Brady & Brown, 2004)

Solution: This is a problem of free circular cavity subjected to a biaxial state of stress in
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the far field. We can solve it by using Kirsch’s equations. The shear stress that is applied
on the plane of weakness is equal to 0,9 at 6 = 90°. According to Kirsch’s equations,
o.9(0 = 0) = 0, which means that no shear stress is applied on the plane of weakness,
and therefore, there is no slip on the plane of weakness. The plane of weakness could
open if ogp was positive (tension). At the cavity wall, o,,, = 0 and, according to Kirsch’s
equations:

oee(r =a,0 = 90°) = p(1 + K) —2p(1 — K) = p(3K — 1)

If K > 1/3, opp is compressive and the plane of weakness cannot open; the presence
of the plane of weakness does not change the elastic state of stress. If K < 1/3, there is
arisk that the fracture (plane of weakness) opens, thus disturbing the elastic state of stress.

3.10 In Figure 3.6: Does the plane of weakness affect the elastic stress distribution? Un-
der which conditions does the rock mass slip along the plane of weakness?

@ l ’ l ®

plane of
weakness

Figure 3.6  Cavity studied in Problem 3.10. (Brady & Brown, 2004)

Solution: There is slippage along the plane of weakness if 7 > tan ¢ o,,. The transforma-
tion of stress provides:
T = 0gg sin 6 cos 0

on = ogg(cos 0)2

So there is slippage if:
sin @ > tan ¢ cos 6

In other words:
tan @ > tan ¢

And we conclude that for angles that are under 90°, that implies that there is slippage if:

0=>¢
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‘-’"*'\ Ty
B

plané of
weakness

Figure 3.7  Cavity studied in Problem 3.11. (Brady & Brown, 2004)

3.11 In Figure 3.7: Does the plane of weakness affect the elastic stress distribution?
Under which conditions does the rock mass slip along the plane of weakness?

Solution: This is a problem of free circular cavity subjected to a biaxial state of stress in
the far field. We can solve it by using Kirsch’s equations. According to Kirsch’s equations,
for 6 = 45° and K = 0.5:

3p a?
2 = = —-— 1 —_—
On 960 = 7 ( +r2>
a2 a4
T = O'Tg:;;)<1+2’r2_3 4)

From here, it is possible to plot 7/0,, and to check when this ratio exceeds tan ¢ (when
T/on > tan ¢, there is slippage). The plot shows that 7/0, reaches a maximum for
r/a = 2.5, with 7 = 0.3570,,, which corresponds to ¢ = 19.6°. Most rock materials
have a larger friction angle, so the risk of slippage along the plane of weakness is low. One
can see that 0, is always compressive so there is no risk of plane weakness opening. As a
conclusion, the plane of weakness is unlikely to change the state of elastic stress.

3.12 In Figure 3.8: Does the plane of weakness affect the elastic stress distribution?
Under which conditions does the rock mass slip along the plane of weakness?

Solution: This is a problem of free circular cavity subjected to a biaxial state of stress in
the far field. We can solve it by using Kirsch’s equations. According to Kirsch’s equations,
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o,
plane of weakness d ‘y
(]'ﬁ
A
—_ O~ —
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SR 4
—lp —
.‘I
0
X

Figure 3.8 Cavity studied in Problem 3.12. (Brady & Brown, 2004)

for K = 1:
a2
Oppr = p<1_7"2>
a2
ope = pll+—3
r

org = 0

We can find the state of stress on the plane of weakness by performing a transformation of
stress:

1 1
on = 3 (orr + 0go) + 3 (oyr — 0gg) cOs 20
1 .
T = -5 (orr — 0gg) Sin 26

By combining the two sets of equations above, we get that:
2
p+p <a2) cos 20
r

2
T = —Dp (%) sin 26

One can readily see that o,, is always compressive, so there is no risk of fracture opening.
Slip could happen along the plane of weakness if 7/0,, > tan¢. To determine whether
there is slippage or not, one has to plot 7/0,, find the maximum of 7/0,, and check the

On
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value of the friction angle required to trigger slippage (see previous problem).

3.13 Considering Figure 3.9: How can we improve the design in order to avoid com-
pressive failure at the sidewalls?

Y

R —
crushed +3m  0.3p
7ones

—  —

4.0 1

I [ w5

Figure 3.9  Cavity studied in Problem 3.13. (Brady & Brown, 2004)

Solution: We recall the stress at the wall of an ellipse: at A (sidewall) and and at B (crown):
W H
= 1-K+2— = K—-1+4+2K—
oA =D ( + H> , OB =D ( + W)

For a field stress ratio K of 0.3, an inscribed ellipse indicates approximate sidewall stresses
of 2.5p, using equation 3.13. If the observed performance of the opening involved crush-
ing of the sidewalls, its redesign should aim to reduce stresses in these areas. Inspection
of equation 3.13 indicates this can be achieved by reducing the excavation width/height
ratio. For example, if the width/height ratio is reduced to 0.5, the peak sidewall stress is
calculated to be 1.7p. While the practicality of mining an opening to this shape is not cer-
tain, the general principle is clear, that the maximum boundary stress can be reduced if the
opening dimension is increased in the direction of the major principal stress. For this case,
a practical solution could be achieved by mining an opening with a low width/height ratio,
and leaving a bed of mullock in the base of the excavation.

3.14 Considering Figure 3.10: What are the stresses at the sidewall and at the crown?
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A}l H o5
N l —

Figure 3.10  Cavity studied in Problem 3.14. (Brady & Brown, 2004)

Solution: The width/height ratio for the opening is three, and the radius of curvature for the
side wall is H/2. For a ratio of 0.5 of the horizontal and vertical field principal stresses, the
sidewall boundary stress is given, by substitution in Equation 3.13 (see previous problem):

2 % 3H
0A=p<1—0.5+ ;_([/2):3.96;9

An independent boundary element analysis of this problem yields a sidewall boundary
stress of 3.60p, which is sufficiently close for practical design purposes. Although the ra-
dius of curvature, for the ovaloid, is infinite at point B in the centre of the crown of the
excavation, it is useful to consider the state of stress at the centre of the crown of an ellipse
inscribed in the ovaloid. This predicts a value of B, according to Equation 3.13, of -0.17p,
while the boundary element analysis for the ovaloid produces a value at B of -0.15p. This
suggests that excavation aspect ratio (say, W/H), as well as boundary curvature, can be
used to develop a reasonably accurate picture of the state of stress around an opening.

3.15 Considering Figure 3.11: What are is the stress at edge A?

Figure 3.11 Cavity studied in Problem 3.15. (Brady & Brown, 2004)

Solution: The square hole has rounded corners, each with radius of curvature p = 0.2B.
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For a hydrostatic stress field, the problem shown in the left figure is mechanically equiv-
alent to that shown in the right figure. The inscribed ovaloid has a width of 2B[2'/2 —
0.4(2'/2 — 1)], from the geometry. The boundary stress at the rounded corner is estimated
from Equation 3.13, as:

2B(21/2 —0.4(21/2 — 1))
oa=pll1—-1+ 028 = 3.53p

The corresponding boundary element solution is 3.14p. The effect of boundary curvature
on boundary stress appears to be a particular consequence of St Venant’s Principle, in that
the boundary state of stress is dominated by the local geometry, provided the excavation
surface contour is relatively smooth.

3.16 Considering Figure 3.12: Comment on the boundary stresses at the crown, at the
sidewall, and at edges A, B, C and D.

|

Figure 3.12  Cavity studied in Problem 3.16. (Brady & Brown, 2004)

Solution: Using the general notions developed above, the opening geometry (width/height
ratio = 2/3) and pre-mining stress ratio (K = 0.5), the following information concerning
boundary stresses can be deduced:

» The zones A, B, C are likely to be highly stressed, since the boundary curvature at
these locations is high. Local cracking is to be expected in these zones, but this
would compromise neither the integrity of the excavation nor the validity of the stress
analysis.

» The bench area D is likely to be at a low state of stress, due to the notionally negative
curvature of the prominence forming the bench.
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* The boundary stress at the centre of the crown would be approximately 0.72p, esti-
mated from Equation 3.13 (The boundary element solution is 0.82p.)

* An estimate of the sidewall boundary stress, obtained by considering an inscribed
ellipse and applying Equation 3.13, yields A=1.83p. For the sifewall locations in the
left wall, boundary element analysis gives values of 1.87p, 1.75p and 2.08p. For the
locations in the right wall, the A values are 1.35p, 1.36p and 1.61p. The average of
these six values is 1.67p.

Boundary element analysis also confirms the two first conclusions above. The demonstra-
tion, in an elastic analysis, of a zone of tensile stress, such as in the bench of the current
excavation design, has significant engineering implications. Since a rock mass must be
assumed to have zero tensile strength, stress redistribution must occur in the vicinity of the
bench. This implies the development of a de-stressed zone in the bench and some loss of
control over the behaviour of rock in this region. The important point is that a rock mass
in compression may behave as a stable continuum. In a de-stressed state, small imposed or
gravitational loads can cause large displacements of component rock units.

3.17 Consider Figure 3.13. We give:
» Solution for the line load:

_2Px2z _2Pz3

2P 22 ¢
T T T

sz - T R4
» Solution for the footing:

Ozz = Q (a + sinacos(a + 20))
™

1. Using the solution for the stresses (044, 0z, 0,,) under a line load of intensity P
(force/unit length) acting normal to the surface, obtain the stresses due to a strip foot-
ing of width 2a with an applied surface traction Q(x). Write specific solutions for the
case when Q = g (i.e. for surface constant loading).

2. Show that the loci of points with o1 = constant (or o3 = constant) describe a circle.

3. What is the locus of ¢ = 0.5(0; — o3)=constant? The value of ¢ represents the
maximum shear stress acting at a point. Show that g4, = Q /7.

Solution:

1. The first question can be answered by integrating the given line loads over the width
of the strip:

Ope(2,2) =

Qi /+a /2 Q(l’l) 0
T Jg'=—a (Z2 + (.’L‘ - x/)Q

Uzz(xyz) — E /Jra Ldzl

T Jore—q (22 4+ (x —2')?
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Normal Surface
Traction, Q(x) X

Figure 3.13  Distributed load studied in Problem 3.17. (Assimaki, 2014)

Oz, 2) =

2 2 “+a / /
i/ Q)

T Jgre—q (224 (x—2')?

For a uniform surface traction:

2Qoz /+a z"? ,
xrxr ) - —d
Taa(,2) T Jye—q (224 (x — 2')? v
2Q02’3 ta 1
22(m,2) = — 2’
0z2(:2) T /x,:,a (22 + (x —a)? *
2@02’2 +a !
v2(T,2) = ——da’
02(T, 2) = L/:_a (22 4 (z — /)2 x

The end result of these calculations is provided in the notebook:

o [(01 — 65) — sin(6; — 65) cos(61 + 65)]

Ozz =
m

o-iliil?

_ % [(61 — 62) +sin(61 — ) cos(61 + 65)]

U$Z

_ % [sin(f; — 63) sin(01 + 6)]

in which 1 = 90° — ¢ and 65 = 90° — (6 + «).
2. We first calculate the principal stresses:

Ulzgav+Ra 03:0'(“)77?,

with:
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‘We have:
Qo

Oaqv =
7T

(91 — 92), R = @ sin(91 — 92)
s
o7 is constant if:

g1 = % ((91 — 92) + sin(91 — 92)) = cst

By deriving the above expression by 67 — 05, we obtain the following requirement:
1+cos(6y —603) =0
which implies:
01 = 62 + 180° + k x 360°

Working with o3, we similarly obtain:

g3 — @ ((91 — 92) — sin(01 — 92)) = cst
™

1—cos(p —62) =0

01 = 02 + k x 360°

We have 61 = 05 or §; = 05+ 180°, which both indicate that the point of observation
lies on a circle [check why].

. We can calculate the value of ¢ from the calculation of o1 and o3:
q= 0.5(0’1 — 0'3) =R= @ sin(91 — 92)
ﬂ'

We see that the maximum value of the maximum shear stress is:

Qo

™

Qmaz =

The locus of the points characterized by ¢ = cst is found by deriving the expression
of ¢ by 61 — 65:
cos(fhy —02) =0
which implies:
01 = 05 +90° + 2 x 180°

The locus is the vertical axis z [check].
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3.18 Homework 2 - Problem 4

A strain cell was used to determine the state of strain in the walls of a borehole. The
borehole was oriented 300°/70°, in which 300° is the angle of strike, and 70° is the angle
of dip (Figure 3.14). Using the angular coordinates and orientations defined in Figure 3.14,
the measured states of strain in the wall of the hole, for various angles 6 and 1, are reported
in Table 3.1. The Young’s modulus of the rock was 40 GPa, and the Poisson’s ratio, 0.25.

Table 3.1 Measures taken by the strain cell at the wall of a borehole (expressed in microstrains).

Y=00 =45 =090° 1) =135°
9=0° | N/A 21367 93441 82111

0 =120° | 96.36 N/A 349.15 131.45

0 =240° | 96.36 N/A 560.76 116.15

y Pmn Prnt” |
N ~ e e
| I 2 I
H

P
.
par ,/

!

1
(Wikipedia, 08/2014) (Brady & Brown, 2004)

Figure 3.14 Conventions adopted to define orientations in strain cell tests.

1. Set up the set of nine equations relating measured strain and gauge location.
Note that, for v = 0°, identical equations are obtained, independent of 6.

2. Solve the system of equations for the field stress components p;;, Pmms Pnns Pims Pins

DPmn-

It is recommended to use a computational tool (such as MATLAB). Note that you will
have to select six independent equations from the set of eight equations established in
question 2.1.

3. Determine the field principal stresses.

4. Determine the orientations of the field principal stresses relative to the mine global
axes (x-north, y-east, z-down).

Solution:

1. First let us recall (or establish) Leeman’s analytical solution for the stress distribution
around circular cavities subject to the 3D field stress p. Using the notations of Figure
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3.14:
Opp = 0Opg = Oppp = 0
ogg = pu(l—2c05(20)) + pmm (1l + 2c0s(20)) — 4pmsin(20)
Onn =  Dnn + 20 (—pucos(20) + pymmcos(20) — 2pp,, sin(20))
Ofgn — 2pmn0050 - 2pnl5in9

Changing coordinate systems to express the state of plane stress, the normal compo-
nents of the boundary stress, in the directions OA, OB are given by:

oy = Imn —; 99 4 UWQ_ il c08(21)) + opesin(29)
op = Inn —; LA Jn"; i c08(29)) — one8in(29))

Six independent stress measures in six different directions (OA) provide six indepen-
dent equations:

oar = Onn -21— 000 n O'nn2_ o9 cos(20)) + Tpgsin(20), i=1,..,6

Which depend on six unknowns p;;, Prmms Prns Pims Pins Pmn- Lhe 3D field stress p
is determined by solving a system of equations which is written in the form:

[M{p} = {oa}

Assuming a state of plane stress in the plane of the borehole cross section:

€A = —= — —=0B
E E
OB 14

€EB = — — =04
E

Six independent strain measures in six different directions (OA) provide six indepen-
dent equations, which depend on six unknowns p;;, Prmm» Prns Pims Pins Pmn- Lhe
3D field stress p is determined by solving a system of equations which is written in
the form:

[M]{p} = {ea}
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The system of 9 equations is set up by introducing the values of the measured strains
in the following equations, for the positions 8 and 1) reported in the table:

Bea= |5 ((1=0)— (14 2)c0s20) = (1 =521 — cos20)cos20]
1 2
+DPmm {2 (1—=v)— (1 +v)cos2y) + (1 —v*)(1 — cos 2¢) cos 29]
+FPpn X 1 [(1—v)+4 (1+v)cos2¢]

2
—Pim % 2(1 — %) (1 — cos 2¢) sin 26
+Pmn X 2(1 4 v) sin 24 cos §

—pnt X 2(1 4 ) sin 2¢) sin 0

2. The 9 equations obtained are not independent. A subsystem of 6 independent equa-
tions is solved for the unknown field stress components (with a computational tool
such as MATLAB):

pu = 10.22 M Pa
Pmm = 17.09 M Pa
Pnn = 10.68 M Pa
Pim = —1.30MPa
Pmn = —4.86 MPa
pi = 1.12MPa

3. Principal stresses are obtained by using the governing equations of Mohr’s circles (3
Mohr’s circles in 3D):

p1 = 20MPa
ps = 10MPa
pP3 = 8 M Pa

4. The directions of principal stresses relative to the mine global axes are determined by
establishing geometric relations with Mohr’s circles:

P1 is oriented 030°/30° (strike/dip)
P2 is oriented 135°/24° (strike/dip)
P3 is oriented 257°/50° (strike/dip)
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3.19 Homework 2 - Problem 5

Figure 3.15 represents a cross section through a long opening. The magnitudes of the plane
components of the field stresses are p,, = 13.75MPa, p,, = 19.25 MPa, p,, = 4.76 MPa,
expressed relative to the reference axes shown.

1. Calculate the maximum and minimum boundary stresses in the excavation perimeter,
defining the locations of the relevant points.

2. If the strength of the rock mass is defined by a maximum shear strength criterion, and
the shear strength is 20MPa, estimate the extent of boundary failure, in terms of the
angular range over the perimeter.

3. Comment on the significance of this result for any mining operations in the opening.

Figure 3.15  Orientation of the axes of cross section through a long opening.

Solution:

1. According to Leeman’s equations (equation 3.4), the boundary stresses in the plane
of the tunnel cross section are:

O = opg =0
000 = DPaa(l—2c0s(20 — 7)) + pyy (1 + 2c05(20 + 7)) — 4pgysin(20 + )

Injecting the values of the field stress in the expression of the hoop stress at the cavity
boundary:

099 = 13.75 (1 + 2co0s(260)) + 19.25 (1 — 2cos(20)) + 19.04 sin(26)

The maximum value is o099 = 55 M Pa, for § = 60° and 0 = 240° (relative to the
vertical axis pointing downwards, Figure ??), i.e. for points located 30° below the
horizontal on the right hand-side, and 30° above the horizontal on the left hand-side.
The minimum value is 099 = 11 M Pa, for for # = 150° and 6§ = 330° (relative to
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the vertical axis pointing downwards, Figure ??), i.e. for points located 60° above the
horizontal on the right hand-side, and 60° below the horizontal on the left hand-side.

A coordinate change provides the expression of shear stress in a material element at
point P located at the cavity wall:

Orr — 000

5 sin(2a) + orgcos(2a) = %sin(%z)

Or101 = —
In which « is the angle between axes r and 1. The shear strength criterion provides
the following requirement:
oge sin(2a) < 27,

With 7. = 20 MPa. At any point at the cavity wall (i.e. for any ), shear failure first
occurs for a = 45, i.e. along planes oriented at 45° from the radial axis, for which
sin(2a) = 1. Failure occurs for elements in which the hoop stress can exceed shear
strength. Using equation 3.4:

f(0) = 13.75 (1 + 2c0s(26)) +19.25 (1 — 2c0s(260)) + 19.04 sin(20) > 7.

A plot of f(0) against 6 indicates that shear failure can occur for 25.5° < § < 95.5°
and for 204.5° < 0 < 275.5°, i.e. at +/ — 35.5° from the points of the cavity wall
where the hoop stress is maximum.

. The maximum principal field stress is 22 MPa, oriented at 30° below the horizontal,

and the minimum principal field stress is 11 MPa, at 60° above the horizontal. Bray’s
solution of stress distribution around an elliptical cavity provides the following ex-
pressions for the stress at the sidewall (0 4) and at the crown (o p):

oca = p(l1—K+2q)
2K

3.4)

In which ¢ = W/H is the aspect ratio of the ellipse. The present cavity can be
viewed as an elliptical cavity subject to shear failure at the crown in a plane oriented
according to the principal directions of the field stress, as shown in Figure 3.16. To
avoid failure, the stress at the crown must be decreased. According to equations 3.4,
this can be achieved by increasing g, i.e., by enlarging the size of the opening in the
direction perpendicular to the maximum principal field stress direction, as shown in
Figure 3.16. The additional volume at the bottom of the opening can be filled with
rock to maintain the depth location of the infrastructure in the tunnel.

3.20 Exam 1 - Problem 2

A vertical shaft of elliptical section is being considered in a region of high horizontal
stress. Measurements along the shaft route indicate the preshaft principal stresses in psi
(compression positive) are given by a vertical stress o, = 1.1 h and horizontal stresses
op =100 +1.5h, oy = 500 +2.2 h, in which h is the depth in feet. Figure 3.17 gives the
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Y 111 MPa
N 111 MPa ZZI\E «
22 MPa «
oy sza
Y - 7
11 MPa 11 MPa

Figure 3.16  Adaptation of the mine shape to avoid shear failure.

/[ 2W
=p(l-k+2g) = (1—k -—~)
oa=p(l-k+2¢)=p * on
Zk) ( 2H)
=plk—1+-"—)=plk-1+k | ==
- 032} p( + g 14 + B

v where, for an ellipse, the radii of curvature are
H Ww?
Pa= 5y andpe =55

Hudson & Harrison (1997)

Figure 3.17 Peak stress concentrations at the wall of an elliptical cavity.

expressions of the peak stress concentrations at the wall of an elliptical section. Determine
the optimum orientation and aspect ratio of the section.

Solution: see the two following pages (from Pariseau, 2007)
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can now be obtained by reducing the larger of K, or Kj,. Ideally, one has neither K, > K} nor
Kj; > K,. Hence, the optimum occurs when K, = Kp, that is, when k£ = 1. Thus, a circular
shape, a special case of an ellipse, is optimum when the preshaft stress state is hydrostatic.
This situation occurs for vertical shafts in ground where the stress state is caused by gravity
alone.

Example 3.5 A vertical shaft of elliptical section is being considered in a region of high
horizontal stress. Measurements along the shaft route indicate the preshaft principal stresses
in psi (compression positive) are given by Sy = 1.14, 8, = 100 + 1.54, Sy = 500 + 2.2A
(h is depth in feet). Determine the optimum orientation and aspect ratio of the section.

Solution: The peak stress concentrations at the wall of an elliptical section occur at the
ends of the geometric axes. The peak stresses are given by the formulas

0, =K;S1=-S1+ 0 +2/k)S3 =51[(1 +2/k)M — 1]
op = KpS1 = =83 + (1 +2k)S1 = S1[(1 + 2k) — M]

where the meaning of terms is shown in the sketch, kK = b/a and M = §3/5;.

(a) Long axis parallel to S, (b) Short axis parallel to S,

Sketch illustrating the meaning of ellipse formula terms

An optimum orientation would be one that reduces stress concentration to a minimum, so
the stress concentration at b is no greater or less than at a and tension is absent. Thus,

K,=Kp,>0

(1+2/k)M —1=(1+2k)—M

100+ 1.5A
© 500+ 2.2A4

so the aspect ratio varies with depth, but is equal to the preexcavation stress ratio at any
particular depth. At the surface &£ = 0.200 and at great depth £ = 1.5/2.2 = 0.682.



Shafts 99

The best orientation is with the long axis a parallel to Sy. In this orientation, with £ = M,
K, = Kp = 1 + M and indeed the wall of the ellipse is in a uniform compression. At the
surface, the stress concentration is 1.2; at great depth the stress concentration is 1.682.

With the short axis parallel to Sy, K}, = 2M* + M and K; = 1 — M + 2/M, which is
greater than 1 4+ M and therefore less favorable at any depth.

If a circular section were considered, the stress concentrations would be —1 + 3M and
3 — M or —0.4 and 2.8 at the surface; 1.046 and 2.318 at great depth. The elliptical section
shows a considerable advantage over the circular section in this stress field. However, other
considerations such as difficulty in excavation to the proper shape would need to be considered
before final selection of the shaft shape.

In vertical section, the shaft wall stress is equal to the preshaft stress and stress concentration
1s one. This value is less than stress concentration in plan view of the best orientation and
aspect ratio (1+M) for M = k > 0. Hence, the plan view section governs design.

Example 3.6 Suppose a vertical shaft of elliptical section 14 ft x 21 ft is being considered
for sinking to a depth of 4,350 ft. The horizontal stress in the north—south direction is esti-
mated to be twice the vertical stress caused by rock mass weight, while the east—west stress
is estimated to be equal to the “overburden” stress. Unconfined compressive strength of rock
1s 22,000 psi, as measured in the laboratory; tensile strength is 2,200 psi. Determine shaft
wall safety factors as functions of depth with the section oriented in a way that minimizes
compressive stress concentration.

Solution: Shaft wall safety factors with respect to compression and tension, by defini-
tion, are

C T
FS; ==, FS; ==
Oc Ot

In case of an ellipse, the peak stresses at the ends of the semi-axes are:

0q = KaS1 = =81 + (1 +2/k)S3 = Sil(1 +2/k)M — 1]
op = KpS1 = =83 + (1 + 2k)S1 = S11(1 + 2k) — M]
k=14/21=2/3<1, M = Sgw/Sns =1/2,
00 =KS1 =81+ 0+2/k)S5 =8511(01+2/2/3))(1/2) — 1] = S51(1.00)
op = KpS1 = =83 + (1 + 2k)S1 = S11(A +22/3)) — 1/2] = S51(1.83)
The maximum and minimum stress concentration factors are both positive, so no tension

1s present. With respect to compressive stress, the shaft wall safety factor as a function of
depth is

C
FS, = ——
1.835;
B 22,000
~ 1.83(2)(158/144)h
5,478
FSC =

h






CHAPTER 4

FINITE ELEMENT METHOD IN LINEAR
ELASTICITY

PROBLEMS

4.1 Write the variational formulation of the following problem:
d? d*u(r)
- —_ frnd L
de{ = ] qo 0, O<z<

-5 0 n[0) o m[2] o

Solution: Weighted integral statement:

L d? d*u(x) L
Yow ~ u, /0 w(z)@ [ 1 s }dx 7/0 w(x)godz = 0

First integration by parts (assuming F, I constants):

d3u(r) o Edw  dPu(x) L
Yow ~ u, |:U.)(L)EI e L 7/0 %EI s dz 7/0 w(z)godx = 0

Second integration by parts:

Pu@)]” [dw . du@)]” [P ),
el ——EI de— [ de —
dz? ]0 {dm dx? ]0 dx? dpz /0 w(z)godz = 0

Yow ~ u, [w(x)EI

Theoretical Geomechanics. 77
By Chloé Arson Copyright © 2020
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Primary variables: u(z) (deflection) and du/dx (deflection angle). Secondary variables:

EI dz;g””) (shear force) and ET d;i(zm) (bending moment). Applying boundary conditions:

dw Ed?w d?u(x) L
~ L)Fy + — (L) M, —FET — =
Vow ~wu, w(L)Fy+ da:( ) o+/0 72 102 dx /0 w(x)godz = 0

4.2 Find the expression of the interpolation functions of order 1 is by using the interpo-
lation property. Consider elements with 2 and 3 nodes.

uq® up®
o
uq® up® uze

Figure 4.1 Finite Elements considered in Problem 4.2.

Solution: Element with two nodes:

\Ill(gcl) = 1, ‘111(332) = 07 \112(1’1) = 07 \I/Q(.%‘Q) =1

Using linear polynomials:

\Ifl(l‘ _$2—$7 \Ilz(x):l‘l—l‘
To — I1 1 — T2
Element with three nodes:
Ui(z1) = 1, Wi(w2) =0, Wi(z3)=0
\112(5(71) = O7 \112(332) = 1, \112(333) =0
1113(.2?1) 0, \1/3(332) = 0, \113(113) =1
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Using quadratic polynomials:

_ (w2 —x)(23 — ) o) = (@ —a)(@s — ) (g) = (Z1—@)(@2 1)
o) = (xg —z1)(x3 — 21)’ Yalo) (21— 2)(v3 — 22)’ ¥a(@) (z1 — 23) (T2 — 73)

4.3 Consider the following boundary value problem:

d2
—%—u(x)—kxz =0, 0<z<l1
u(0) =u(l) =0

Provide the FEM equations to solve for the unknown primary and secondary variables
when the domain is discretized with: (a) four linear elements; (b) two quadratic elements

(Figure 4.2).
Uy U, Us U Us u, u, U; u, Us
*—-= > 2 o9 ® o o
1 2 3 4

Figure 4.2 Meshes considered in Problem 4.3.

Solution: Weak formulation of the problem on one element [z, z}]:

Tp Tp
Yw ~ du, — [w( )dlzl(x )] —I-/ Ccli: 3Zd / dx—|—/ w(x)r*dr = 0

a

Using Ritz method with N nodes per element:

Vi=1..N, — [\pi(x)dz;x)]waré U:b dd\l;i d; ] zN: U% U (x )da:] /:b U, (2)a2de = 0

T a j=1 a

In a matrix form:
Vi,5 = 1...N, Kij’LLj-l-Mij’U,j =F+Q;

T dU; dP
Ki; = —d
! /I do dx

with:
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For the mesh with four linear elements, the length of each element is 1/4 and for each

element:
1 -1
[K] =4
-1 1

—-1(2 1
-2 [21]

For the mesh with two quadratic elements, the length of each element is 1/2 and for each
element:

7 -8 1

[K]=2]-8 16 -8

1 -8 7

, 2 —1
M) = —

[M] | 2 162

1 2 4

Assembly for 4 linear elements (note: we only show the top triangle of the stiffness matrix,
since the stiffness matrix is symmetric; the same assembly process is used to find the global
mass matrix; the assembly process is the same for {F'} and {Q}):

Klll K112 0 0 0
K212 + K121 K122 0 0
[K] = K3, + Ky Ki, 0
K3+ Ky Kiy
K3
Fi
F3 + F?
{F}Y=< F+F}
F3+ F
Fy

Assembly for 2 quadratic elements (note: we only show the top triangle of the stiffness
matrix, since the stiffness matrix is symmetric; the same assembly process is used to find
the global mass matrix; the assembly process is the same for {F'} and {Q}):

K, Ki, Kis 0 0

K212 K213 0 0
(K] = K3+ K7y Kiy Kis
K3 K3

2
K33
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(Fy={ Fl + F?

Since the primary variable is known at nodes 1 and 5, the global system of FEM equations
can be condensed as follows (regardless of the mesh considered):

Ky Ko 0 My Mz 0 F,
K33 Ksq | + Mz3 M3y F3
K44 My Fy

in which we used u; = us = 0 and Q2 = Q3 = @4 = 0. From there, it is possible to solve
for us, us and uy. Usually, the secondary variable is post-processed. In the following, we
explain the post-processing process for both meshes. For the four linear elements:

Q,=Q1 = \I’Kl’l)% (P (z) + uaWi(z))

d T=x1
—  d¥s(x) _d x
@ = dx o= = 2 de \(1/4) ) ,—o
@1 = 4UQ
In the same way: o
Q5 = 4duy

For the two quadratic elements:

Q,=Q] = \P%(ﬂcl)% (ulkll%(x) + us W (z) + ug\I/é(:L’))

Q= u2% <I((11//216)I)>$_0 +u3% (33(36(1/81)/4)>x—o

@1 = 8’(,L2 - 2U3

T=T1

In the same way: o
Q5 = SU4 — 2U3

4.4 Solve the problem of heat transfer through the composite wall shown in Figure 4.3
by using Ritz method, with four linear elements.
0 oT
(kA3> +BP(T - Tx) = Aqgo
x

or

Solution: There is no heat source in the problem. Advection takes place on the lect and
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1 2 4 )
T, Convection
0
with the
atmosphere
3
h, h, hy
® ® L o> X
Node1l  Node 2 Node 3 Node 4

Figure 4.3 Heat transfer through a composite wall.

right hand sides of the domain, but not on the top or bottom, i.e., there is no advection along
the periphery of the walls (advection can be accounted for in the boundary conditions). As
a result, the governing equation reduces to:

0 oT
o (ka%h) =0

The Ritz Finite Element equations are the following (for each element):

KT, = Q;
with:
o dV; dV;
K;; = EA——14q
/:Ea dr dzx "
dTr™
@ = |wito) dea
For linear elements:
kAl 1 -1
K| = —
=20

where [ is the length of the element. The assembled FE equations are (note: we do not
write the coefficients below the diagonal, which can be obtained by symmetry):

Ki Ki, 0 0 Ty Qi
K, + K? + K} K+ K3, 0 13 - Q+ Q1 +Q}
K3 + K3, Kiy T [ ) 3+Q3+0t

K3, Ty Q3

The prescribed nodal conditions are: 77 = Ty, Q2 = Q3 = 0and Q4 = —SA(Ty — Two)
(advection with atmosphere). Using these nodal conditions, the condensed system of Finite
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Element equations is:

K+ K} + K, K+ Kiy 0 Ty — Ko Ty
K3, + K3y Kiy T3 =49 —K3Ty
K3, — BA T} BAT s — KT

in which [K] is the global stiffness matrix (before condensation). Using the elementary
stiffness matrices, we get:

A1k’1/l1 + Azkg/lz + A3k’3/l3 —Agkz/lg — Agk;),/lg 0 T Alk’lTo/ll
Ang/ZQ =+ Agkg/lg —A4k4/l4 15 = 0
Agks/ly — BAy Ty BAT

From there, it is possible to solve for the nodal values of the temperature (7%, T5 and Ty),
and then, for the nodal value of the heat flux ).

4.5 Solve the problem of heat transfer through the cylindrical canister shown in Figure
4.4 by using Ritz method, with two linear elements.

1d dT
rar (kd) = ()

A

— |
\

ACARI
> DD
FEE

N~

Figure 4.4 Heat transfer through a cylindrical canister.

Solution:

1. Discretization
Linear interpolation functions: for an element defined on the segment [r, 73]

wir) = 220 gy = Uy,
he he
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2. Elementary equations
Using Ritz Method:
(KT} = {F}° +{Q}°

c " dvs dY;
K” = QW[ k dr WTCZT

Th
Ff = 27r/ U (r)go(r)rdr

dT
QF = 27 kr%(r =ry)

The integrals depends on the bounds. The stiffness matrix and the force vector have
thus different expressions for the two elements. In a matrix form:

- 1 -1
[K()]—kﬂ[_l 1]

[K(2)]:k7r[ 5 ]
-3 3

Assuming that the heat source function is a constant: go(r) = go:

R [1
py — Tdolto”
(L 12 2

Ry? |4
F@y — Tdolto”

5
3. Assembly
1 -1 0] (n et %
k-1 4 -3 | 4T p= T 06 0+ QL + QP
0 -3 3| |1 5 QP

4. Nodal conditions
Qi=0, Q2=0, T3=T

Ty 7qoRo? [1 0
= +
T2 12 6 3]67"11()

From here, solve for 77 and 7T5.

5. Condensation and resolution

1 -1
km
l—l 4

6. Post-processing ()3 can be obtained by a direct method, using the stiffness matrix, as
follows: )
5mqo Ro

Qg = —37TkT2 +37TkT0 — 12
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7. Approximate solution:

TV () + M (1), €]0, Ro/2]

T(r) = 2) @)
oW ™ (r) +T3W57(r), 1 €]Ro/2, Rol
T B2 Typrn, 1 €)0, Ro/2]
T(r) ~

—r r—R
T211%2?,/2 + To RU72/25 r €]Ro/2, Ro[

4.6 Solve the 1D Newtonian fluid flow problem with Ritz method, by using two linear
elements, and for the two following sets of boundary conditions: (a) v, (—L) = v, (L) = 0;
(b) v (—L) =0, v, (L) = vp.

Solution: The governing equation is:

d*v.(y) dP

dy?  dx

The Ritz Finite Element equations (for one element) are:

Kijv; = F, + Qi

in which: 00 d
K;; = W ——2d
J /Z/ 'udy dy Y
dP
Fi=— [ g Wiy)—d
/ Y (y)-dy
dv, 1%
Qi = [‘I’ Yy Mm}
) dy Ya

For linear elements:
w| 1 =1
K] ==
(K] l l—l 1 1

For the special where % = fo (constant):

-]

where [ is the length of the element. After assembling the elementary equations (assuming
that all elements have same length [):

1 -1 0 vy 1 Q1
-1 2 -1 vg p= o402 04+ QL +QF
0 -1 1 3 1 Q3
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For the first set of boundary conditions: v; = v3 = 0 and ()2 = 0, the system of equations
can be condensed as: 9
o
TUz = fol
In other words, the solution for the primary variable is:

vy = S0
2_2M

And the FEM approximation of the solution on [—[, +1] is:

fol?y+1

Uz(y) = ZOIu I 1<y <0
fol*y

ve(y) = 20777 0<y<l

Using the FEM equations to solve for the secondary variable:

@ty =Ty
Jol woo o fol
Qs + > TRy

so that: @1 = Q3 = — fol.
For the second set of boundary conditions: v; = 0, Q2 = 0 and v3 = vy and the system of
equations can be condensed as:

2p

Tv= fol + %Uo

In other words, the solution for the primary variable is:

fol? | wo
Vo = —

2u 2

And the FEM approximation of the solution on [—[, +1] is:

fol> v\ y+l
T = a ry 3 —-1<y<
v (y) ( o T2 ) <y<0
fol*> v\ y
” = (5—+%5 )5 0Zy<li
n = (B-+2)Y o<y
Using the FEM equations to solve for the secondary variables:
Q fol _ _m, = _Jol_ i
! 2 e 2 2
Jol  p poo o Jol | puo
Qs + 5 T T2 + =" o
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so that:
HYo
= — l _—
Qs fol -5
Ko
= — l —_—
Q3 Jol + 57

4.7 Solve the problem of bar elongation shown in Figure 4.5 by using Ritz method, with

two linear elements. J J
u
—— | FA— ) =
dz ( dx) /(@)

r(x)=c,+c,x

Figure 4.5 Bar element with a non-uniform cross section.

h, h,

Solution: Here, there is no distributed horizontal force, i.e. f(x) = 0, but there is a
concentrated load 2P, applied at z = h;. The concentrated load will be accounted for in
theboundary conditions. The governing equation is thus:

d du
dx ( da:) 0

The area of the cross section of the bar for 0 < z < hq is:
Ay(x) = m(er + cox)?
The area of the cross section of the bar for hy < x < hy + hg is:
As(z) = Ay = (c1 + cahy)?

We use two linear elements (one for 0 < x < h; and one for h; < x < hy + hs). The Ritz
Finite Element equations are:
Kiju; = Qi
For the first element:
o d¥; d¥;

dr dz

hl
Kilj = WE/ (c1 4 c21)
0
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For the second element: ,
24U, dV;
K% =FA L2 q
I 2 /hl de dz *°

We calculate the average cross section on the first element:

_ 1 [h
A = 7/ m(c1 + CQx)2d:c
hi Jo
And we evaluate the stiffness coefficients of the first element as:

(M AW, A
Kl =EA L2
* 1/0 de dz *°

Using the expression of the stiffnes matrix of a linear 1D element, the assembled system of
FEM equations becomes (only writing the terms of the stiffness matrix above the diagonal):

A,E/hy —AE/hy 0 uy Q1
ZlE/hl +A2E/h2 7A2E/h1 U2 = Q% +Q%
AsE/hy uy Q3

The prescribed nodal conditions are: u; = 0, Q2 = 2P, and Q3 = 0. Therefore, we can
condense the system of equations as:

u9 i 2 PO

us 0

From there, it is possible to solve for uo and ug, and then for the reaction ), (either by
using hte FEM equations, or by post-processing).

ZlE/hl -+ AQE/}LQ 7A2E/h1
—AgE/hl AZE/h2

4.8 Solve the problem of beam deflection shown in Figure 4.6 by using two Euler-
Bernouilli elements.

Yo Fo

Figure 4.6 Deflection problem with Euler-Bernouilli beam elements.

Solution: The governing equation is:

d4w(9c) do

El dat L
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in which w(z) is the deflection. The Ritz Finite Element equations are (for one cubic
Euler-Bernouilli element):

4

. Ty dQ‘Ifi(.%‘) dQ\I/’(:L‘)
j=1 Ta
Ty d3w T Tp d\Ij,L(L' d2u} z Ty
/ V() (QO - qfol“) dr — [\I/ixEI dx(3 )] + [deI dx(Q )}

in which W; designates the jt" degree of freedom (for each node, the deflection is listed
first, and the deflection angle, second). The cubic Hermite polynomial interpolation func-

tions are:
r—x, \2 r—x, \°
Uy(z) = 13( ") +2( ")
Tp — Tq Tp — Tq
-z, \°
Us(z) = —(z—1z,) (1—%_;&)
T — x4 \2 -z, \°
oo - s(22) 2 (322
Tp — Tq Tp — Tq

Uy(x) = —(v—wa) (fb_zaa) (fb_zaa - 1)

in which degrees of freedom 1, 2, 3 and 4 are respectively: the deflection at node 1, the
deflection angle at node 1, the deflection at node 2 and the deflection angle at node 2.
Noting that the length of each element is L/2, the elementary stiffness matrix is:

6 —3L/2 —6 —3L/2
K] = 16E1 | —=3L/2 L?/2 3L/2 L*/4
L3 —6  3L/2 6  3L/2

—3LJ2 L?/4 3L/2 L%*/2

Assembling the Finite Element equations, we obtain the following global Finite Element
equations (in which only the coefficients of hte stiffness matrix that are above the diagonal
are noted):

Kl KL Kl K, 0 o0 |(wm F Q!
K, K Ky 0 0 W Fy Q3
Kis+ Kty Ki +Ki, Kis Kij Ws | _ ) B R | ) Qs+ QF
Kiy+ K3, K33 K3, Wy Fj + F3 Qi+ Q3
K3y K3, W F Q3
i K | | W F} Q3

The nodal conditions are the following: W; = W5 = 0 (fixed support), Q3 = Q4 = 0 (no
concentrated loads), Q5 = Fy, Q¢ = —My. The system of equations can be condensed as
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follows:
12 0 -6 —3L/2 W3 F} + F? 0
16ET 0 L? 3LJ/2 L?/4 Wy | ) Fi+F3 N 0
L2 —6  3L/2 6  3L/2 ws [ F2 Fy
—3L/2 L?/4 3Lj)2 L?/2 We F? — M,

From there, it is possible to solve for W3, Wy, W5 and Wy. The secondary variables ¢
and @), can be post-processed as follows:

d3
Qi = Ql= EId? (W1 (x) + WaWs(x) + WaWs(z) + WyWy(x)),_,
96 24
Ql = FEI <—L3WS - L2W4>
In the same way:
24FET1 4FET
= — —W.
Q2= —5Ws+ — Wi

The approximate solution for the deflection is expressed as follows:

For0 <z < L/2:
oo (i) 2 (1) | [+ (1) (5 )
o (TR e () e e (- )

For L/2 <z < L:
B () o o (582 ()

w(x)=  Ws + Wy

4.9 Calculate the coefficients of the elementary stiffness matrix and force vector of a
linear trianular element, if the numbering convention in Figure ?? is changed such that:
node 1 is (a,0); node 2 is (0,b); node 3 is (0,0).

Solution: The solution is obtained by performin permutations of the coefficients of the
stiffness matrix given in the problem:

¥ 0 —b? 0 0 0
(K] = 2 | o 0 0 O +ax |0 a® —d?
-2 0 b2 0 —a? a2
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4.10 Calculate the three boundary integrals (71, Q2 and @3 for the linear triangular ele-
ment shown in Figure 4.7.

Figure 4.7 Triangular element subject to boundary loads.

Solution: We calculate the boundary integrals, one by one. For the first node:

has

hia h31
Q= puna(is= [ B [ 0@ s [ 0@, ()

Since ¥4 (s) = 0 on side 2-3:

h12 h31 S
Q1 =/ ‘I’l(S)QOd8+/ \III(S)QOTdS
0 0 31

On side 1-2, Wy (s) is equal to the 1D Lagrange polynomial at node 1. On side 3-1, ¥4 (s)
is equal to the 1D Lagrange polynomial at node 2. As a result:

hiz gy — s hai g s
Q1 :/ 12 (JOd8+/ —qo—ds
0 0

12

After integrating, we get:

qo q0
= —h —h
Q1 3 /131 + o M2
For the second node:
hi2
Q2 = f vas)an(s)ds = [ wals)an(s)ds
0

because W5(s) = 0 on side 3-1 and because ¢, (s) = 0 on side 2-3. Moreover, on side 1-2,
Uy (s) is equal to the 1D Lagrange polynomial at node 2, so that:

hi2 s
Q2 = / —qods
0 h12
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After integrating:
_ Gl

Q=22

For the third node:

h31

Qs = 74 Uy(5)gn(s)ds = [ Ws(s)gn(s)ds

0

because ¥3(s) = 0 on side 1-2 and because ¢, (s) = 0 on side 2-3. Moreover, on side 3-1,
W3(s) is equal to the 1D Lagrange polynomial at node 1, so that:

h31 Ry —
31 — S S
Qs =/ qo—ds
0

har hsy

After integrating:
qoh
Qs = 0631
We check that Q1 + Q2 + Q3 = qoh12 + gohs1/2, which corresponds to the total load
applied to the element.

4.11 Consider a problem described by the Poisson’s equation:

%u  0%u )
_V2u:_<8m2+8yz) = fo in Q

in the square region shown in Figure 4.8. The boundary conditions are:

(-1,1) (1,1)

(0,0) X

(-1,-1) (1,-1)

Figure 4.8 2D FEM to solve Poisson’s equation

u(z,y)=0 on T
We wish to use the FEM to determine u(x, y) on the domain €2.

1. Show that it is sufficient to solve the problem on 1/8-th of the domain only to deter-
mine the solution everywhere in 2.

2. Mesh this deduced domain with four linear triangular elements (justify).
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3. Solve the FEM problem on the reduced domain (i.e. calculate the unknown nodal
values of the primary variable).

4. Post-process the results of the FEM model (i.e. calculate the unknown boundary
integrals of the secondary variable).

Solution: See the notes in the next § pages.
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4.12 Determine the Lagrange interpolation polynomials for:

» a triangular element that has two nodes per side (k = 2)
= atriangular element that has three nodes per side (k = 3)

» a triangular element that has four nodes per side (k = 4)

Solution: Here, we express the interpolation functions of the triangular elements as func-
tions of the area coordinates, by using the interpolation property.

= Triangular element with two nodes per side:

Vi(z,y) = Li(s), Va(w,y) = La(s), W3(z,y) = La(s)

» Triangular element with three nodes per side (see Figure 4.9 for the node numbering):

Uy(z,y) = 2Li(s)

(
Uy(,y) = 2La(s) (LQ(S)_l
(

U3(z,y) = 2L3(s) | Lz(s) — ;)
Uy(z,y) = 4L1(s)La(s)
Us(z,y) = 4La(s)L3(s)

Ve(z,y) = 4Li(s)L3(s)
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» Triangular element with four nodes per side (see Figure 4.9 for the node numbering):

‘Ill(xvy)

\112(m7y)

\1’3(337»1/)

\P4(I7y)

\:[15($,y)

Ue(z,y)

\117($,y)

‘118($7y)

\1’9($7y)

\Ijlo(x7 y)

wv

3016 (1 - 3 ) (1= 3)

302(6) (La(0) ~ 3 ) (220 3

Figure 4.9 Node numbering adopted in Problem 4.12.



104 FINITE ELEMENT METHOD IN LINEAR ELASTICITY

4.13 Determine the interpolation function ¥4 for the triangular element shown in Fig-
ure 4.10. Assume that nodes on the sides of the element are equally spaced.

5
[

Figure 4.10 A higher-order triangular element. Image taken from [?]

Solution: We express the interpolation function at node 14 as a function of the area coor-
dinates, by using the interpolation property:

\P14($,y) = 128L[(S)L[1(S)L[1](S) <L[[(S) — i)

in which we note the edges of the element as nodes I, II and III, as shown in the figure.

4.14 Calculate the Jacobian of each of the three elements of the mesh shown in Figure
4.11. Explain whether the geometry and numbering conventions are acceptable or not.

5.0

3.0

2.0

0 !
00820 3.0 5.0

Figure 4.11 Meshing problem requiring calculating the Jacobian. Image taken from [?]

Solution: To calculate the Jacobian on each element, we first need to explain how the
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geometry is interpolated on each element, according to the following equations:
4 4
2(&n) =Yz U(Em), yE&n) =D yV(En)
j=1 j=1

in which the interpolation functions ¥, (&, n) are those of the linear quadrilateral master
element:

e = ;0-61-n)

Laen) = [0+ 1)
Wyen) = F+E1+n)
Wien) = {191+

Then, the Jacobian is calculated for each element, as follows

Oz 0y 0Oroy

~9Ean 9 o¢
Forelement 1, x1 = 0,20 = 2,23 = 2,24 = 0,y1 =0,y =0, y3 = 3 and y4 = 5.
We find: J; = (4 — £)/16, which is always positive, since £ € [—1, 1]. Element 1 is thus
properly meshed. Forelement2, z; =2, 20 =3, 23 =5, 24 =2, 91 =0, y2 =2, y3 =3
and y4 = 3. We find Jo = 2(1 — £+ 1)/4. So Jo > Oonly if n > £ — 1, i.e. only when
the point considered is in the convex hull of the element. Hence, element 2 is not properly
meshed, because it is not convex. For element 3, x1 = 2, x0 = 0, x3 = 5, x4 = 5, y1 = 3,
y2 = 5,y3 = Sand yq = 3. We find J3 = —(4 + £)/2, which is always negative, since
¢ € [-1, 1]. Hence, element 3 is not properly meshed. Here, this is because the node
numbering convention chosen in the element goes clockwise, while the node numbering
convention in the master element goes counter-clockwise (the same node numbering sense
has to be chosen for both).
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4.15 Determine the conditions on the location of node 3 of the quadrilateral element
shown in Figure 4.12.

(a, b)

x &

Figure 4.12 Finding an acceptable element shape. Image taken from (Reddy, 2004)

Solution: To calculate the Jacobian of the element, we first need to explain how the geom-
etry is interpolated, according to the following equations:

x(f»ﬁ) = ij\l/j(gr’r])a y(ga 77) = Zyj\l’j(fan)

Using the expressions of the interpolation functions (linear quadrilateral master element):

Wien) = ;0-90-1)
Waen) = [0+901-1)
Usen) = {1+ +n)
Va(&m) = i(l—ﬁ)(Hn)

and using the coordinates of the nodes: 1 =0, 2 = 2,23 =a, 24 =0,y; =0, y2 =0,
y3 = band y, = 2, we have:

w(&n) = 7(1+&RA-n)+all+n)]

B~ = =

y(&n) = 7(L+n) b1 +&)+2(1 -]

‘We then calculate the Jacobian:

Oz 0y 0Oroy

060y On o€
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J=a+b+(b—-2)¢+(a—2)n

Atnode 1 (¢ = —1,n = —1): J = 4, positive. Atnode 2 (¢ = 1,n = —1): J = 2b,
which is positive, since according to the figure shown, b > 0. Atnode 3 (¢ = 1, n = 1):
J = 2(a + b — 2), which is positive only if b > 2 — a. Atnode 4 (£ = —1,n = 1):
J = 2a, which is positive, since according to the figure shown, a > 0. So to summarize,
the element will be acceptable only if b > 2 — a, i.e., only if point 3 is above the line that
links nodes 2 and 4. In other words, the element is only acceptable if it is convex.

4.16 Consider the isoparametric quadrilateral element shown iFigure 4.13. Use the
Gauss-Legendre numerical integration scheme of the lowest order possible to calculate
the following integrals:

i Ui(z,y)¥;(z,y)dzdy
0V, (x,y) 0¥;(z,y)

12 _ ,

% /Q Ox oy W

N
8
I

S~

(5* '"1}

Figure 4.13  Evaluating integrals defined on an element of irregular shape. Image taken from
(Reddy, 2004)

Solution: For the first integral:

1 1
00 = J(&,m®;(&,n) Jdéd
Sij [1/1¢(£n)@J(§n)J§n
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in which the expressions of the interpolation functions for the linear quadrilateral master
element are:

2En) = {1-H1-n)

(6 = FA+81-1)
yem) = {1+O1+n)
(6 = S1-81+n)

To evaluate SZQJQ, we thus need to calculate the Jacobian J on the element:

_ 0wy sy
- 9Eon  Onog
with:

4 4
2(&m) =Yz 0;(Em), y&m) =y ®(&n)
j=1 j=1

Noting that x1 = 0,20 = 5,23 =4, x4 = 1, Yy = 0, Y2 = -1, Y3 = 5 and Yyg = 4, we
get:

z(&,n) = % (10+8 —2¢&n), y(&n) = i (84 10n + 2&n)

and we find:
1
J = (20 + 46 — &)

The integrand in S?jo is thus cubic in £ and cubic in 7. Therefore, we need to perform a
Gauss Legendre numerical integration of order r > (p + 1)/2 = 2. As an example, let us
calculate SYY. We have:

1 1
1
st = [ [ G0— 2 -0+ 4 — e

We note P(£,n) = g;(1 — &)2(1 — 1)%(20 + 4§ — &n). The Gauss-Legendre quadrature
of order 2 approximates the integral as follows:

1 1 1 1 1 1 1 1
T T =y T T = +P77_7 +P7)7 +P_777
YERRRVE] )+ V3 V3 )+ V3 V3 )+ V3 V3
The integral will be calculated exactly since P is a polynomial, with an order p = 2r — 1.

Then, S99 = S99 and S99 will be calcualted in the same way.
For the second integral:

R L S e (X)) O0i(&,1) | ;. 0Pi(E,7)
12 * * * *

it~ P )
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in which [J*] is the inverse of the Jacobian matrix. The Jacobian matrix is calculated as:
oz Oy -
[J]:[af 3’51 :1[8 2n 2n
or ('Tz 41 =26 10+2¢
The inverse of the Jacobian matrix is calculated as:

1 [10+2¢ —zn]

== 2 8 2m

Each term in the brackets of the integrand of Silj2 is the ratio of a plynomial that is linear in
& and in n, by J. So the integrand is the product of J by a polynomial that is quadratic in &
and in n. Overall, the integrand is thus cubic in ¢ and in 7, so a Gauss-Legendre quadrature
of order 2 should allow calculating the integrals Silf exactly.

4.17 Prove the equations given for the weak formulation of a plane elasticity problem.

Solution: The balance of momentum in directions x and y is expressed as:

oo 0%u
I e 7
Jy ot
2
9040 00y 0%uy
+ +
ox 8y fy p o2
The general form of the constitutive law is:
Ozx ci1 ci2 0 Cxx
Oyy == Co1 C22 0 Eyy
Oy 0 0 ce6 265y

Combining the balance and constitutive equations, one gets:

9 0 0%,
a? (cllea::p + Cl2€yy) + 874 (2066€xy) + fx =p o2
0 0 0%u
E (2ce6€ay) + oy (c21€00 + Co2€yy) + [y = p 8t2y

Then, we use the definition of the small deformation tensor:

U=\ 0x; " o

and we obtain:
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From there, we can write the weak formulation. From the balance equation in the x-
direction: Yws (z,y) ~ dus(x,y):

er [he [831;1 (011

9 9 ..
887;1 +C123Lyy> + Ce6 65’;1 (aauy“” + 37;")} +pw1uz} dxdy

- er hewt fodzdy + fFe hewqt,ds

From the balance equation in the y-direction: Yws(x,y) ~ duy(x,y):

2] = Au, .
Jo [ |35 (2% + emBye) + coofir (% + 5)| + puaiy| dady

= er hews fydxdy + fl“e hewgfyds

4.18 For the Finite Element in plane elasticity shown in Figure 4.14, determine the sur-
face load vector {Q.}.

Figure 4.14  Calculation of boundary integrals in plane elasticity.

Solution: See the solution in the notes provided in the next 3 pages.
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4.19 In the plane stress problem shown in Figure 4.15, determine the horizontal compo-
nent of the load vector at node 16 (Q16;) and the vertical component of the load vector at

node 11 (Q114).

E,=E, =69GPa, ¥v=0.333, G=26GPa.1=1cm

Plane stress h
13 14 15 16 %=3kN/Cm2' [
@ PO @ 10 @ 11
2 3| (1) 4 5/ (1) 6 4
4Cm_>‘—4cm—><—4cm41|

Positive local numbering

Figure 4.15  Calculation of boundary integrals in plane elasticity.

Solution: See the solution in the next 4 pages of notes.
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4.20 Homework 3 - Problem 1

The Finite Element Method based on Ritz Method is used to study an insulating wall con-
stituted of three homogeneous layers, each of which being characterized by a thermal con-
ductivity k; (Fig. 4.16). There is no energy production (no source) in the wall. The outer
surfaces are exposed to heat exchanges with the atmosphere. These convective transfers
are modeled as boundary conditions on heat flow: Q = —3(T — T,). The film coefficient
is 31, on the left side, and Bg on the right side (Fig. 4.16). The objective of this problem
is to determine the temperature distribution inside the wall by using three one-dimensional
linear Finite Elements.

Air at temperature, T:: 35°C
Film coefficient, Bz = 15 W/(m?- °C)

Tt=100°C ky =50 W/(m- C)

B, = 10 W/(m?- °C) ky=30 W/(m- °C)
k3="70 W/(m- °C)
=50 mm
hy=35mm
h3=25 mm

ky ky ks

Figure 4.16  Heat Transfer Problem.

1. What is the equation of 1D heat transfer in the most general case? Explain each term
of this equation. Explain why in this particular problem, the elementary governing
equation reduces to:

d dT )
- (kiAdJ =0, i=1,23 “.1)

2. Consider an element defined on |z, 23[. Write the weak formulation for this element,
up to the integration by parts.

3. Give the “nodal” conditions (boundary conditions and concentrated loads). Indicate
whether the boundary conditions are essential or natural.

4. Provide the elementary stiffness matrices and elementary force vectors. Provide the
general form of the stiffness matrix and force coefficients (using ¥ ; to denote interpo-
lation functions). Then provide the numerical values of the coefficients of the stiffness
matrix.

5. Draw the connectivity table and assemble the elementary equations obtained in ques-
tion 4.

6. Write the system of condensed equations. Rearrange the system of equations in order
to have all unknown variables on the left hand-side of the matrix equation. Do not
solve.
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Solution:

1.

In the most general case, the governing equation for 1D heat transfer writes:

The first term of equation 4.2 represents conductive flow, the second term represents
convective flow (heat exchanges with the atmosphere), and the right-hand side rep-
resents the influence of heat sources. There is no heating source to consider in this
problem, thus: g(x) = 0. There is no convection along the perimeter of the out-of-
plane cross-section of the wall. Convection is included in the boundary conditions
because heat exchanges with the atmosphere are only possible at the left and right
faces of the wall. Therefore, the governing equation reduces to a heat conduction
equation:

d dT )
- (kiAd;v> =0, i=1,23 4.3)

Weighted Integral Statement:

o d dT
Yw ~ 6T, 7/ w(z)— | kiA— ) dz = 0, 1=1,2,3 (4.4)
- dx dx
Integration by Parts:
b dw dr ari*r )
Yw ~ 5T7 La %klA%dI = |:’lU(£E)k»LAd$:| . 5 1= 1, 27 3 (45)

The primary variable is temperature. The secondary variable is heat flow, defined
as: Q' = k:,-A% for element i. At internal nodes, no concentrated load is applied:
@2 = Q3 = 0. Two natural boundary conditions are applied, on the left and right
sides of the wall. Two convective flows are imposed: Q(0) = Q1 = —B.(T(0)—TL)
and Q(hy + hy + h3) = Qr = —Br(T(hy + hy + h3) — TE). In terms of nodal
conditions: Q1 = —Br(Th — T) and Q4 = —Br(Ty — Two).

Note: Actually, the boundary conditions mix imposed values for heat flux (Q(0),
Q(h1 + ha + h3)) and imposed values of temperature (T'(0), T'(hy + ho + h3)). Such
boundary conditions are called “mixed boundary conditions”.

Each layer is modeled by a one-dimensional linear Finite Element. In a local coordi-
nate system, the interpolation functions are expressed as:

wi@) = (1- )
4.6)

in which h, is the length of the element. Here, the elements have different lengths:
h1 # hg, ho # hg and hs # hy. The weak formulation 4.5 provides the typical
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elementary equation which has to be used in this Finite Element model:

hv
iU, dU;
VEk = 1,2, V kAR 2T g
0

= T; = Qj, i=1,2,3 4.7

with Q}, = 4/ — [Wy(x)ki A9 ] (the sign depends on the node considered after the
integration by parts). There is no contribution of a volumetric force: {F*} = {0} for
i=1,2,3. With the interpolation functions used in this problem (equation 4.6), and with

A and k; parameters being constant, the typical elementary stiffness matrix turns to
be:

i=1,2,3 (4.8)

5. The connectivity table for this Finite Element model is provided in Tab. 4.1. Assem-

Table 4.1 Connectivity Table for Problem 1.

Element | 17 | T»

1 1 2
2 2 3
3 3 4

bling the elementary equations provides the global matrix equation of this problem:

[ki/h1 —ki/ha 0 0 i T Q1
~ki/h1 Ki/hi+ka/ho —k2/hs 0 T, Q3+ Qi
A =
0 —ka/ha ka/h2 4 k3/hs —k3/hs3 T; Q3+ Qf
0 0 —ks/hs ks/hs ] \ Tu Q3
4.9)
6. The “nodal” conditions are the following (see question 3): @1 = —8L(Th — T),

Q2= Q3 =0,Q4 = —Pr(Ty — Tw). There is no boundary condition imposed on
the primary variable. Therefore, the system of equations cannot be condensed. After
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introducing the boundary conditions, the FE equation 4.9 writes:

_kl/h1+ﬂL/A —kl/h1 0 0 Ty
7k1/h1 kl/h1 =+ kg/hg *kg/hz 0 Ty

A =
0 —ka/ho ka/ha + ks/hs —ks/hs T3
L 0 0 —ks/hs ks/hs + Br/A | Ty

(4.10)

4.21 Homework 3 - Problem 2
A field problem is governed by the following differential equation:

~V?u(z,y) = fo

The problem is solved with a linear triangular element. The nodal values of the dependent
variable are the following:

up = 389.79, uz = 337.19, uz = 395.08

The interpolation functions of the element are given by:

1

Uy(z,y) = %(12.25 — 2.5z — 1.5y)
1
1

The flux vector is approximated as:

Ourgm. OureMm.
1+ J
Ox dy

1. Find the component of the flux in the direction of the vector 4ex + 3e, at (v = 3,
y =2).

2. A point source of magnitude @)y is located at point (xg, yg) = (3,2) inside the trian-
gular element. Determine the contribution of the point source to the element source
vector. Express your answer in terms of Qg.

a(z,y) = V(urem(z,y)) =

Solution:
1. The flux vector is approximated as:

B _ Ouppm., | Ourpwm,
a(z,y) = V(urem(z,y)) = or + ay J

_ﬁLToo

_ﬂRToo
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which can be expressed as:
[ 0w, o
- k.
q(z,y) = k§:1 [ukax i+u e }

Using the expressions of the interpolation functions and of the nodal values provided
in the problem:

—25, 15 3 15 05, 3
= 389.79 i— —j)+337.19 395.08 '
a(z,y) (8.25 ' 825! ) * (8 25" 8.25) ) * (8 25" " 8.25 )

We find:

q(z,y) = —19.45i + 11.49j

We notice that the expression of the flux vector does not depend on the position (X,y)
in the element. The component of the flux vector on 4i + 3j is obtained by projection.
We find: q - (4i + 3j) = —43.33.

. A point source Qg at (xg, yo) can be expressed as a distributed flux Qod(x — z¢,y —
Yo), in which §(z’,y’) represents here the Dirac function (equals one when 2’ =
y' = 0, and zero otherwise). According to the weak formulation, the force terms are
obtained by integration, as follows:

F; = / (,9)Q06(x — x0,y — yo)drdy = V;(x0,y0)Qo

With 2o = 3 and yp = 2, from the expressions of we find: F; = 1.750Q(/8.25,
Fy =4.5Q0/8.25, F3 =2Q/8.25.






CHAPTER 5

ELEMENTS OF PORO-ELASTICITY

PROBLEMS

5.1 [FEM for 1D steady fluid flow] Consider the steady laminar flow of a viscous in-
compressible fluid with constant density in a long annular region between two coaxial
cylinders of radii R; and Ry (see Figure 5.1). The differential equation for this case is
given by:

rdr

1d dw P - P
<md7,) = Jo. fo=—7—

where w is the velocity along the cylinders (i.e., the z component of velocity), p is the vis-
cosity, L is the length of the region along the cylinders in which the flow is fully developed,
and P; and P, are the pressures at z = 0 and z = L, respectively (P; and P, represent the
combined effect of static pressure and gravitational force). The boundary conditions are:

w(r=Ro) =w(r=R;) =0
1. Write the weak formulation of the problem.

2. Consider two linear elements over the segment [Ry, R;]. Write the two elementary
equations that govern the problem, using Ritz method.

3. Assemble and condense the system of equations.

4. Solve the system of finite element equations for the primary variable and write the
expression of approximate solution over the segment [Ry, R;].

Theoretical Geomechanics. 125
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5. Post-process the finite element results to calculate the unknown nodal secondary vari-
ables.

6. Repeat questions 2 and 3 with one quadratic element. Do not solve.

Velocity
distribution

Figure 5.1  Viscous incompressible fluid flow in an annular area.

Solution:

1. Weak formulation:
o 1d d v
Yu ~ dw, —277/ u(r)—— (ru (;:) rdr = 27r/ u(r) fordr

rdr .

a

" du dw v dw\1"
Vu ~ dw, /m o (rp dr) dr = /T u(r) fordr + {u(r) (ru drﬂm

a

Secondary variable:
q(r) = rp ar

2. Elementary equations:
For each element defined on the segment [r,, 73):

Ty — T r—"Tq

Po(r) =

Ty — T Th —Tq

2 T d i d . b r
vie1a Yo, [% (uf) ar = [ ) fordr + ()]
j=1 Ta Ta

1 -1
-1 1

Yi(r) =

p(ra + 1)

(K] = 2(ry —14q)
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{F¢} = J;O{ —2(ra)® + (r)* + rams }

—(ra)? +2(rp)? —ramp

el _Q(Ta)
@ = {+Q(Tb) }

For the two elements in this problem:

2(Ro—R;) | -1 1
(K®)] = p(Ri+3R) |1 —1
2(Rp—R;) | -1 1
3. Assembly:
YK 0 V() (o Y
k) Kok ® K2 |y = { P e0® (o] 0 4re
2 2 2
0 Ky K | Lws % Fy
After some computation...
(3R1 + RO) *(3R1 + RO) 0 wq
2(RDM_R1,) _(3Ri + Ro) 4(Ri + Ro) —(Ri + 3R0) wWo
0 —(Ri + 3R0) (1‘2z + 3R0) w3
Q1 5R; + Ry
— Q- + foX(gifRi) 6(R1 +RO)
R R; +5Ro

The nodal conditions are w; = w3 = 0, Q2 = 0. The condensation process yields
one equation for one variable (ws):

Koowy = Fy

2u(R; + Ro) _ fox (Ro— R;)(R; + Ro)
Wy =
Ry — R; 4

4. Resolution and approximation:
We solve for wq:

_ Jox (Ro— R)?

w2 8/1

Approximation for each element:
we(r) =~ wigy(r) + wsys(r)
Specifically:

Ro+ R; — 2r

Vr € [R;, (Ro+ Ri)/2], w(r)~ wsy Ry — R;
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2r — (RO + Rl)

Vr € [(R; + Ro)/2, Ro], w(r) =~ w; Ro — R;

5. Post-processing:
We approximate 1 and Q3:

_ o _ (. dw
Q1 =Q; (7"/1 dr )r_rél)

_2uweRi foRi(Ro — Ri)
Ry — R; 4

0@ _ [,
Qs = Q3 (rﬂ dT>T_T£2)

o 2pwaRi foRi(Ro — Ri)
" Ry—R; 4

Q1 ~

Q2

6. One quadratic element:

—4R, —12R; 16(Rg+R;) —12R,—4R;|{ s

ﬂl‘:mc.+11ﬁ:i —4Ry — 12R; Ry + R, ]{ol}
Ry + R; —128, — 4R, 11&-33;] Us

31:[

207 P Q)
- 2R+ 2Ry } +14 @
Q3

5.2 [FEM for 1D steady fluid flow] Consider the irrotational flow of an ideal fluid
about a circular cylinder with its axis perpendicular to the plane of flow, which takes place
between two long horizontal walls (see figure 5.2). The governing equation is:

—Vu=0 (5.1

Is it more computationally efficient to model the flow problem with the stream function
(u = W) or the flow potential (u = ®)?

Solution: See the next four pages of notes.
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Rigid cylinder

Uy~ (2 em diameter)

s

Domain modeled

Figure 5.2  Flow around a non-penetrable obstacle in 2D. Image taken from (Reddy, 2004).
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5.3 [FEM for 1D steady fluid flow] Consider the groundwater flow problem governed
by the following equation:

0 o 0 0P
*% (allax> - 87y <a223y> = f(l",y) (5.2)

Two pumps are used to extract the water brought by a river, modeled as a lineic fluid source.
The boundary and loading conditions are shown in the Figure 5.3. Propose a FEM model
made of linear triangular elements to approximate the distribution of water fluxes.

g Impermeable boundary, 29 _ 0
1000 m ay

2
-
I
<& )

P 2 1
3 o i
2 & (1900, 900) g
by Pump 1 E
s % P River, 0.24 m® = SE
= (1000, 670) day™! m™* g8
3 c
a2 ay = 2ay = 40 m day ™' 8,5'-"
374 r.

3000 m
dep

Impermeable boundary, Y =0
y

Figure 5.3  Seepage problem in 2D. Image taken from (Reddy, 2004).

Solution: See the next six pages of notes.
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5.4 To account for a percolation porosity, the following modified Kozeny-Carman rela-
tion was established: 5
((b — ¢c)

(14 e —¢)?

1. Calculate the permeability of a sandstone sample which has porosity 0.32 and an
average grain size of 100 pm. Assume B = 15 and ¢. = 0.035.

K=2RB d?

2. Compare the permeabilities x; and ko of two sandstones that have the same porosity
and pore microstructure, but different average grain sizes, d; = 80um and dy =
240pum.

Solution:

1. The units of B in this equation are such that expressing d in microns gives permeability
in milliDarcy. Then:

o (6= 5, (0.32-0.035) -
K = B(1 i ¢)2d = 15(1 T+ 0.035 — 0.32)° x 100” = 6.79 Darcy

2. Assuming that B and ¢, are the same for both sandstones since they have the same
pore microstructure, we can express the ratio of their permeabilities as:

K1 d% 802 1

Ky  d2 2402 9

The sandstone with larger average grain size has a higher permeability (by a factor of
9), even though both have the same total porosity.

5.5 Werecall that the 1D laminar flow in a pipe of circular cross-section of radius 7 is:

7 r* Ap
1= 7% L
In a tubular pore of circular cross-section, with radius r, Darcy’s law is expressed as:

AAp w2 Ap
q = — _—-— = K — —
n L n L
Consider a unit rock volume that contains N tubular pores of circular cross-section, fol-
lowing an isotropic distribution, with a radius size distribution p(r). Show that the intrinsic
permeability K has the following expression:

_® 1 = 2
K = SfOOO f(r)dr/o r* f(r)dr

In which @ is the porosity of the rock sample, and in which the radius volume frequency
f(r)is defined as f(r) = N L7 r?p(r).
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Solution: For a porous medium that contains /N pores of different radii, with a radius size
distribution p(r), the equation of laminar flow is:
N7 [ rp(r)dr Ap
8n L

g = (5.3)

And Darcy law is expressed as:

1N fooo r?p(r)dr Ap
oo =b

; 5 7 (5.4)

q = -

Multiplying Equations 5.4 and 5.3 by L, and then combining them, provides:

i/oocﬁf(r)dr =k /Ooof(r)dr

which gives the required expression of permeability:

P 1 i
©= S, o

5.6 Show that for the pipe model illustrated in Figure 5.4, the intrinsic permeability
above the percolation threshold has the following expression:

K- T
32 l3

in which ) is the average capillary length and 7 is the average capillary radius. Assume

that the distribution of capillaries centers along the z-axis is homogeneous and isotropic,

and that the probability density functions of v, A, 6 and ¢ are isotropic and statistically

independent.

Figure 5.4  Pipe model: Unit section S intercepts pipes of various orientations (0, ¢), radius r and
length \. [ is the average spacing between two pipes. Image taken from (Gueguen and Dienes, 1989)

Solution: See the paper by Gueguen and Dienes (1989) provided in the following pages.
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Two simplified microstructural models that account for permeability and conduciivity of low-po-
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INTRODUCTION

Although “‘1t is obvious that no simple correlation between porosity and perme-
ability can exist’’ (Scheidegger, 1974), the search for such correlations is per-
vasive In rock physics. The reason is probably that tentative correlations are
attractive to develop, and they are frequently successful. Success is guaranteed
by the fact that undetermined constants are always introduced and adjusted from
experimental data. As suggested by Scheidegger, if a correlation should exist,
it 1s between structure and permeability. Structure is a term that needs to be
defined accurately: it means here ‘‘the microstructure of the porosity.’ Struc-
ture cannot be defined quantitatively by a single parameter. It has to be de-
scribed by a set of statistical distributions of microstructural parameters, each
of them being specific of pore geometry.
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Transport properties, i.e., permeability and conductivity, are calculated
using statistical methods and percolation theory (Broadbent and Hammersley,
1957). The results are given for a rock in which the microstructure of the po-
rosity is described by a random distribution of pipes. A similar calculation was
reported previously for cracks (Dienes, 1982) and has proved to be useful in
some situations (Gueguen et al., 1986). The results show that concepts of tor-
tuosity and percolation are equivalent. Both the pipe and the crack models are
used to compute relationships between bulk parameters (permeability, porosity,
conductivity) in terms of microvariables.

PERMEABILITY FROM STATISTICS AND PERCOLATION

Many theoretical models are available to describe fluid flow in rocks
(Scheidegger, 1974; Brace, 1977; Dullien, 1979; Seeburger and Nur, 1984;
Koplik et al., 1984; Wilke et al., 1985). Here, permeability k for two models,
a pipe and a crack model, is calculated.

Statistics

The pipe model presented here is the following. A set of pipes of variable
radii r and lengths A is isotropically distributed (Fig. 1). The model is similar
to that of Haring and Greenkorn (1970), but it could be modified to take into
account anisotropy. The statistical calculation of permeability (Appendix A) is

T —
k= 2 W
where r* is the fourth-order moment of the radius distribution and 7, the number
of pipes per unit volume.
A simplified version of the pipe model is sufficient for our purpose. An
approximate expression for (r*) is used. The radius distribution is assumed to
be narrow so that (7*) is close to (7)*. The average spacing between pipes f is

X

Fig. 1. Pipe model. Unit section S intercepts pipes of various ori-
entation 7(f, ¢), radius r, and length A; K is normal to § and f is
average spacing between pipes.
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introduced so that ny = 1/ 3. With this approximation,
_ T M
27
Only those pipes that are connected have to be retained in the statistical cal-
culation of volume flow. Therefore,
T Nt
k= —

P (D

where f is the fraction of connected pipes: 0 < f < 1. The meaning of “‘con-
nected pipes’’ is that of percolation theory: it refers to pipes that are part of an
‘“‘infinite path.’” Calculation of fis possible with a percolation model.

A second microstructural model corresponds to a distribution of 2D objects
(cracks). Although this situation is certainly relevant to crystalline rocks, crack
models are uncommon. Dienes (1982) has shown that an isotropic distribution
of cracks with radius ¢, number density n,, and aspect ratio A = w/c results
in a permeability,

kzgf%éw
where 5, ¢ is the fifth moment of the crack number density. Factor 8 accounts
for the hydrodynamics of flow through a system of cracks with varying thick-
ness, but seems to differ little from unity in the cases examined. The factor f
accounts for the fraction of cracks that belong to an infinite network and is to
be determined from percolation theory. Three independent microstructural pa-
rameters are introduced: ¢ (average crack radius), w (average half-crack aper-
ture), and ¢ (average crack spacing) (Fig. 2). By restricting to the isotropic case
and using approximations similar to the previous ones as far as statistical dis-

Fig. 2. Crack model: isotropic distribution of Y
cracks. Each crack is characterized by its ra-

dius ¢ and aperture 2w: 7 is normal to a crack

and ¢ is average crack spacing, X
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tributions are concerned

k = 4—wa?362
15 !

(2)

Percolation

Pipe or crack centers are assumed to be distributed on a random network.
Let p be the probability that two pipes or two cracks intersect. From percolation
theory (Stauffer, 1985), f is known to be a function of p. Below a threshold
probability p., f = 0. Above p,, f increases rapidly until f = 1. In the transition
region where p # p., f =< (p — p.)", where n = 2 (De Gennes and Guyon,
1978; Englman et al. 1983). Unfortunately, f can be calculated exactly from p
only if simple lattices are assumed. A classical approximation is that of the
Bethe lattice where each pipe or crack has z neighbors. Then, p, = 1/(z — 1)
(Stauffer, 1985). Assuming z = 4 (as in Dienes, 1982), p. = 1/3. Near this
threshold

f=54(p—p) (3)

This result is obtained from Eq. (27) (Dienes, 1982) where p is close to 1 /3
(Fig. 3).

The above result has yet to be completed, however, in so far as p is a
function of three microvariables \, 7, f or W, ¢, {. Several ways are known to
calculate p.

One method (David, 1985) relies on calculation of the number of intersec-
tions of a given population of objects (pipes or cracks) with a random line.
[This calculation can be found in Dienes (1978)]. Another way is to use the
concept of excluded volume (De Gennes, 1976). The excluded volume V, 1s
the average volume around one object (pipe or crack) within which a second
object must have its center in order for the two objects to intersect.

In the case of two cylindrical pipes, V, = 2 A* 7. Given that 1 /¢ is the
pipe number density, the average number of intersections per pipe is V,/ .

k|

kmax |-

Fig. 3. Variation of the permeability k, as
a function of the probability of intersection,
p. Percolation threshold is noted p,; k. is
obtained whenp = f= 1.

P =173 1 9
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Assuming as above z = 4,
NF
~ (4)

Together with Egs. (1) and (3), Eq. (4) gives the solution for & in terms of
microvariables r, A, {. Relation (4) gives moreover the additional condition for
having a nonzero permeability,

2

I;?a

>|
~|

W | -

=

N

As could be expected, the probability that any pipe intersects another pipe is
small if the pipes are short (small \) or if they are spaced far apart (large ().

Probability p for two cracks to intersect has been determined previously
from different methods (David, 1985; Charlaix et al., 1984) (Appendix B).
These last authors used the calculation of De Gennes (1976) that gives the ex-
cluded volume for two discs: V, = #2 . Given that 1/£° is the crack density,
the probability p is,

3

3 (5)

JQI

o
P=r

e |

assuming z = 4.

As previously, Egs. (2), (3), and (5) allow & to be expressed in terms of
three microvariables w, c, (.

The value of &, is given by Eq. (2) with f = 1. Nonzero permeability is
observed for p > 1 ie., ¢/f > 0.5 (Gueguen et al., 1986).

Tortuosity

Porosity is derived easily for each model as

¢ =7 %3— { pipe model) (6)
and
W
¢ =2x N (crack model) (7)

From Eq. (1) and (6), a possible relation between &k and ¢ is

f

k= 3 72 ¢  for the pipe model

This equation is similar to Eq. (11) of Walsh and Brace (1984), also derived
for a pipe model, which is
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k=-—=mo
b r?
where 7 is ‘‘tortuosity,’’ m is hydraulic radius, and b is a constant.
Comparison of both equations leads to

This means that the tortuosity concept that is used frequently in rock physics
and the percolation concept are related. This result is not really surprising and
agrees with those from many other authors concerned with percolation and ran-
dom media (e.g., Redner, 1983). If f — 0, 1 — oo; thus, connections no longer
exist throughout the medium and & — 0. A large tortuosity corresponds to a
situation where pore connection is poor. In terms of percolation theory, “‘infi-
nite paths’’ through the medium exist, but only a few. The opposite situation,
a small tortuosity, corresponds to the existence of many ‘infinite paths.”” The
value of 7 in the case of ideal connection and isotropy is 7 = 2. In terms of
percolation, ideal connection means f = 1; thus, b = 8.

RELATIONS BETWEEN BULK PARAMETERS IN TERMS OF
MICROVARIABLES

The above equations concerned with permeability k£ and porosity ¢ may be
completed with similar results on electrical conductivity ¢. The bulk parameters
(k, 0, ¢) can be expressed in terms of microvariables (7, N, i’) or (¢, w, f?)
previously used.

Bulk parameters

Formation factor F is used frequently in rock physics. By definition, F =
a, /o where oy is the fluid conductivity and ¢ is the rock conductivity. Calcu-
lation of ¢ goes along the same lines as calculation of k gives

F=d4f o (8)

Results for the three bulk parameters k, F, ¢ (Table 1) are expressed as func-
tions of three microvariables so that theoretically the relations (Table 1) may
be inverted to get 7, \, £ or W, €, f. Table 1 should be completed by Egs. (3),
(4), and (5) when the rock is close to the percolation threshold p,.. Below p,., f
= 0; well above p., f = 1. Depending on how the equations are combined,
several permeability-porosity relations can be derived also.

One of them has been discussed above for the pipe model (k = f/32 72
¢). However, this is not the only possible k — ¢ relation because three variables
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Table 1. Permeability, Conductivity, and Porosity for Two Models

Model k F=uq/o ¢
T NP 7
1 e f— 4 —1 - oo
Pipe model 2! P T ¢ 71' E
dr wc? ctw
Crack model —%fT 45 ¢! 2m =
1

are involved in both k and ¢. Using this relation together with Eq. (8),

kEF = % or  F=2(2kF)"
Therefore, r is obtained simply from kF. Other microvariables can be obtained
in a similar way by appropriate combinations of k, F, and ¢. Because F is
proportional to ¢, however, only ¥ and by / 3 can be obtained separately for the
pipe model and expressed as functions of k and F when f = 1. This is not the
case close to the percolation threshold where Egs. (3) and (4) can be used and

P= (8T kFN/$)"’
with X =27 ¢~ (24F) {1/3 + [2/(27 F ¢)"]}

so that the three microvariables are obtained in that situation.
In the case of the crack model, a possible relation between & and ¢ is, from
Eqgs. (2) and (8),

thus

Then, w and ¢” /f*> may be obtained separately as functions of k and F when f
= 1. Again, close to the percolation threshold, Egs. (3) and (5) can be used
and ¢ and f can be derived:

= 2(n0) " (304F) " {1/3 + [2/(27 Fg) )}

( 2\)1/3 {1/3 +[2/(21Fs)' "]}

1/3

ooyt
Il
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Testing of the Models

The above models should be tested in both general and particular situa-
tions. The average microvariables (\ or ¢, ¥ or w, {) can be measured from
photomicrographs or stained thin sections. Bulk properties F, &k, and ¢ can be
measured also. Therefore, to what extent the models are faithfully reproducing
‘observations should be possible to determine. An important distinction should
be made between situations where the rock is close to the percolation threshold
and situations where it is well above it. Only in the first case does Eq. (3) apply.
In the second case, a complete inversion is not possible unless additional as-
sumptions are used. Preliminary testing has been done in a few cases, either on
little-porosity Fontainebleau sandstones (Gueguen et al., 1986) or in large-po-
rosity (North Sea) chalks (Jakubowski, 1986). In both cases, the crack model
predicted permeabilities are in good agreement with those observed.

Particular Situations

Given that the three bulk parameters are calculated from three independent
microvariables, complete inversion to get the microvariables from the three bulk
parameters is possible as long as these variables enter k, ¢, ¢ in different com-
binations. This is not the case, as seen, if f = 1. If additional conditions on the
microvariables exist, however, complete inversion may be possible even for the
situation f = 1. In that case, particular specific relations also can be derived
between k, F, and ¢.

An example of such a particular situation is that corresponding to a variable
pipe or crack density (7 variable), the two other microvariables being held con-
stant. Examining how F varies in such a case near the percolation threshold by
using Eqgs. (3)-(8) and choosing as the unique variable ¢ instead of ¢,

Fo (¢ —¢.) ¢
where
o T
¢, = ?ﬂ-i {pipe model)
or
4w
¢, = T vtv (crack model)
ir ¢

This result is close to Archie’s law F = ¢~ ™.

Another example of a particular situation can be found if the pressure vari-
ation of k and o is considered. Assume that pipe radius and crack aperturc are
the two variables that are the most sensitive to pressure. Therefore, if only r
(pipe model) or w (crack model) vary, with f constant ( f = 1),
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koert, ¢wr’ Fo¢ !, ko F? (pipe model)
ko w? dow Foo !, ko F?  (crack model)

Walsh and Brace (1984) have argued previously that, in such a case, k o« F "
and that » must fall in the range 1 < n = 3. Their data are presented here (n
= —log k/log F):

Iz
Westerly granite 1.97
Westerly granite (300°) 2.0
Westerly granite (500°) 2.2

Chelmsford Granite 2.13
Henderson augen gneiss 2.15
Marysville granite 2.7
Raft River siltstone 2.4
Frederic diabase (700°) 2.1
Pottsville Sandstone 2.6
Pigean Cove Granite 2.1

When several measurements are available for a rock, an average n is calculated
so that this list is slightly different from Table ! in Walsh and Brace’s paper.
Experimental data show that 2 < n < 3, which is in agreement with the two
limits set by the pipe model (n = 2) and the crack model (n = 3). The possi-
bility n = 1 is excluded by our models, but not by Walsh and Brace. They
noted, however, that, if n = 1, this would imply a good sensitivity in tortuosity-
pore aperture (w or r) dependence. This means, in terms of percolation theory,
that the rock is close to the percolation threshold. In this case, k changes rapidly
near the percolation threshold because f varies (f # 1).

IhIA

CONCLUSIONS

The main conclusions can be summarized as:

(1) Simple models, using 1D objects (pipes) or 2D objects (cracks), can
be useful to discuss correlations (pore microstructure)~(transport propertics).
Pore microstructure is described by statistical distributions of three microvari-
ables that have been assumed to be isotropic. The anisotropic case could be
investigated in a similar way.

(2) Use of percolation theory and tortuosity are, in a certain sense, equiv-
alent as found previously by others. In both cases, unfortunately, parameters
(f or 7) that cannot easily be measured from photomicrographs must be used.
Potentially, an advantage lies in using percolation theory, because a large body
of information exists describing the statistics of isolated objects as discussed
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(for example, by Stauffer, 1985). Though percolation oversimplifies the phys-
ical situation assuming either free flow or no flow in a narrow passage, it is far
from being completely understood and is, in fact, the subject of active research.
The subject of anisotropic percolation, for example, has received virtually no
attention.

(3) Pipe and crack models have been used to derive permeability-conduc-
tivity—porosity relationships. Depending on the particular situations that are
considered, various possible relations are predicted between bulk parameters.

(4) Models should be tested by measuring microvariables from micro-
graphs and measuring bulk properties in the laboratory. Preliminary testing has
been done in a few cases successfully.

Note Added in Proof

Dr. Stauffer has drawn our attention to an important recent publication that
was not known to us (Fragmentation, Form and Flow in Fractured Media,
1986). This book contains several papers that are concerned with flow in frac-
tured media. In particular, the paper by Charlaix et al. (1986) contains some
results that are presented and discussed also in the present paper (critical be-
havior of k, probability p in terms of disc radius). An important difference,
however, is that Charlaix et al. did not use a statistical approach. They exam-
ined a “‘crack model’’ corresponding to a broad distribution of crack apertures.
Our approach is more appropriate for a distribution that is not broad. In fact,
Charlaix et al. (1986) have applied the Ambegoakar et al. (1971) percolation
model to the calculation of ‘‘crack model’’ permeability. A similar approach
has been published simultaneously and independently in the case of a *‘pipe
model”’ (Katz and Thompson, 1987). Katz and Thompson have considered a
population of pipes with a broad distribution of pipe radii. They also applied
the Ambegaokar percolation model to the calculation of *‘pipe model’” perme-
ability. The main differences between those models and ours are linked with
the types of statistical distribution that have to be considered. Here statistics
and percolation are combined whereas the quoted authors used only percolation
and do not express the bulk parameters in terms of microvariables.

APPENDIX A: STATISTICAL CALCULATION OF k FOR PIPE
MODEL

The volume flow through a capillaric pipe of radius r is given by the
Poiseuille law:

-7 r4

87

0= (Vp-7) 7
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where 7 is a unit vector along the pipe axis (Vp- 7 is the pressure gradient along
the pipes), and 7 is fluid viscosity. The flow through a section (§) of porous
medium defined by a plane z = constant (Fig. 1) is considered. The area of the
section is unity and this unit section intercepts a number of pipes that are in-
dexed by 1, 2, ... @, ... N. The normal to the section is 7. Total volume
flow through it is I _, 0%- 7, where 0% is the flow through pipe . By com-
paring this result to Darcy’s law,

N and

2. (") [p; ] £ nl _ Tk n

“ &7 N L . Pty

Thus, the permeability is
T\ & 4
ky = (—) 2 () g8

An isotropic distribution of pipes is assumed and substitutes an integral expres-
sion for the discrete summation.

Let n(r, A, 0, ¢, 2) be the number of pipes per unit volume having a radius
r, alength A\, an orientation defined by § and ¢, and a center at z (Fig. 1). Then,
the number of pipes N having a radius r and an orientation (0, ¢) that intercepts
the unit area is

oo N/2 cos 6
N(r,@,qo)ZZS d)\g n(r, N\, 9, ¢, 2) dz
0 0
because a pipe with fixed values of & and A intercepts (S) only if its center is
atz = A/2 cos 6 (Fig. 1). Assuming isotropy and statistical independence,
N/2 cos 8

N(r, 8, o) =2 SO d N S £(r)g(\) %dz = Nf(r) cos 9237%

0

The distribution of centers of pipes along z is assumed to be homogeneous and
isotropic:

A= S Ag(N\) d\
0
and

n{r, N 0, ¢, 2) = f(r) g(A) ng 51;

where ng 1s the number of pipes per unit volume, f(r) is the fraction of them
having radius r, and g(A) is the fraction having length A. The factor 1/2x
normalizes the angular distribution.
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With these distributions, the expression for k£ becomes

T n o w/2

k:“_“_—o__s 4 S 3 .
A f(r)dr . (cos’ 6)2x sin 0 db
T o —

255?10}\1’4

where (r*) is the fourth-order moment of the radius distribution.

APPENDIX B

Dienes (1978) has shown that the mean free path for a random line in a
field of thin, circular cracks is A = 2 /7 ¢ £>. Assuming that intersections are
described by a Poisson process, the probability that a crack is isolated is ¢* =
e " where y = L/ and L is the circumference of the average crack, i.e., L =
2w c,andp = (1 — g).

Then, (1 — p)* = ¢ where » = 7°¢° / #*. This frequency » is exactly
identical to that obtained from the excluded volume argument. The difference
between the above calculated value of p and Eq. (5) stems from the fact that an
approximation has been used to derive p from » in Egs. (4) and (5). Using the
assumption of the Bethe lattice with 4 neighbors leads to ¢* = e, i.e., to the
above equation. When v is small, however, ¢ */* = 1 — v/4dandp = v/4.
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5.7 Consider a Bethe Lattice with z = 4.
1. What is the percolation threshold p,. for this network?

2. What is the average number of sites 7' to which the origin is connected through a
single branch A ? (T' is the average size of the cluster for each branch).

3. Determine the form of the relationship that links S to p and p,.

4. Determine P, the fraction of sites that are part of the infinite cluster. Introduce @, the
probability that a path starting from the origin is interrupted somewhere.

Solution: See the following five pages of notes.
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5.8 Consider a geomaterial in which the pores are penny-shaped, with the geometric
parameters explained in Figure 5.5.

%

Figure 5.5 Flow in a network of penny-shaped pores. Image taken from (Gueguen and Dienes,
1989).

1. Calculate the value of [ (average distance between fractures) at the percolation thresh-
old. Assume that the fractures are disk shaped and of radius ¢ = 200um. Assume
that each fracture is a site that is part of a Bethe lattice.

2. Calculate the maximum value of permeability for a population of identical fractures
with radius ¢ = 200pm and aperture w = lpm. Given: The permeability of a
network of penny-shaped fractures is:

L 4m wj’ﬁ
15 13

In which f is the portion of fractures that form an infinite cluster, and " is the n-th
moment of probability of the variable z.

Solution: See the solution of Problem 5.6 (paper by Gueguen and Dienes, 1989).

5.9 Prove the axis-symmetric consolidation equation shown in the course.

Solution: In the demonstration of the 1D consolidation equation, we show that:

Opw

ot = C'uvzpw (5.5)

with:
V?py = (V& V(pw)) : 6
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in which 6 is the second-order identitiy tensor. In axis-symmetric conditions, using cylin-

drical coordinates: 5
Pw
V w = —— r
(pu) =~ "€

Opw
v (a)

O Ipw
v ((97“) X e, + WV (67-)

V@V (pw)

*pu 1 dp,, Oe,
= o et I

82pw 1 Opw
= ——e Qe +-——egRe
972 ©r & e+ e ® eg

X eg

From there, we find that:
?py  10py,
Po  10pw
or? r Or
The combination of Equations 5.5 and 5.6 provides the result sought:

Ow _ (0w 10pw
ot U\ or? r Or

V2pw =

(5.6)

5.10 Consider a rock specimen filled with oil (mass density p,,, pressure p,,, saturation
degree S,,) and water (mass density p,,, pressure p,,, saturation degree .S,,). The specimen
is cylindrical, with impermeable lateral boundaries. The specimen is subjected to a con-
stant water flow at the base. The initial saturation degree of oil is S) = 0.8. We assume
that fluid flow is purely 1D and occurs only in the direction of the axis of the specimen.
The capillary pressure is assumed to be negligible, i.e. Vz, p,(z) = pw(2) = p(z). The

porosity of the specimen is assumed to remain constant.

1. Provide the governing equations of the water and oil phases.

2. Assume that the fluids are incompressible. Show that the sum of the fluid velocities
v(z) = vn(2) + vy (2) is uniform throughout the sample, i.e. that v(z) does not

depend on the position z in the sample.

3. Show that:
@ — —’U(Z)+ (Kwpw/,uw-i-Knpn/'u,n)g

Explain why dp/dz only depends on S,,.

Solution: See the following two pages of notes.
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5.11 The capillary rise in a tube can be calculated by using Jurin’s equation:

th:pn_pw

and Laplace’s equation:
2ty 4 €OS Oy
Pn—Pw=—""—_—"—
r
in which h is the height of the capillary rise, -,, is the specific weight of the wetting fluid
in the tube (e.g., water), p,, is the pressure of the wetting fluid (water), p,, is the pressure
of the non-wetting fluid (e.g., air), r is the radius of the tube, ¢,, Jw is the surface tension in
the meniscus (e.g., at the water/air interface) and 6,, is the wetting angle, i.e. the angle that
exists between the normal to the tube wall and the tangent to the meniscus. For a water/air
meniscus under ambient temperature, we have t,,,,, = 75 mN/m. The porous network
inside a soil specimen is often modeled as a distribution of capillary tubes that are parallel
to each other and that are not connected to one another, so that the equations of Jurin and
Laplace can be applied. With this assumption in mind, let us consider a cylindrical soil
specimen, 5 cm in diameter and 100 cm in height, made of solid grains, liquid water and
gaseous air. The soil porous network is modeled by the bundle of tubes described in Table
5.1. Furthermore, it is assumed that the tubes are perfectly wettable, i.e., 6, = 0°.

1. Calculate the porosity of the specimen.

2. Express the capillary rise in a single tube of diameter D (in symbolic formula). Cal-
culate the capillary rise & in each type of tube listed in Table 5.1.

3. Express the relationship between the capillary pressure and the degree of saturation
in water of the specimen. Plot the Water Retention Curve of the specimen.

Table 5.1 Porous network modeled as a bundle of tubes

Tube diameter (um)  Number of tubes

0.1 500
0.5 1,000
1 5,000
5 50,000
10 100,000
50 50,000
100 5,000
500 1,000
1000 500

Solution: See the following two pages of notes.
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5.12  Let us consider two non-deformable cylinders of radius R and of length 1 m in the
direction orthogonal to the sheet of paper (see Figure 5.6). At the contact between the two
cylinders, a water meniscus exists. We assume that the material that makes the cylinders is
perfectly wettable, i.e., #,, = 0. The meniscus section is an arc of circle of radius r. The
width of the meniscus relative to the axis that links the two centers of the cylinders is noted
l.

1. Calculate ! as a function of r and R. Derive the relation between the water capillary
pressure in the meniscus, R and a = R/r. From there, calculate the attraction force
fu between the two cylinders because of the presence of the meniscus (provide the
expression of f,, as a function of o and R).

2. Generalize the result found in question 1 above to a regular cubic packing of cylinders.
Give the expression of the effective stress. What are the limitations of this model?

3. Calculate the porosity, void ratio and dry specific weight of the material (assuming a
regular cubic packing). Assume p, = 27 kN/m? (for the solid grains).

4. The capillary cohesion is defined as:
cs = o, tan @’

in which @’ is the friction angle and ¢/, is the normal component of the effective stress
(where here, the normal direction is the direction of the segment that links the centers
of both cylinders). Calculate the capillary cohesion of the medium as a function of the
water capillary pressure, for a friction angle of 30°. Plot the variations of the cohesion
for R = 1um.

5. Calculate the increase in material strength in the vertical direction as a function of the
capillary pressure. Assume hte following:
» The stress path is triaxial (o =cst);
» The external forces are given as: fe,: = 2R X (0.7503 + 0.250%);

» The orientation angle of the external forces compared to the vertical is given as:
dext = 60 — arctan(0.577 x (op/0oy)) (in degrees);

» The material strength of the dry medium is 100 kPa, which corresponds to an
external force oriented by an angle of 30° compared to the vertical (normal).

To proceed with the calculation, assume a value of o, and calculate the capillary force
such that o, reaches the material strength.

Solution: See the following two pages of notes.
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fu

fres

fext [0

Pression négative
del'eau : u

Figure 5.6 The menisci between two solid cylinders and the corresponding inter-granular forces.
Image taken after Fleureau’s course notes.
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5.13 Homework 3 - Problem 3
A varved clay consists of successive layers of silt and clay each of which has isotropic flow
properties (see Figure 5.7).

1.

Derive expressions for the average (gross) permeability of the varved clay system
parallel (k;) and perpendicular (k,,) to the direction of deposition.

. Show that for any system of this type, k; > &k, > 0.

. Noting that the values of k; and k,, are principal values of the permeability tensor,

determine the components of the permeability tensor in a reference frame X’ (see
Figure 5.7).

Clay:
e = 107 om faeo
L=03%om

8 Sikt:
&= 10° om foeo
L=10ocm

Figure 5.7  Flow through an element of varved clay.

Solution:

1.

We note Ahg (respectively Ah,) the difference of pressure head from the top to the
bottom of a silt layer (respectively, clay layer). The flow in the normal direction is the
same across all layers, thus:

AhsA . Ah,

A
L, L.

Qn:ks

in which A = B x [, where B is the width of the domain (in the plane of the sheet
of paper) and [ is the depth of the domain (in the direction orthogonal to the sheet of
paper). Additioanally, the average normal permeability of the soil domain is defined
as:
Ah
1 L

in which I = 5L, + 4L, (total height of the soil domain) and Ah = 5Ah, + 4Ah,
(total difference of pressure head between the top and bottom of the soil domain). By
combining the two above equations, we get:

_ (5Ls+4L.)
n Lg L.
ple +4Le
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The flow in the tangential direction is:
Ah Ah
=bks—I1 X Ls +4kc—1 x L.
qt B X + B X

in which Ah is the difference of pressure head between the left and right hand sides of
the soil domain. Additionally, the average tangential permeability of the soil domain
is defined as:

Ah
qs = k‘t§Z X (5L.s + 4LC)
By combining the two equations above, we get:

(5ks Ly + 4k.Ly)

k, —
¢ (5L +4L,)

. Since the given permeabilities ks and k. are positive, and the given lengths are pos-

itive, the two permeability components k,, and k; are positive. Now, let us compare
the two:

ke (koL + kL) (552 +4ke)

kn (5Ls +4L,)?

‘We have:

L, L. ks | ke
(5ksLs + 4k.L.) (5k + 4k) =25L% + 16L% + 20L, L. (k + k)

Suppose ks = ak,. Then:

L. L 24
SkoLo+ 4k, L) (525 + 472 ) = 9512 + 1612 + 20L. L, [ 2
k k s ¢ «a

We have a? + 1 —2a = (a — 1)2 > 0so a? + 1 > 2« and therefore, % > 2. As
a result:

Ly L.
(5ksLs + 4k.L.) (5k + 4k) > 25L% + 16L% + 40L L. = (5L, + 4L.)?

‘We conclude that l’j—* > 1 and therefore:

. To calculate the components of the permeability tensor in the reference frame shown,

we can apply the transformation equations that were established for stress transfor-
mation in 2D. Using Question 2 for the sign of k; — ky,:

ke + ke K —k

k':cx = 9 + — 9 L COS(QG)
kn, +k ky — ky,

kyy, = ;_ A 5 cos(26)
kt - kn

kyy = 5 sin(26)
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5.14 Homework 3 - Problem 4
The combination of the water momentum balance equation, the solid mass conservation
equation and the water mass conservation equation provides:

(04—(]5) qﬁ Dspw . 8711 _& 9
( K. T ky) D i\ ) T o, VP

. which can be solved for the fields of displacements u and water pore pressure p,, if
combined with the momentum balance equation:

D.:V*u —aVp, =0

Starting from these two governing equtions above, show that the 1D consolidation equation
is expressed as:
Ipw _ k 52pw
ot ¢, 022

with Ky, = k6, ¢, = 1, (S + a®my,), S = ((O‘K;“b) + %) and m, =
that the solid skeleton has a linear isotropic elastic behavior.

_ 1
K+1G- Assume

Solution: We start with the governing equation:

(a_¢) ¢ Dspw . 8711 _& 9
( e +K{Z Di + adiv = Vpw

Using the notations introduced in the problem:

D5p,, dey  kd _,
B tag = Ev Duo (5.7)

S

The time derivative relative to the solid skeleton is:

Depy Op
= — V w " Vs
Dt ar T VPwV

with, according to the constitutive laws adopted in this course:

K*
Vpw = —“Vpy
P

We assume that the permeability of the porous medium is high enough that we can neglect
the gradient of water mass density. Therefore, in one dimension, equation 6.8 becomes:

Opw ez, k 9%pu

SW ta ot Ly 022 68

For a linear isotropic elastic solid skeleton, we have:

o +ap,d = (K — ;G) €,0 + 2Ge



176 ELEMENTS OF PORO-ELASTICITY

For a 1D consolidation test:

2 4 1
Oz +QDy = (K - 3G) €22 T QGGZZ = <K+ 3G> €2z = mi‘fzz (59)

v

Now combining equations 5.8 and 5.9:

do.. _ k OPpu
oty 022

(S—i—anv) (’9(%1, + amy

In a consolidation test, the imposed stress does not vary over time, therefore:

3pw k 82pw
2 _
(S @ m/“) ot iy 022

From which we deduce the required consolidation equation:

W k pw  k Opy

ot (S + a?2my) py, 022 cy 022

5.15 Homework 3 - Problem 5

We subject a water-saturated solid specimen to a triaxial axisymmetric test. We assume
that the state of stress in the specimen is uniform and that the loading platens at the top and
bottom of the specimen are frictionless. Before applying any stress to the specimen, the
pore pressure is uniform, and equal to pg. The vertical stress applied on the top platen is
noted o1, and the confining pressure applied on the lateral faces of the specimen is noted
g3.

1. First consider that the test is undrained. Determine the stresses, pore pressures and
strains in the specimen, in terms of o1, o3 and pg.

2. Now consider that the test is drained. Repeat question 1, in the short-term and in the
long-term.

Solution:

1. The total stress is given (boundary conditions), so we are looking for the pore pressure
and the strains in the specimen (both are assumed to be uniform in the specimen). In
undrained conditions, the specimen does not change in volume, since the solid grains
and the water are both considered incompressible. There is no change of pore volume
during the test. Therefore, the pore pressure of the specimen increases by the same
amount as the mean stress applied at the boundary. Under the loading conditions, the
pore pressure is therefore:

1
Pw = Po — g(gl + 203)
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in which compression counted negative. To find the strains, we can use Biot’s consti-
tutive relationships, which, in the absence of total volumetric deformation, boil down
to:

o1+ apy, = 2Ge;
o3 + ap, = 2Ges

in which G is the shear modulus of the specimen. The two equations above can be
solved for ¢; and e3.

2. Like for the undrained tests, the pore pressure in a drained test in the short term is:

1
Pw = Po — g(gl + 203)

in which compression counted negative. The strains are obtained by solving the fol-
lowing system of equations, which comes form the constitutive relationships:

2
o1+ apy, = <K - 3G> (e1 4 2€3) + 2Geq

2
03+ apy, = (K — 3G> (e1 4 2€3) + 2Ges

in which G is the shear modulus of the specimen and K is the drained bulk modulus
of the specimen (solid grains only). In the long term, the excess pore pressure is
dissipated and comes back to its initial value at equilibrium:

Pw = Po
Then, the strain components can be obtained by solving the following system of equa-
tions, which comes from the constitutive relationships:

2
o1+ apy = (K — 3G> (61 4 2€3) + 2Geq

2
03+ apy, = <K - 3G> (e1 + 2€3) + 2Ges

5.16 Homework 4 - Problem 1

1. Let us suppose that you are performing a triaxial compression test, in which 017 = o7
and 092 = 033 = oy7. Write the stress/strain relationship that governs the mechanical
behavior of the solid skeleton during the test.

2. Let us suppose that you are performing a drained isotropic compression test, in which
011 = 092 = 033 = o1, p = 0. We give the following constitutive relationship,
which stems from thermodynamic principles:

K
0 = aTr(e) + P (I)Opw
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in which @ is the current porosity, ® is the initial porosity, K is the bulk modulus
of the solid phase, and « is the Biot coefficient. Write the stress/strain and poros-
ity/pressure relationships for the drained isotropic compression test.

3. Now suppose that you are performing an undrained isotropic compression test, in
which 011 = 092 = 033 = 07, Avy = 0 (where vy is the volume of the fluid in the
specimen, assumed to be incompressible). Derive the stress/strain relationship and
the stress/pore pressure relationship for the undrained isotropic compression test.

4. Discuss possible experimental plans to find the bulk and shear moduli of the solid
skeleton, as well as the poroelasticity coefficients « and N = K, /(o — ®p).

Solution:

1. Linear isotropic behavior of the solid skeleton:
2
o+tap, = K—gG €,0 + 2Ge

The deviatoric part of the equation above is:
s = 2Ge (5.10)

where s is the deviatoric stress and e is the deviatoric strain. For the triaxial loading
described:

1
s = 0161®€1+011€2®€2+01163®63—3(014-2011)(61@61+€2®€2+63®€3)
2 1 1
s = 5(01 —orr)er ®ep + 5(011 —or)es ®@ ey + g(UU —or)es Qe

Similarly, for the strain:

2 1 1
e = 5(61 —erer ®e; + 5(611 —€r)ea @ ey + 5(611 —€r)es ® e3

Taking the component 11 of equation 5.10:

oy —0j15 = 2G(€] — 6]])
2. For the solid skeleton, with p,, = 0:
2
o= <K — 30) €,0 + 2Ge
Since the loading is isotropic:
2
o =010 = <K— 3G) (3er)6 + 2Geré

And finally:
oy = 3K€]
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For the fluid:

K
60 = aT " Pu
aTr(e) + - <I>0p
For a drained isotropic test, p,, = 0 and:

0D = 3aer
. For the solid skeleton, in direction 1:
2
ort+apy, = <K3G> X 3€r +2G x €7 = 3Keg (5.11)

For the fluid, in direction 1, we have & = 0 since Avy = 0 and since the fluid is
incompressible. Therefore:

S

0 = 3ae; + afCIJ(Jpw
from which we get:
Puw = —%:%)e, (5.12)
Combining equations 5.11 and 5.12, we get:
or = K—&—(CY_K(I:O)OP X 3€r (5.13)
We note K, the undrained bulk modulus:
(a — ®g)a?

K,=K
TR,

Now combining equations 5.12 and 5.13, we get the sought stress/pore pressure rela-

tionship:

(a — (I)o) 1

—o07

Pw = —« Ks Ku

. In each of the three experiments above, we control stress and measure strain (or vice
versa), and we control the volume of the fluid (or porosity, in the case of an incom-
pressible fluid), and we measure the pore pressure (or vice versa). Hence, each of
the five equations established in the previous questions provides a relationship from
which poro-elasticity coefficients can be calculated. In particular, the triaxial com-
pression test provides:

oy — o0y = 2G(6] - E]])

which allows calculating the shear modulus of the solid skeleton. The drained isotropic
compression test provides:
o = 3Ke I

0D = 3ae I
which allows one to calculate the bulk modulus of the solid skeleton and the Biot’s
coefficient. Lastly, the undrained isotropic compression test provides:

(Oé — (I)()) 1

Pw = —Q K. E

or
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with:
(a — ®p)a?

K,=K
+ K.

which, after some intermediate calculations, allows one to find the coefficient V.

5.17 Homework 4 - Problem 2

Polluted water is to be flushed from a confined aquifer of height L and hydraulic cnductivity
k (see Figure 5.8). The method employed is to pump water out of well A. The water is then
treated (off-site) and successively pumped back (at the same rate) into the aquifer well B,
located at a distance 20d (where d is the diameter of the well bore). Assuming that the
initial head in the aquifer is hg, and that the adjacent layers are impervious:

1. Show that for a single well, the steady-state piezometric head can be related to the
rate of pumping through the following expression:

_ _Q (2
=T & 2kal”<d>

where h,, is the water elevation and d is the diameter of the well.

2. On the basis of the above, sketch the equipotential lines and the flow net for the steady
flow between wells for the case of L =20m, k = 10x10~% cm/s and d = 0.4m.

Recharge rate = Q [m?/day]

1 Pump rate = Q [m?/day] T

Aquifer
Hydraulic Conductivity, &k

Figure 5.8 Piezometric heads due to pumping and recharge from a confined aquifer.
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Solution:

1. Flow to a single well (in m?/s):
g=Axv=—-kxAxVp

For a radial flow at a distance r from the center of a single well of length L, the area
through which the flow happens is A = 27 r L and therefore:

dh
— 9nrLk—
q(r) arLk—

In steady state, ¢(r) = £@Q, (+Q if water is injected at a flow rate of Q, -Q if water is
pumped at a flow rate of Q), and so:

+Q = 27rrLk@
dr

‘We thus have:
Q dr
2n Lk r

Integrating between r = d /2 at the circumference of the well, and r:

B Q 2r
h(r) — hy = i27rLk: In <d>

dh =+

which is the expected result.

2. For two wells (injection well B and extraction well A), the water head is obtained by
superposition:

Q 2rp Q 214 Q TA
- —2hg——2 I (B m(ZA) —opg+—% (™2
h=hathpg =2ho=g 7 In{ == J+5 I hot 5 g

where r 4 is the radial distance to extraction well A, and rg is the radial distance to
injection well B. The equipotential lines can be drawn from the knowledge of h. The
flow lines are orthogonal to the equipotential lines, see Figure 5.9.

20.0

Jiaojun Liu’s drawing (2020) Luis Vergaray’s drawing (2020)

Figure 5.9  Flow net for the problem with two injection wells (Problem 5.17).
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5.18 Homework 4 - Problem 3

In the construction of a large excavation, the inflow of water to the excavation is prevented
by installing an impervious slurry wall which extends to the level of impervious rock (see
Figure 5.10). Outside the excavation, the heads in the soil are to be reduced by pumping
from a series of wells. Assuming a steady rate of pumping @Q,, = 600 m3/hr from a single
well, calculate the flow field in the soil assuming that the flow into the well is horizontal
and that the soil is homogeneous and isotropic. The piezometric head in the far-field is hg
= 100 m. What is the steady state head recorded at the observation well? Sketch the flow
field for the case when the horizontal transmissivity of the aquifer is T = 4,000 m?/day.
Treat the well as a line source in the last part of this problem.

observation
well
\

TUm

-

well

10m

Figure 5.10 Horizontal flow field for steady-state pumping.

Solution: The slurry wall acts like an axis of symmetry. The system is equivalent to two
puping wells that are 20 meters apart, wit no slurry wall. First consider a single well. In
steady state, we have:

dh
Q=FkiA=2nkrh—
dr
After rearranging and integrating on both sides:
T h
Q [Tdr_ / ddh
2wk Tw T h

w
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2oz = Qg (
“ 7Tk:n<rw

where r,, is the radius of the well, r is the distance to the well, h,, is the water head in the
well and h is the water head at the observation point (X,y), given as:

Q r
h=4/—In|— h?
\/ﬂ‘ B Tw +
For one well, the pressure head drop at point (x,y) is Ah = hg — h. For two well A and B
(20 meters apart): Ah = Ahy + Ahp. Then:

Ah = 2hg — \/gl‘:ln (:2) +h2 - \/%Zln (;i) +h3,
with Q4 = Qp, ha = hp, but 74 # rp. If A is the well on the same side as the
observation well O, then 1% = (24 — 20)* + (ya — yo)? = 25+ 100 = 125m?2. If B is
the well on the other side as the observation well, then r% = (z5 — 20)* + (yg —y0)? =
152 4+ 100 = 325m?. Assuming a certain value for h4 = hp and for r,, one can then
calculate the pressure head drop at the observation well, and then the pressure head at the
observation well is iy + Ah. We plot the equipotential lines from the knowledge of h,

where h is calculated with an assumed value of hy = hp and an assumed value of 7.
The flow lines are orthogonal to the equipotential lines, see Figure 5.11.

Jiaojun Liu’s drawing (2020) Haozhou He’s drawing (2020)

Figure 5.11 Flow net for the problem with an injection well and a slurry wall (Problem 5.18).






CHAPTER 6

FINITE ELEMENT METHOD FOR
PORO-ELASTICITY

PROBLEMS

6.1 Consider plane wall of thickness L, initially at a uniform temperature 7, which has
both surfaces suddenly exposed to a fluid at temperature T,,. The governing differential
equation is:

o°T oT

002~ P

The initial condition is T'(x, 0) = T and we consider two sets of boundary conditions:

k

Set I: T(0,t) = To, T(L,t) =T
oT
Set 2: T(0,1) = Too, [k +B(T ~Two =0

z=L

Approximate the solution with two linear Finite Elements. Solve for the unknown temper-
atures and heat fluxes.

Solution: See the solution in the next 4 pages of notes.

Theoretical Geomechanics. 185
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6.2 Consider a uniform beam of rectangular cross section (BxH), fixed at z = 0 and
free at z = L. We use the Euler-Bernouilli beam theory. Neglecting the rotary inertia
term, the governing equation for beam deflection is:

0w 9? 9w

A—— — |ET
p ot? +3:172 Ox?

The boundary conditions are:

2 3
wW(0) =0, dW—O, [Eld W} =0, [ W
z=L

A -— El—— =0
dx dax? da® ] _

Determine the first two flexural frequencies of the beam by using the minimum number of
Euler-Bernouilli beam elements.

Solution: See the solution in the next 2 pages of notes.
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6.3 Consider a uniform bar of cross-sectional area A, modulus of elasticity E, mass den-
sity m, and length L. The axial displacement under the action of time-dependent axial
forces is governed by the wave equation:

a2u7 282u a(E)1/2

o2~ 9z m

Determine the transient response [i.e., find u(x, t)] of the bar when the end x = 0 is fixed
and the end x = L is subjected to a force Py. Assume zero initial conditions. Use one
linear element to approximate the spatial variation of the solution, and solve the resulting
ordinary differential equation in time exactly to obtain:

P, ()L T

ug(x,t) = ﬁf(l —cosat), a= \/g%

Solution: After writing the variational formulation and discretizing in space with Lagrange
linear polynomial, we obtain the following matrix equation:

el ) - 2]

The boundary conditions are U; = 0 (fixed end at x = 0) and Q)3 = P, (force imposed at
x = L). The condensed equation is:

. 3P,
u@+&w@:mﬁ

21
1 2

EA
h

+1 -1
-1 +1

With the following initial conditions: Us(0) = 0, Us(0) = 0, in which a = /3E/(mh?).
The solution is of the form:

Us(t) = Acosat + Bsinat +C

Using the initial conditions and the governing equation, we obtain A+C =0, B =0, and C
= Pyh/EA. The final solution is:

: Poh
u(z,t) = Z Ui(t)i(z) = (Acosat + C)ha(z) = ——(1 — cosat)

z
— EA h

6.4 Consider a simply supported beam (of Young’s modulus F, mass density p, area of
cross section A, second moment of area about the axis of bending I, and length L) with
an elastic support at the center of the beam (see Figure 6.1). Determine the fundamental
natural frequency using the minimum number of Euler-Bernoulli beam elements. It is
reminded that in Euler-Bernouilli beam theory, if the rotary inertia term is neglected, the
governing equation for beam deflection is:

Pw 0 [ 0w
o T 02 [EI 8332] = al.)
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(A ,E  Pinned here
\

=

/u7‘_

Figure 6.1 Beam vibration problem

Solution: Under the assumption of space and time separation, the solution of the hyper-
bolic equation of beam vibration can be written in the form: w(z,t) = W (x)e'“!. After
simplifying the equation by dividing by the time exponent, writing the variational formu-
lation and discretizing in space, we obtain the following elementary equations:

([K) =M (W<} = {F°} +{Q"}

In which:
Tert  g2ye d2WS
K = El ! J
I /z dz? dx?
Te41
M = /L pAY] (z) V5 (x)dz

Fe = /we+1 Ue(x)Q(x)dx

i
dr dz3

dz?

Ze

rH +EI [\Ilf(:c)

Te

Q¢ = EI { de] w

In which ¥, denotes a Hermite interpolation function (for an Euler-Bernouilli beam ele-
ment). In order to determine the natural frequencies of the beam, we actually seek to solve
the equation for w, in the absence of external action applied (i.e., free vibrations):

(IK] - w?[M]) {W} = {0}

The problem is symmetric, so we model only half the beam with the FEM. For the left
half of the beam (between = 0 and © = L/2), only one Euler-Bernouilli beam element
is needed. There are four degrees of freedom: the deflection at nodes 1 and 2 (W and
W respectively) and the angle of the deflection slope at nodes 1 and 2 (W3 and W re-
spectively). The corresponding secondary variables are the shear force at nodes 1 and 2
(Qf and Q)f respectively) and the bending moment at nodes 1 and 2 (Q§ and Q§ respec-
tively). At node 1, the deflection is zero (W{=W;=0) and the bending moment is zero
(Q5=Q2=0). At node 2, the deflection depends on the elastic properties of the support

(WE =W = —QsLe/(E.A.): with Q5 = QY™ 4+ Q=2 = 2Q{="), and the slope
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angle is zero (W;=W,;=0). The 4 x 4 system of elementary equations can be condensed
into a 2 x 2 system of equations. After computing the integrals with Hermite interpolation

polynomials, we get:
2ET 4h?  —13h Wa ] 0
h3 —13h 156 W3 —C W3

In which: h = L/2, ¢ = (E.A.)/(2L.). After rearranging:
2% 3h NEGEESE w, | o
3h 6 +c ~13h 156 ws [ |0

In which A\ = w? 24" We find the natural frequencies (w) by solving the following

W SI0ET"
equation for \:
2h% 3h 4h?  —13h
det - A =0
3h 6 +c —13h 156
4550% —2(129 4+ )\ + (3 +2¢) =0

3h 6 420

212 3h 1 _apAR

The characteristic polynomial is:

The two roots are positive and define eigenfrequencies:

1294¢ | 1
= +—/(129 + ¢)2 — 4 2
A 010 910\/( 9+c) 55 x (3 + 2¢)

The fundamental frequency is the smallest root:

129 + ¢ 1
= ——/(129+¢)2 -4 +2
w1 910 910 (129 + ¢) 55 x (3 + 2¢)

6.5 Consider the transient heat conduction problem governed by the following equation:

ou  0%u

— —— =0, 0 1

ot Oz ’ STs
with boundary conditions:

ou
0,t)=0, —(1,t)=0

u(0.) =0, Z(L,0)

and initial condition:
u(z,0) =1

where u is the non-dimensionalized temperature. Discuss the stability of the FEM model
for one linear element and for two linear elements.

Solution: See the solution in the next 2 pages of notes.
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6.6 We wish to determine the transverse motion of a beam clamped at both ends and
subjected to an initial deflection, by using Euler-Bernouilli theory. The governing equation
is:

w 0w

Er + 90t 0, 0<xxl1
with the following boundary conditions:
w(0,t) =0, g—:(o,t) =0, w(l,t)=0, g—q;}(l,t) =0
and the following initial conditions:
w(x,0) = sintr — wz(l — ), %—1:(:1:,0) =0

Establish a stability criterion with the lowest number of Euler-Bernouilli beam elements
possible.

Solution: See the following 5 figures.
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6.7 Establish a stability criterion for the 1D consolidation problem. Assume that there is
drainage at the top and and that the bottom boundary is impermeable.

Solution:
The 1D consolidation equation is:

Opw _ , Ppu ul

at a2 T P (S + a?my)

For an element |z,, z[, the weak formulation of the problem is as follows:

vw(2> ~ 5zpwa

Zb

#b . = dw(z) Opy 1 P ODw
wd v —_dz = — e~ kw5
/Za w(z)pudz + /Za “Ta 9, w(z) puw(S +a?my)  p, 0z
—_————
—a) 1.,
Using Ritz method, with linear element:
Vi=1,2,
2 2 /[P dv, Y, g *
: i q(2)
> ( / %(z)%(z)dz) ZEDY ( | % dd) pi= - [‘I’*Z),,(Mazm))
j=1 Za j=1 Za w v Za

In a matrix form:

[H{p} + [S°Up} = {Q°}

e [ d¥;dV;
HZ]—LG Cy dz gdz

with:

Siej:/ U, (2)¥;(2)dz

~ Zb

q(2) )

QF = — [\Pi(z)pw(S—ka?mv)

Za

The primary variable is equal to zero at the first node, at z = h. Therefore, the first row
and the first column of the assembled stiffness matrix will vanish after condensation. Ac-
cording to the boundary conditions, the seconday variable is zero at the last node, at z = 0.
According to the continuity conditions, the seconday variable is zero at the intermediate
nodes. So that after space discretization and condensation, the Finite Element matrix equa-

tion is:
[H{p} + [SH{p} = {0}
The governing equation is parabolic, therefore we use an alpha-family of approximation:

(pw)n+0 = (1 - 6) X (pw)n +0x (pw)nJrl

(Puw)nto = W



204 FINITE ELEMENT METHOD FOR PORO-ELASTICITY

Therefore, at time ¢,, g, we have:
AtH{ptnso + AS|{P}nso = {0}
(OAL[H] + [S]) {p}n+1 = (6 — D)AL[H] + [S]) {p}n
[S] is invertible, therefore:
(Id) +0AL[S] H]) {p}sr = ([Ld] + (0 = DALS]H[H]) {p}n (6.1

We introduce \; and {X;}, the eigenvalues and eigenvectors of the operator [S]~1[H],

respectively. We have:
Vi, [SITHHIX ) = M{X5)

Multiplying both sides of Equation 6.1 by {X }, we thus get:
(X5} +0AN{X; ) {phn = (X5} + (0 = DAN{X ) {p}n (6.2)
Now multiplying both sides of Equation 6.2 by {X;}7 /|[{X,}]|?, we get:
(1+0ALA) {p}nt1 = (1+ (0 = 1ALA;) {p}n (6.3)
From Equation 6.3, we see that the FEM model is stable if and only if:
14 (0 — 1)Atp,

1 6.4
For linear elements: . .
W) =1- W) =

We find:

(51 ] = [_11 R ]

We solve the following characteristic equation to cal the eigenvalues of [S¢] = [H¢]:

det ([Id] — p;[S¢] ' [H]) = 0

() (550 -

12¢,
H1 = (he)Qv 2

The eigenvalues are:

=0

1o = 0 leads to the trivial solution for {X j}, so for the non trivial solution, the stability

criterion is:
(he)? + 12¢,(0 — 1)At

(he)? + 12¢,0Atp;

| |<1 (6.5)
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If (he)? +12¢, (0 — 1) At > 0, then the FEM model is unconditionnally stable. Otherwise,
the stability criterion is:
(he)?
6¢c, At
Equation 6.6 is lways satisfied if § > 0.5. The FEM model is conditionally stable oth-

erwise. One can see that the stability of the FEM depends on the time of the time step
relative to the element size.

>1—-20 (6.6)

6.8 Dual boundary conditions occur in flow problems in which a pressurized fluid reser-
voir is in contact with the domain under study:

= If the pore pressure at the boundary is more tensile (i.e. lower) than a prescribed value
D+, then one needs to apply a fluid flow g,, at the boundary.

= If the pore pressure at the boundary is more compressive (i.e. greater) than the pre-
scribed value p,, then one needs to impose the pore pressure p, at all nodes of the
boundary.

Figure 6.2 on the left hand-side shows the example of ponding, for which such boundary
conditions are necessary. Explain how you would use the dual boundary condition for a
problem of rainfall (Figure 6.2 on the right hand-side) and for a problem of tunnel excava-
tion in a water saturated rock mass (Figure 6.3).

rainfall rainfall
75 inches/hr 1.5 inches/hr

§
r(\)JVa‘c.\"Y\chesW

A * 1 N\
infiltration o P infiltration
l .75 inches/hr I 1 inch/hr

A. Infiltration Rate = B. Runoff Rate =
rainfall rate, which is less than rainfall rate minus
infiltration capacity infiltration capacity

Figure 6.2  Problems in which a dual boundary condition is needed: ponding (left) and rainfall
(right).

Shart term Transicrt Ling lemm

Figure 6.3 Problem in which a dual boundary condition is needed: tunnel excavation.
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Solution:
For the rainfall problem:

If the soil is of sufficient permeability and/or the rainfall intensity is small, the soil can
adsorb the rainfall water so a flow boundary condition should be applied. Initially, a
water pressure is imposed at the boundary with p; < p,, so it is necessary to impose
arainfall flow g,,.

If the soil is less permeable and/or the the rainfall intensity is high, the soil will not
be able to absorb the rainfall water so ponding happens at the surface and a water
pressure boundary condition needs to be applied. Pore pressure builds up in the soil;
when water pressure at the boundary exceeds the given limit (p; > p.), then it is
necessary to impose a pore pressure p, at the boundary.

For the tunnel problem:

6.9

Just after excavation, p = 0 (permeable tunnel wall). Fluid pressure in the rock mass
is tensile (p < 0) therefore a water flow condition is the most appropriate in the short
term: p < p, = 0, impose g,, = 0 (no flow from tunnel to rock mass).

In the long term, pore pressure in the rock mass becomes more compressive. When
p > p. = 0 at the boundary, it is more appropriate to impose the pore water boundary
condition p, = 0 at the tunnel wall (water drainage).

At intermediate times between the short and long terms, some nodes are subjected to
a flow b.c. while others are subjected to a pressure b.c.

Consider a triaxial compression test performed on a water-saturated soil specimen,

as shown in Figure 6.4. The experiment is undrained, and axis-symmetry is assumed.The
soil is assumed to be linear elastic. Biot’s hydro-mechanical constitutive relationships hold.

Write the strong formulation of the problem (introduce as many constitutive parame-
ters as necessary).

Write the weak formulation of the problem (in cylindrical coordinates).

The specimen is modeled with three rectangular elements, as shown in Figure 6.4.
Calculate the elementary stiffness of each element, assuming that the displacement
field is interpolated with quadratic polynomials, and the pore pressure field is inter-
polated with linear polynomials.

Assemble the elementary equations established in question 2 above.

Discretize the assembled equations in time. Provide the conditions in which the time
marching scheme is stable.

Introduce the boundary conditions in the Finite Element equations, condense the sys-
tem of equations if possible, and solve it for the primary variables.

Post-process the secondary variables.
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c,>0
1 o;3=0
Qw =
e
b Elt1
£ o3>0
€
X1 & O13 = Elt 2
“Q_ qw =
k)
2 Elt3
X 1
3 1 u=u;=0
qu =0
Boundary conditions Mesh

Figure 6.4 Finite Element model of undrained triaxial compression test performed on water-
saturated soil

Solution:

6.10 Consider an oedometer test performed on a water-saturated soil specimen, as shown
in Figure 6.5. The specimen is drained at the bottom and it is studied in plane strain. The
soil is assumed to be linear elastic. Biot’s hydro-mechanical constitutive relationships hold.

Write the strong formulation of the problem (introduce as many constitutive parame-
ters as necessary).

Write the weak formulation of the problem.

The specimen is modeled with two triangular elements, as shown in Figure 6.5. Cal-
culate the elementary stiffness of each element, assuming that the displacement field
is interpolated with quadratic polynomials, and the pore pressure field is interpolated
with linear polynomials.

Assemble the elementary equations established in question 2 above.

Discretize the assembled equations in time. Provide the conditions in which the time
marching scheme is stable.

Introduce the boundary conditions in the Finite Element equations, condense the sys-
tem of equations if possible, and solve it for the primary variables.

Post-process the secondary variables.

Solution:
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c,>0
013 =0
qw =0
Elt1

u; =0 u3; =0

X, o3 =0 013 =0

q, =0 q, =0

Elt2
X3 u;=u; =0
p, =0
Boundary conditions Mesh

Figure 6.5 Finite Element model of drained oedometric test performed on water-saturated soil

6.11

Consider an oedometer test performed on a partially saturated soil specimen, as

shown in Figure 6.6. The specimen is drained at the bottom and it is studied in plane
strain. The soil is assumed to be linear elastic.

Write the strong formulation of the problem (introduce as many constitutive parame-
ters as necessary).

Write the weak formulation of the problem.

The specimen is modeled with two triangular elements, as shown in Figure 6.6. Cal-
culate the elementary stiffness of each element, assuming that the displacement field
is interpolated with quadratic polynomials, and the pore pressure fields is interpolated
with linear polynomials.

Assemble the elementary equations established in question 2 above.

Discretize the assembled equations in time. Provide the conditions in which the time
marching scheme is stable.

Introduce the boundary conditions in the Finite Element equations, condense the sys-
tem of equations if possible, and solve it for the primary variables.

Post-process the secondary variables.

Solution:

6.12 We use the FEM to compare two one-dimensional consolidation experiments (see
the column of soil in Figure 6.7):

1.

2.

Swo = 0.92 (homogeneous initial partial saturation) with a capillary pressure - water
saturation curve independent of temperature;

Swo = 0.92 (homogeneous initial partial saturation), with a capillary pressure - water
saturation curve that depends on temperature.



PROBLEMS 209

;>0 ;3 =0
Qw = 9. =0
Elt1
uz 0 U 0
X G;3=0 G153 =0
q, =0 g, =0
9g=0 g =0 Elt2
X3 u;=u; =0
P, =0
pg =0
Boundary conditions Mesh

Figure 6.6 Finite Element model of drained oedometric test performed on partially saturated soil

A Brooks & Corey relationship is assumed between the capillary pressure, the saturation
degree and the relative permeability. The solid grains and the water are assumed to be
incompressible. The boundary conditions are the following: no lateral displacement or
heat flux on lateral boundaries; at the top: uniform stress, T=343.15 K, p;, = pgsm and
pe chosen to ensure S, = 0.92; no vertical displacement and no heat flux on the bottom
boundary. The same results were obtained with 9 and 18 8-noded isoparametric elements
with a 3x3 Gaussian integration scheme. The time step was 0.01 days for the first 100
steps, and then the time step was multiplied by 10 every 100 time steps, until 107 days
elapsed. Comment on the results obtained in Figures 6.8-6.11 (in particular, explain the
difference between the profiles obtained in the saturated and unsaturated cases).

[LITTTIT

Permeo

Figure 6.7 Unsaturated soil consolidation under non isothermal conditions

Solution:

Figure 6.8: Resulting temperature profiles are similar in both cases and are similar to the
temperature profile obtained in saturated conditions. This is due to the identical averaged
thermal conductivity and relatively high thermal capacity assumed in the saturated case.
Figure 6.9: In saturated cases, samples exhibit an initial period of no-deformation, fol-
lowed by settlements, followed by heave. The latter phase is due to the thermal dilation
of the solid and liquid components of the soil sample. Unsaturated samples exhibit imme-
diate settlements due to gas expulsion, a first period of no settlement, followed by heave.
The absence of settlements between the no-deformation and heave phases suggests that the
remaining gas, subjected to a high temperature and confined in a finite volume, reached the
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" unsaturated case ]

Unsaturated case

340
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320

Temperature (K)
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1.00602 1.00:01 1.00E+00 1.00E+01 100E+02 1.00E+03 1.00E+04 1.00E+05
Time (days)

Saturated case

Figure 6.8 Unsaturated consolidation: temperature profiles

1.00E-C2 100601 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05
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Comparison between the saturated case (solid lines) and the second partially

saturated case (chain dots): heavy lines are the present solution; light lines are the solution of
Schrefier er al. [22]. The numbers on the curves are the nodal points selected within the mesh

Figure 6.9  Unsaturated consolidation: displacement profiles, comparison between saturated and
unsaturated cases
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Figure 6.10  Unsaturated consolidation: water retention curves

AT—independent
T-dependent

+37 T-independent
T-dependent

127 T-independent

¥ T-independent

1.006-02 1006400
0+

_ 00001

£ oo

< 000

§ 00002

E

@ |

o |

S oo 4

a

K |

3 oot |

g -o00a

§
00005 +
00006

8 T-dependent
T-dependent

Unsaturated consolidation: displacement profiles, comparison between the two

unsaturated models (WRC that depends/does not depend on temperature)



212 FINITE ELEMENT METHOD FOR PORO-ELASTICITY

pressure of condensation (pV = nRT). We note that if phase changes are not accounted
for (dash lines), immediate settlements are followed by a brief consolidation process before
stabilizing in the phase of no-deformation followed by heave. That means that if conden-
sation is not accounted for in the model, the increase of pore pressure induces a liquid
outflow.

Figure 6.10: These two last observations are confirmed by the curves that show the time
evolution of the degree of saturation and of the capillary pressure. In both models, the
degree of saturation increases during the no-deformation phase, i.e. at constant volume.
Thus the liquid contents increases, indicating condensation. Heave correlates with a de-
crease of the degree of saturation: fluids occupy more space and the gas fraction increases,
indicating evaporation. In the first model, the capillary pressure solely depends on the de-
gree of saturation, thus the capillary pressure decreases during the no-deformation phase
and increases during the heave phase. In the second model, the capillary pressure depends
also on temperature. As temperature increases, the vapor content of the air-vapor mixture
increases and the contact angle between the wetting phase (liquid) and the non-wetting
phase (gas mixture) decreases. According to Laplace Law, that corresponds to a decrease
of capillary pressure. As a result, in the second model, the capillary pressure decreases
during the no-deformation phase (condensation) and remains constant during the heave
phase (evaporation).

Figure 6.11: There are more pronounced phase changes in the capillary pressure- satura-
tion model that depends on temperature. The evolution of capillary pressure follows that
of temperature. In the first model, the capillary pressure is higher, thus the compressibility
of the sample is lower, and therefore the predicted final settlements are lower than with the
second model.

6.13 Homework 4 - Problem 4

Consider the problem of determining the temperature distribution of a solid cylinder, ini-
tially at a uniform temperature 7j and cooled in a medium of zero temperature (i.e., T =
0). The governing equation of the problem is:

or 190 oT
pcat_’rﬁr<rk67‘>_07 0<r<R

The boundary conditions are:

a—T(O,t) =0, <rk8T +BT> =0

or or R
The initial conditions are T'(r,t) = Tp. Determine the pressure distribution T'(r, ) us-

ing one linear finite element. Take R = 2.5cm, T, = 130°C, k = 215W/(m°C), § =
525W/(m°C), p = 2700kg/m?, and ¢ = 0.9kJ/(kg°C). What is the heat loss at the surface?

Solution: The FE model is given by:

[Me{a} + [KHu} = {Q°}
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Where:

e
K;

B b s
271'/ rkd%%dr
A dr dr

M = 27T/TATBPCT1/Ji(7’)¢j(7‘)dT

The matrices [K €] and [M€] for a linear element can be expressed by developping the
expressions of the linear interpolation polynomials ;. For [M €] in particular:

27 pch

M =1

h+4ra h+2ra
h+2ra 3h+4rx

The boundary conditions are: Q1 = 0 and Q3 = —273U,. The one element mesh (h = R)
gives the equations (r4 = 0 since we have only one element):

Ui | o

Us 0

Uy 2mpch | h h
+
U, 12 h 3h
From there, use the a-family of approximation to establish the time marching scheme. The
degrees of freedom can be found by recurrence, knowing the initial temperature state of

the rod. The heat loss at the surface is Q)2 = — (75, in which T5 was calculated previously
as part of the degrees of freedom.

+1 -1
~1 1428

6.14 Homework 4 - Problem 5

We consider a cylindrical soil sample, of radius a, enclosed between two stiff horizontal
plates. The soil sample is supposed to be surrounded by a drainage layer around it, and
an impermeable membrane surrounding the drainage layer, so that the radial pressure can
be transmitted to the sample, and drainage occurs to the outer boundary. The sample is
subjected to a uniform radial pressure of magnitude q at the drained outer boundary. The
problem is axis-symmetric. The momentum balance equation in the radial direction is:

6Urr Orr — 000
_l’_

=0
or r

The fluid mass conservation equation is:

Je dp _ k 9%p n 1@

or2  ror
in which e is the volumetric strain, p is the fluid pore pressure, « is Biot’s coefficient, k is
the coefficient of permeability, 7, is the volumetric weight of the pore fluid and S is the
storativity, defined as:

n a—n
S =
Kf+ K,
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in which n is the porosity, K ¢ is the bulk modulus of the fluid, and K is the bulk modulus
of the solid phase. We assume the following stress-strain constitutive relationship:

2
O —Qp = —<K—3G>E—ZG§:

—<K—2G>e—2Gu
3 r

in which w is the radial displacement field in the solid phase, K is the bulk modulus of the
porous medium, and G is the shear modulus of the porous medium. Moreover we assume
that fluid flow is governed by Darcy’s law:

0gg — ap

k
q = ——Vp
Iy

in which qp is the flux per unit area (m/s), and py is the fluid dynamic viscosity (Pa.s).

1. Show that the equation of equilibrium can be expressed in terms of the volume strain

as: LN 8 5
€ _ 2
<K+ 3G> ar ~ “or

2. Write the weak formulation of the problem.

3. Discretize the weak form in space, and provide the expression of the matrix and vector
coefficients of the following Finite Element equation:

PGl S )

4. Discretize the equation above in time and explain how to ensure the stability of the
numerical scheme (do not solve the associated eigenvalue problems).

Solution:

1. We combine the momentum balance equation:

807'7‘ Orr — 009
+

=0
or r
and the stress/strain constitutive relationship:
2 ou
rr T = —|K-=G —2G—
o —ap ( . ) e 262"

2
ogg —ap = —(K—3G)6—2G:
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We obtain:
dp Je 0%u 10u
K — fG - 2G— —2G—— QG— 6.7
“or ~ ( ) or T o ror 67
Moreover the volumetric strain in cylindrical coordinates is:
ou u
€= — +—
or
which yields:
Oe u  10u 1 u
— = ——+4+-=— - 5= 6.8
or or? * ror  r2r? ©8)

The combination of equations 6.7 and 6.8 provides:

dp Oe Oe
ag = (KG) 5 T 265

And we conclude that the equation of equilibrium can be rewritten as:

op 86

2. We consider a weight function w ~ Au (vector) and a weight function wx ~ Ap
(scalar). The mechanical equation of equilibrium, combined with the stress-strain
relationship, provides the following equation:

div (D¢ : €) + adiv (pd) =

in which D¢ is the fourth-order elasticity tensor, € is the second-order deformation
tensor and & second-order identity tensor. The first equation of the weak formulation
is obtained by multiplying equation 2 by w, integrating over the domain of study
Q; and performing an integration by parts to balance the orders of the differential
operators between w and u. We obtain:

Vw ~ Au, Vw : (D : Vu)dV +/ aVw : dpdV = | w-tdS
Q4 Q Ty
in which it is assumed that an essential boundary condition is imposed over the entire
boundary of the domain except on the portion I'y. To obtain the second equation of
the weak formulation, we multiply the fluid mass balance equation by w=x, integrate
over the domain of study €2; and perform integration by parts as needed. We obtain:

Vws ~ Ap, - [o 2=V (ws) - VpdV — [, a(wx)d: V(@)dV

—Jo, (22 + Kif) (wopdV = — [, (we)2qs dS

in which it is assumed that an essential boundary condition is imposed over the entire
boundary of the domain except on the portion I'.

3. After space discretization, the elementary FE equation is noted:

b e s -
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According to the weak formulation obtained in question 2, with the standard notations
of the course, the coefficients of the matrices and vectors are the following:

K, = / BT[DBIAV, (B = [LIIN,]

in which [D,] is the elasticity matrix, [L] is the differential operator (relating displace-
ments to strains) and [N,,] is the matrix of displacement interpolation functions.

@ =~ [ 1B am}T(N,)aV, {m)T = {11100}

e

in which {N,} is the vector of pore pressure interpolation functions.

) = [ TN Ty

(e

{fu} = / "{7}as

b ) (N Jav

() = =20 [ ) )as

. For the parabolic equation of interest, we use a Finite Difference scheme for time

discretization. The time marching scheme is given by:
0 H Q s p n+1
Ke - u
-(1=0)At| @l OT ; el Al
A N L VA E R U/

which we note:

(0AL[C] +[B}){“ } = (—(1-0)AL[C] +[B}){“ } +At{ Ju }
P)nn P, Fo n+6

Noting 4; the complex eigenvalues of the matrix [B]~![C], the stability condition is
expressed as:

1—(1—0)Aty,

i
B 1+ 0Atp;

Noting pf = Re(u;) and p} = I'm(p;), the inequality 4 is rewritten as:

Vi, =20 < (20 = 1) [(u)? + (1)?] At

The stability criteria are the following:
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= If 6 > 1/2, the numerical scheme is unconditionnally stable if uf > 0, and
conditionnally stable if uf < 0. In the latter case, the time step needs to satisfy:

2 it

At > —
20— 1 (W) + (u])?

» If 0 < 1/2, the time step needs to satisfy:

2 pyt
1—=20 (u1)? + (nj)?

At <






CHAPTER 7

FUNDAMENTAL PRINCIPLES OF
PLASTICITY

PROBLEMS

7.1 Derive the stress-strain relationship for the Drucker-Prager elastic-perfectly plastic
model, described by the following equations:

by = &+ &
Oij = ijkzézz
floi)) =J2—al —k
gloi;) =/ — B1y

in which k, o and (3 are material constants, with o # .

Solution:
Oij = ijkczéiz
6ij = Dy (€rg — v )
1] ijkl \Ckl kl
. ) dyg
Theoretical Geomechanics. 219
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To find the plastic multiplier, use the consistency condition:

df:()i 887'](‘0"1‘]‘:0

Uij

of
60’@'

e . e P _
(Dijklekl - Dijklekl) =0

of . - . Og
doi; <Dijkl6kl —ADj 80“) =0

We get:

Of pe .
9o, Dijri€rl
Of pe _9g

Ooij ikl oy

A:

Introducing the plastic mulitplier in equation 7.1:

9f pe
. Og aai_jDijkl : (7.2)
ijkl of e dg kl .
00k 9o Dijki 9oy

. _ e
0ij = |Dijiy — D

To express the incremental stress/strain relationship explicitly, we need to calculate %

and 8‘9—9. From the expressions given in the problem:
Okl

of _ 1 0h _ on
dop 2/ s 0oy 0oy
99 1 o5 0L
dor 2/ Js 0oy 0ok

To express equation 7.2 explicitly, we need to calculate % and %. The details are
ij ij

provided below.

(9]1 60k1
3 = Ok
Oij 80'2']'
In tensor notation:
oI
s



sz

To calculate

oL
Jo

in which A is the fourth-order identity tensor. Then, we can calculate +

o,
oo

, we start by evaluating 3

PROBLEMS

‘912 . We switch to tensor notation:

10

390 [(11)* = Tr(c?)]
on, 190

do 2 0o
né6—ol . gz:&
L6—0" - A:5
Ld—0cT -6

L6 —ol

L6 -0

3J2.
012 0s
0s 0o
o), 0
o %) oo
Jo 18[1
(aa‘gacr@‘s)

where s is the deviatoric stress, for which the first invariant .J; is zero.
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7.2 Derive the stress-strain relationship for the mixed hardening elastic-plastic model,
described by the following equations:

f(aij7aij75)

dij = dp (035 —
Q(Uijyaipﬁ)

s _ e -p
€ij = € + €j
. _ e -e
Oij = Dijszkl

R(B)=0

filoij — aiz) —

5= [ [owey]

ij)

:f(o'ij704ijvﬁ)
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Solution: The procedure is similar to the previous problem. To start, replace the elastic
strain increment by its decomposition into total and plastic strain increments. Then, use
the consistency condition to get the expression of the plastic multiplier. Details follow:

) . ) dg
Oi5 = Dijl <6kl - )\80_kl>

Consistency equation:

o 9y OF,  OF s
df_0:>800+8aa+8,8 =0

of . Of . of of .
——D¢:é— ——D,: €’ +du— (o — —0:=0
do e i€ gg et € TGy (0 —a) 550 ¢
of ) of g af of dg
—D.,:é€—A-—D.: —+d — A0 —==0
Jo e € A ggDe g T g (7 m @) TAGET 5,
From there, we get the expression of \:
5= %De:é N du%(o'fa)
d R af . @ ) B af . @
%De.a%—%a.a—g %De.a—g—a—ga.a—g
The incremental stress-strain relationship becomes:
of . of .
d:De:é—De-ag %-De :é_De'ﬁg dpa—a(o'fa)

"o (of .y .09 _ 0f . 09 .
(%'De 90 ~ 959 ' o e 90 939 95

. "o (of .y .09 _ 0f .. 09
‘90 989 ¢ 9o (fD

9o ° 90 — 98

)



CHAPTER 8

PERFECT PLASTICITY IN
GEOMECHANICS

PROBLEMS

8.1 A material element is subjected to proportional loading. The principal stresses are
given by (20, o, 0) where o is an increasing stress value.

1. Find the magnitude of o where the material begins to yield, according to Tresca’s
criterion.

2. Adopting the associated flow rule, find also the plastic strain rate €? ; atonset of yield-
ing expressed in terms of the plastic multiplier A

3. If the effective plastic strain rate ¢” 7y 18 defined as:

2
P = ZéP el
Ceff = 3€1J €ij>

how is ¢, ; related to A?

4. Now suppose that the principal stresses are given by (o, o, 0). What problem is
encountered is you should determine ¢}’;?

Theoretical Geomechanics. 223
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Solution:
1. According to Tresca’s criterion, when the material begins to yield when:
o1—03—25,=0
In the test described in the problem:
20-0—-25,=0

In other words:

o=25,

2. Adopting an associate flow rule:

0f _ ;01 —03—25.)

39
€ oo Jdo

In the principal stress base:

A0 0
=100 0
00 —A\

(e1,e2,e3)

3. We have:
€ P = 2)\2

So the effective plastic strain is calculated as:

2 .
P —
€eff = ﬁ)\

4. The problem if 01 = 02 = o, the problem is that the state of stress is at a corner
point of the yield surface in the deviatoric plane. Therefore, there is no unique orien-
tation for the plastic strain flow at this point. The plastic strain increment cannot be
determined by an associate flow rule.

8.2 The stress at a point is given by:

30 45 60
[O'ij] = 45 20 50 MPa
60 50 10

Determine the stress invariants /7, Jo, J3 and the Lode angle 6.
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Solution:
We use MATLAB to calculate the three invariants. The code is the following:

A=[30,45,60;45,20,50;60,50,10]
B=[10,45,60;45,0,50;60,50,-10]
J2=0.5*trace(B*B)
J3=trace(B*B*B)/3
alpha=(3(3/2))*J3/(2*J2(3/2))
theta=asin(alpha)/3
thetadeg=theta*180/pi()

The results are the following:

I = Tr(o) = 60 MPa

1
Jy = §T7“(82) = 8,225 MPa

1
J3 = gTr(s3) = 265,250 MPa
The Lode angle is calculated by using the following relationship:
3V 3J
sin(36;) = \[73/23
2J,
We get:
(9[ ~ 22.5°

8.3 A material is to be loaded to a stress state

50 —30 0
[0i;] = |—30 90 0 | MPa
0 0 O

225

What should be the minimum uniaxial yield stress of the material so that it does not fail,
according to (a) Tresca criterion; (b) von Mises criterion? What do the theories predict

when the yield stress of the material is SOMPa?

Solution:

We first calculate the principal stresses in the specimen:

2
o11+o0 011 — O
o111 = 112 22j:\/( 112 22) +(012)2’ o =0
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We find:
(7]:106MP3., 011234MP3, 0'[[[:0

Tresca’s criterion is:
or —orrr =25,

In uniaxial tension:
o] = 2 Su

So the uniaxial yield strenght is oy = 2.5,,. For the present loading case, the material will
not fail according to Tresca’s criterion if:

or—or <28, =0y
with o777 = 0 and 01 = 106 MPa. So according to Tresca’s criterion, there is no failure if:
oy > oy = 106 MPa
Von Mises criterion is:
(or —orr)? + (011 —orr)* + (o111 —or)? —6k* =0

In uniaxial tension:
2(07)? —6k* =0

In other words, the uniaxial tension stress according to von Mises criterion is:
Oy = \/gk
For the present loading case, von Mises criterion is:
2 2 2 _
2(0'1) + 2(0’[[) — 20’[0’[[ — 2(0y) =0
So the material fails in tension if:
(O'Y)2 = (01)2 + (0'11)2 — 01011

With the values of the principal stresses calculated above, we find that the material will not
fail according to the von Mises criterion if:

oy > 94 MPa

So if oy = 80 MPa, we conclude that both theories predict that the material will fail be-
cause both theories predict that the uniaxial yield stress of the material should be more than
80 MPa for the material not to fail.

8.4 A material element is subjected to proportional loading. The principal stresses are
given by (20, o, 0) where o is an increasing stress value.

1. Find the magnitude of ¢ where the material begins to yield, according to von Mises’s
criterion.



PROBLEMS 227

2. Adopting the associated flow rule, find also the plastic strain rate é? ; atonset of yield-
ing expressed in terms of the plastic multiplier A

3. If the effective plastic strain rate ¢’ ¢ 1s defined as:
. 2.5,
€rr= \/ 5653'6%7

4. Repeat the three questions above when the principal stresses are given by (o, o, 0).

how is €” 15 related to A\?

Solution:

1. According to von Mises criterion, first yield happens when:
(01 —02)2 + (02 — 03)* + (03 — 01)* —6k* =0
With the loading conidtions described in the problem:
(20 — o) + (0)? + (20)? = 6k* =0

So that we get:

o=k
2. With an associate flow rule:
.0 .0
éP = )\872:_ = )\870' ((0’1 — 0'2)2 + (0'2 — 0'3)2 + (0'3 — 0'1)2 — 6]62)

In the principal stress base:

4(71 - 202 - 20’3 0 0

ép:).\ 0 40’2—20’1—20’3 0

0 0 40’3 - 20’1 — 20’2

(81762763)

With the loading conditions described in the problem:

10 0
=6\ (00 0
00 —1

(e1,e2,e3)

Atyield, o = k so that:

10 0
P =6\ |00 0
00 —1

(61’52763)
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3. From the previous question, we have:
éP 1 eP = T2\%k?
So that the effective plastic strain is:
¢ =4V3AE
4. For the loading (o, o, 0), the yield according to von Mises criterion happens when:
(0 —0)?+ (o) +(0)*—6k*=0

So that:
o =3k

Then, the plastic strain becomes:

10 0
=2\ |01 0
00 -2 (er.e2.5)
Atyield, o = V/3k so that:
10 0
P =23 k(01 0
00 -2

(61 ;€2 -,63)

The effective plastic strain rate is:

€y = AV3A

8.5 Prandtl-Reuss equations are obtained by combining Hooke’s law with a flow rule
that assumes that the plastic strain increments are proportional to the principal deviatoric

stresses s;:

:p P :p
a_%2_S8_5sp
S1 S92 S3 -

In Cartesian coordinates, it is common to express the flow rule above in the following
alternate form:

€L — €

_ 2 ep
zx — Cyy _ Cyy T €

Z—..=)>0
Sgx — Syy Ogx — Uyy Syy — Szz

p_ e
Cra T Cyy

In terms of actual stresses, one can show that:

2. 1 1

. ; 2 )
&y = 3 [Urx ) (oyy + JZZ)} » by = 3" [Uyy 2 (022 + 00c)

. 2. 1 . . . . ) .
& = g)\ |:UZZ 2 (Taa + Ouy):l ) Egy = A0y, ez?jz = Aoyz, &= Aoz
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The Prandtl-Reuss equations are the full elastic-plastic stress-strain relations that are ob-
tained by combining the previous equations with Hooke’s law:

1 1

2.
€xz = E [er -V (Uyy + d—ZZ)] + g/\ _O—Wf - 5 (Jyy + Jzz)_
. 1 . 2. [ ]
Eyy = E [Uyy -V (O—ZZ + Jff)] + §>\ Oyy — 5 (O-ZZ + Jmm)
€2z — E [Jzz -V (Uzz + Jyy)] + g)‘ Ozz — 5 (Jﬂm + Uyy)
. 1+v, ‘ . 1+v. S . Ltv, }
€y = TUzy + )\nya €yz = Tayz + )\o'yz, €ow = Tsz A0z
. 1+v, Voo, ;
€ij = ——0ij — — 050Kk + ASij

E

Consider the uniaxial straining of a perfectly plastic isotropic von Mises material specimen.
There is only one non-zero strain, €;;. One only need to consider two Stresses, 0yz, Tyy,
since 0, = oy, by isotropy.

1. Write down the two relevant Prandtl-Reuss equations.
2. Evaluate the stresses and strains at first yield.

3. For plastic flow, show that ¢, = ¢, and that:

o E

oe 3(1—20)

Solution:

1. The two relevant Prandtl-Reuss equations are the following:

. 1 . . 2.
bpw = vl (Ope — 2v6yy) + §>\ (2 — Oyy)
1. ) . 2
0 = E[UZIy_V(Uyy+UwI)]+§)‘ Uyy_g(ayy"‘am)

2. According to von Mises criterion, at first yield, we have:
(0'1 — 0'2)2 + (0'2 — 0'3)2 + (0'3 — 0'1)2 — 6]€2 = O
(0w = 0yy)* = 3K* =0

And therefore:
Opz — Tyy = V3k (8.1)
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At first yield, the stress/strain relationships are still elastic so that the Prandtl-Reuss
equations become:

1

€ry = 5 (Cpw — 206Gyy)
1 .. ) )
0 = E[Uyy_V(Uyy+Jwr)]

Noting that the experiment starts at zero strain and zero stress, integrating the above
two equations between the initial time and the time when yield first occcurs provides:

1
s = (Ope — 2V04y) (8.2)
1
0 = E loyy — v (0yy + 0aa)]

Using the second of equations 8.2 along with equation 8.1:

1%
Ogx — Uxa::\/gk
1-v

We conclude that, at yield:

1_
Oua v V3k

Y
Then, using the second of the Prandtl-Reuss equations 8.2, we get:
1%
= 3k
= 15,V3

We have o, by isotropy, and the other three stress components are zero (no shear).
Accoring to the loading conditions imposed in the problem, the only non-zero strain
is €. We use the first of Equations 8.2 to get:

I— 5 (Opx — 2v0yy)

in which we used the fact that the experiment starts at zero strain. Introducing the
expressions of the stress components found above:

S (1+v)V3k
wr = T
At yield, the consistency conditions impose f = f = 0, therefore:
Opx — Oyy = V3k (8.3)
Oux = Oyy (8.4)

Using the first of Prandtl-Reuss equations:

1 2.
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Since 6, = Gy and 04, — 0y, = V/3k:

1—2v 2 .
g = ——0zz + —=Ak 8.5

Now using the second of Prandtl-Reuss equations, using ¢, = 0yy and 0., — 0yy =

V3k:
_ 1—2v

E

Now combning equations 8.5 and 8.6:

Ogx —

0 A (8.6)

5l

1—-2v . 2(1—2v)

€xx = E Ozx

And we finally get:
fo E

€ee 3(1—2v)

Mohr-Coulomb’s yield criterion:

. Show that the magnitude of the hydrostatic stress vector is p = v/3ccot ® for the

Mohr-Coulomb yield criterion when the deviatoric stress is zero.

2. Show that, for a Mohr-Coulomb material, sin ® = (r—1)/(r+1) where r = fy./ fy+
is the compressive to tensile strength ratio.

3. A sample of concrete is subjected to a stress 011 = 092 = —p, 033 = —Ap where
the constant A > 1. Using the Mohr-Coulomb criterion and the result of the previous
question, show that the material will not fail provided 4 < 2 (1 + %)

Solution:
1. The Moh-Coulomb criterion is:

01— 03— (01 +03)sin® —2ccos® =0
In the absence of deviatoric stress, o1 — o3 = 0 and:
(o1 + 03)sin® = —2ccos @

For hydrostatic stress: 0, = o2 = 03 = p (where p is typically a compression,
otherwise yield cannot happen) So we have:

p = —catand

The norm of the hydrostatic vector is:

I
p=%|=\/§|p|

S
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So we have:
V3

- tan ¢

P

2. Mohr’s circles for the uniaxial tension test and the uniaxial compression test are rep-
resented in Figure 8.1.

Figure 8.1 Mohr-Coulomb failure envelope.

‘We have:
BB’ B DD’

AB AD

BB’ is the radius of the left-hand side circle, which is fy;/2. DD’ is the radisu of the
right-hand side circle, which is fy./2. BD is the sum of the two radii. So we have:

fYt fYc

sin® =

sin® = =
2AB  2AB+ fyi+ fye
Re-arranging:
Ap ~ Jyet e fve
fre—fye 2

So we have:

o fye—fye r—1

sin® =

fye+fye r+1
3. Using Mohr-Coulomb criterion, the material will not fail if:
o1 —03— (01 4+ 03)sin® — 2ccos P <0
—p(1—A)+p(l+ A)sin® —2ccos P <0
Ap(1+sin®) —p(1 —sin®) —2ccos ® <0

1—sin® c cos®
1+sin® pl+4sind
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From the previous question:

2r 2 1—sin® 1
1+sin® = 1—sin® = = -
Fsim r+1’ St r+1 14sin® r
So we have: 1 41
A§7+ET cos ¢
r o p T

From the geometry shown in Figure 8.1, we have:

AO . c
cos P = ac sin® = a0

So that:
ccos® =sin® (AB + fy/2)

Using the expression of AB from the previous question and re-arranging:

fthYc

fYc - fYt

ccos® = sin ®

And finally, the criterion becomes:

1 1r+1 .
A<t lrdd g g fvefve

rop T fre—fye
AS1+17'+17'—1fyc
r p r r+l1lr—1
1 11
~+—fre
roopr

A§1(1+f’”“)
p

r

A<

Finally:

8.7 A material element is subjected to proportional loading. The principal stresses are
given by (20, o, 0) where o is an increasing stress value.

1. Find the magnitude of o where the material begins to yield, according to Mohr-
Coulomb’s criterion.

2. Adopting the associated flow rule, find also the plastic strain rate €’ ; atonset of yield-
ing expressed in terms of the plastic multiplier A

3. If the effective plastic strain rate ¢’ ¢ 18 defined as:

2

P — [ ZEP P
Cerr = 3€2J€U’

how is ¢” 1 related to \?
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4. Now suppose that the principal stresses are given by (o, o, 0). What problem is
encountered is you should determine ¢}’;?

Solution:
1. The Mohr-Coulomb criterion is:
01— 03— (01 +03)sin® —2ccos® =0
With the loading conditions described in the problem:
(1 —sin®) = ccos®

ccos ®
o= ——
1 —sin®

2. With an associate flow rule, the plastic strain rate is:

P )\ﬁ _ }\6(01 — 03— (01 + 03)sin® — 2ccos D)
Jdo do

In the principal stress base:

1—sin® 0 0
P =\ 0 0 0
0 0 —(1+sin®)

(e1,e2,e3)
3. From the previous question:
P éP = \? [(1 —sin®)? + (1 +sin @)?]
From the previous problem:

2 2
1+sin¢:7T, l1—sin®=——
r+1 r+1

So the increment of effective plastic strain is:

or 2+ 2 \?
r+1 r+1

2 . /2
-p —
Eeff—mA 5(7'2+1)

[\

éijff:A

wl

4. If the loading is 01 = 09 = o, then the state of stress lies at a corner of the yield
surface in the deviatoric plane, and so there is no unique plastic flow direction. The
plastic strain tensor cannot be calculated with an associate flow rule.
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8.8 Drucker-Prager’s yield criterion:

1. Show that the magnitude of the hydrostatic stress vector is p = |p| = k/+/3a for the
Drucker-Prager yield criterion when the deviatoric stress is zero.

2. Given the yield stresses o; and o, in uniaxial tension and compression, respectively,
find the yield stress in shear resulting from the following yield criteria: (a) Tresca; (b)
von Mises; (¢c) Mohr-Coulomb; (d) Drucker-Prager.

Solution:

1. Drucker-Prager criterion is:

Vil —ali — k=0

If the deviatoric stress is zero, then J> = 0 and the criterion reduces to:

So, we have:

2. Shear yield stress

(a) Tresca’s criterion is:
01 — 03 — 2 Su =0

In uniaxial compression, the material fails when 01 = 0. and o3 = 0; we then
have: 0. —0—2S,, = 0. In uniaxial tension, the material fails when o3 = o4 < 0
(soil mechanics sign convention) and o7 = 0; we then have: 0 — o, — 2.5, = 0.

So we have:
O¢ Ot

2 2
Using Mohr’s circles, one can wee that the maximum shear stress iS Tyqz =
(01 — 03)/2. The material fails when:

S, =

Tmax = Su =Ty

We conclude that for Tresca’s criterion:

Oc Ot

Ty = — = ——

2 2

(b) Von Mises criterion is:

(0'1 —0'2)2 + (0'2 —0'3)2 + (0'3 —0'1)2 - 6]€2 =0
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In uniaxial compression, the material fails when o1 = 0. and 09 = o3 = 0; we
then have:

2(0,)* —6k* =0
so we have:

Uc:\fSkz

In uniaxial tension, the material fails when o3 = o; and 07 = 09 = 0; we then
have:
2(0¢)* —6k* =0

so we have:

Ut:\/gk/’

In pure shear, 09 = 0, 01 = —03 = 0 and Tyee = 0.
(0-024+(0-0)*+(0c+0)*—6k>=0

In other words:
Tmaz =k =Ty

So we have:
Oc Ot
Ty = —

V3k 3k

The Mohr-Coulomb criterion is:
01— 03— (01 +03)sin® — 2¢ cos® =0
In uniaxial compression, o1 = 0., 02 = 03 = 0 and the material fails when:
(1 —sin®)o, —2c cos® =0
In uniaxial tension, o3 = o4, 01 = 02 = 0 and the material fails when:
—(1+sin®)o; —2c cos® =0
In pure shear: o1 = —0o3, 02 = 0 and 7 = 01, and the material fails when:
21 —2ccos® =0

So we have: -
Ty =ccos® = (1 fsin@)i

From Problem 9.6, we have:

sin<I>:g7 r:E
+1 Ot
As a result:
— T—l)ac_ 1
v rr1’2 " rp1e
And finally:
Oc 0t
TY =
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(d) Drucker-Prager’s criterion is:

Vo —ali —k=0

When using principal stresses:

\/1 [(0'1 —02)2+(02—03)2+(03—01)2]—(111 —k:O

6
In pure shear, 01 = —o3, 05 = 0, and 7 = 01. The material thus fails in pure
shear when:
|| —k=0
Thus:
v =k (8.7)

In uniaxial compression: o1 = o, 02 = 03 = 0, and the material fails when:
Oc
V3

In uniaxial tension: 03 = 0; < 0, 01 = 09 = 0, and the material fails when:

—qo.—k=0 (8.8)

gt
—— —ao;— k=0 8.9
73 t (8.9)

We subtract Equation 8.9 from Equation 8.8 to find o

ot + o
= "° 8.10
“ V3(oe — o) ®10

From Equations 8.7, 8.8 and ??, we have:

1 oy +0.\ O¢

Ty = -

Y Oc — Oy \/g
2040,

\/g(at - Jc)

Ty —

8.9 A material element is subjected to proportional loading. The principal stresses are
given by (20, o, 0) where o is an increasing stress value.

1. Find the magnitude of o where the material begins to yield, according to Drucker-
Prager’s criterion.

2. Adopting the associated flow rule, find also the plastic strain rate €/ ; atonset of yield-

ing expressed in terms of the plastic multiplier A

3. If the effective plastic strain rate é” 7y 18 defined as:

. 2.5,
€err =1\ 3650
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how is €’ s related to \?

4. Repeat the three questions above when the principal stresses are given by (o, o, 0).

Solution:

1. Drucker-prager criterion is:

\/jg—all—kzo

With the loading conditions described in the problem:

/1
\ JQ = isijsij =0, Il =30

So the material yields when:

2. Using an associated flow rule:

. Lof 0 ‘ s
P_— \— = )\— — — = _—
é —)\ao_ )\80' (\/Jz aly k:) /\(2\/72 a5>

in which § is the second-order identity tensor. With the loading conditions given in
the problem:

1/2—a 0 0
= 0 —a 0
0 0 —-1/2—«

3. From the previous question, we have:
P eP = 2 [(1/2 o)t (1)2+ oﬂ = A2 (302 +1/2)

From there, we get the effective plastic strain:

‘ 1
égff:)‘ (2a2+3)

4. For oy = 09 = 0,03 = 0, we have Jy, = 02/3 and so the material fails when:

o
— — 200 — k=0
V3

k
U:ﬁ
V3@

Using an associated flow rule, the plastic strain rate is:

. 0 . S
P __ P _
éP =\ )\(2\/72 a5>
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and with the given loading conditions:

1
EP =)\ 0 2%/5—04 0
0 0 -5«

After some calculations, one finds:

. 1
P
€= A (2(12 + 3>

Note: we find the same effective plastic strain as in the previous loading case.
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8.10 Conventional triaxial compression tests (01, 05 = 03) were conducted on cylindri-

cal rock specimens. The test results are reported in the following table.

o1 (MPa) o2 = o3 (MPa)

48.3 1.7
53.7 2.8
56.7 34
70.8 6.9
70.9 6.9
94.8 13.8
94.7 13.8
94.9 13.8
115.8 20.7
115.9 20.7

Direct tension tests gace a tensile strength of o, = 3.4 MPa. We want to model the rock

strength. Use plots to estimate the failure criterion parameters and discuss the

applicability of the (a) Linear Mohr-Coulomb criterion; (b) Non-linear Hoek-Brown

criterion.

Solution:

We recall the Mohr-Coulomb criterion:
01— 03— (01 +03)sin® —2¢ cos® =0

and the Hoek-Brown criterion:

01—03—\/mY03+sY2:0
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The problem is solved by plotting the states of stress measured experimentally in the (o1,
03) plane, and by fitting each of the two criteria above to the data. The material parameters
requested are obtained when the best fit is found between the experimental datapoints and
the curves predicted by the models.

8.11 Homework S - Problem 1

In order to test whether the Von Mises or Tresca criteria best modelled the real behaviour of
metals, Taylor & Quinney (1931), in a series of classic experiments, subjected a number of
thin-walled cylinders made of copper and steel to combined tension and torsion, as shown
in Figure 8.2. The cylinder wall is in a state of plane stress, with 011 = 0, 012 = 7 and all

= +@T—*ﬁ

Figure 8.2  Taylor and Quinney’s experimental set-up.

other stress components zero.

1. Show that the principal stress corresponding to the stress-state described above are

zero and:
1 1
Pl +4/ 102 + 72

2. Show that the Mises condition reduces to:

9 2
o2+ 372 =3k or g +( T > =1
(Y) y/\/ﬁ

in which Y is the yield stress in tension.

3. Suppose that, in the Taylor and Quinney tension-torsion tests, one has o = Y/2 and
T = \/3Y/4. Plot this stress state in the 2D principal stress state (Use Question 1
to evaluate the principal stresses.) Keeping now the normal stress at o = Y/2, what
value can the shear stress be increased to before the material yields, according to the
von Mises criterion?

Solution:

1. In plane stress:

2
011 + o 011 — O
1,111 = % + \/<11222> + (012)?
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We have 011 = 0, 095 = 0 and 012 = 7 so that:

o o2 )
orIrr = §i Vi

Because the material element is in plane stress, the median principal stress o7 is the
out of plane normal stress o33, which is 0.

2. The Von Mises criterion is:
Vdo—k=0

With the expressions of the principal stresses found in the previous question:

2 2 2
o [o? o [o? [o?
_ — 2 - i 2 24/ — 2 _ k2
<2+ 4+T>+<2 4+T>+< 4+T 6
After re-arranging:

0?4377 = 3k
Dividing each side by the yield stress in tension Y = v/3k:

(7) '+ (Y/Tx/ﬁ)zl

3. We first calculate the non-zero principal stresses for the given loading conditions o =
Y/2 and 7 = /3Y/4:

_Y+ Y2+3Y2_Y Yy 3y
Ty 16 16 4 2 4
Y Y2 . 3Y? Y Y Y
o=y 16 16 4 2 4
We thus have 0; = —30777. From there, it is possible to plot o777 as a function of 0.

If the normal stress is kept at Y/2, then the maximum shear stress that can be reached
before failure is such that the von Mises criterion is reached under that shear stress:

o+ 37’,2,“” =3k2 =Y?

Therefore:
Y2 B 3y?2

2 2 2
3T ae = 3 1 1

So that:

Tmax = &

Y
2

We check that Tmaz > @ :

8.12 Homework 5 - Problem 2
Consider the combined tension-torsion of a thin-walled cylindrical tube. The tube is made
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of a perfectly plastic Von Mises metal and Y is the uniaxial yield strength in tension. The
only stresses are o = 0, and 0, = 7 and the Prandtl-Reuss equations reduce to:

1 2.
. ) v, 1;
Cyy = €z = _Eam - §>\0m
. 14+v., :
€y = Tawy + Aozy

The axial strain is increased from zero until yielding occurs (with €,, = 0). From first
yield, the axial strain is held constant and the shear strain is increased up to its final value
of (14 v)Y/V/3E.

1. Write down the yield criterion in terms of ¢ and 7 only and sketch the yield locus in
o-T space.

2. Evaluate the stresses and strains at first yield.
3. Evaluate \ in terms of o, &.

4. Relate o, ¢ to 7, 7 and hence derive a differential equation for shear strain in terms of
T only.

5. Solve the differential equation and evaluate any constant of integration.

6. Evaluate the shear stress when e, reaches its final value of (1 + v)Y/+/3E. Taking
v =1/2, putin the form 7 = aY.

Solution:

1. The problem is in plane stress so the answer to this question is the same as that of
questions 1 and 2 in the previous problem:

o2 + 372 = 3k?

Or, dividing each side by the yield stress in tension Y = v/3k:

5 2
o T
'+ ()

Y Y/V3
The equation above is that of an ellipse of long axis Y in the o direction and of short
axis Y/ /3 in the 7 direction.

2. At first yield, there is no plastic flow yet, so A = 0, so the Prandtl-Reuss equations

reduce to:
. 1.
€xx — EUZI/’:L’
. . v,
€yy = €zz = _Eo-wz
1+v.
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Before yield, the axial strain is increased while maintaining €., = 0. At the same
time, the specimen is free of stress on the lateral faces. The axial strain is increased
until the yield is reached. Therefore, at first yield, remembering that Y = V3k in
tension from previous problems:

Opw = Ee;; =3k

o o _ Bk

Tx TT E

V3k

€ = €= V€, =V

vy E
Oyy = 0,,=0

€zy = 0
Ouy 0

in which €Y, is the axial yield strain. Since the specimen is in plane stress, o,, =
04> = 0y, = 0 and in the absence of shear stress in the z-direction, €,. = €,, = 0.

. We now use the first of the three Prandtl-Reuss equations given in the problem to find
an expression for the plastic multiplier:

i 1. 2.

€xx = anw + g)\oww
After the first yield, €,, is maintained constant while torsion is applied. As a result,
after first yield:

1 2.
0= — .zw A Tx
g T3
in which we are given o,, = o. Therefore:
: 3 0
A= ———
2F o

. In order to find the expression of the incremental shear strain, we use the third of the
given Prandtl-Reuss equations:

1 .
+VT'+)\T

oy =
Introducing the expression of the plastic multiplier found at the previous question:

. 1+v, 3 0
€xy = E T — ﬁ;T (811)

During yield, the consistency conditions impose f = f = 0, so that:

o2 +3r2=Y? (8.12)
oo+ 3t7 =0

in which we used the result of question 1. Now using the second of Equations 8.12:

& 3r%

o g
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Using the above expression in Equation 8.11:

) 1+v. LS 9 72
= "F "T2E
combining the above equation with the first of Equations 8.12:

. 14+v. P 9 27
€py =
v= E 2EY? — 3712

which is the requested differential equation for the shear strain, in terms of 7 only.

. To solve the differential equation found in the previous question, we integrate between

the time at first yield and the current time, and that at first yield, €,, = 0 and 7 = 0.
We use MATLAB to integrate the second term in the expression of €;,. The code is
the following:

Syms x ¢
fun=x*x/(c*c-3*x*x)
ff=int(fun,x)

The result is:

= (B0 (B ()

in which the inverse of the hyperbolic tangent is defined as:

atanh(xz) = 1ln (1 i I)

2 1—2x

Using the response to the previous question, when the shear strain reaches its final
value, we have:

(L+v)Y _ (2(1+u)—3)TJr (\fy(mmh <\f7_>>

V3E 2F 2F

1 = atanh <\f7>

Using MATLAB for the calculation of the hyperbolic tangent:

Now using v = 1/2:

V37
7616 = ——
0.7616 %
And finally:
761
;= QT616Y o 4307y

V3
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8.13 Homework 5 - Problem 3
The shear strength of a soil is most frequently characterized by a frictional failure criterion.
Two commonly used failure criteria are:

Mohr-Coulomb:
_(01—03\ [fo1+o3) . -
f= ( 5 > ( 5 > sin® =0

f=Jo—h%?*=0

Extended Von Mises:

where 01 and o3 are the major and minor principal stresses, @ is the friction angle, Jo =
8i58ij /2 is the second invariant of the deviatoric stress tensor, ¢ = oy /3 is the mean
(octahedral) stress and h is a constant. In conventional practice, the friction angle ® =
P is reported from measurements of the shear strength in triaxial compression type
tests (in which 0., = 0, < 0yy).

1. Derive an expression of the frictional parameter h in terms of this friction angle ®7¢.

2. Assuming that failure of the soil is best described by the extended Von Mises criterion,
what is the frictional angle mobilized in a triaxial extension test? Here, calculate @1 g
for the case when 0, = 0., > 0yy.

3. Plot values of @1 as a function of the measured friction angle ®p¢ for the extended
Von Mises criterion.

Solution:

1. During a triaxial compression test, the yield is reached when:

(Uyy_azz> _ (Uyy‘i‘aa:a:)Sin(I)TC:O (8.13)
2 2
with the Mohr-Coulomb criterion, and when:

1

s [2(0yy = 002)’| = B2 (0 + 2002) = 0 (8.14)

with the extended Von Mises criterion. From Equation 8.13:

sin ®po = vy Jor (8.15)
Oyy + Ozx

From Equation 8.14:
(oyy — U:L'ac)2

h? =
3 (oyy + 20m)2

(8.16)

From Equation 8.15:

Ovz _ 1 —sin®p¢ 8.17)
Oyy 1+ sin®7r¢ '

Combining equations 8.15 and 8.16:

n2 — (sin ‘I’TC)Q (Uyy + Um)2 _ (sin @)2 (14 wa/ayy)Q (8.18)
3 (oyy + 20ww>2 3 (1+ 209:06/‘7211/)2 .




246 PERFECT PLASTICITY IN GEOMECHANICS

Combining equations 8.17 and 8.19 and re-arranging:

. 2sin Ppo (8.19)
\/§(3 — sin @Tc)
2. During a triaxial extension test, the yield is reached when:
Tee —Oyy ) Tz £ 000 ) G oy = 0 (8.20)
2 2
with the Mohr-Coulomb criterion, and when:
1
2 (200 = 7)°| = B2 (0 + 2002) = 0 (8.21)
with the extended Von Mises criterion. From Equation 8.20:
sin @y = 22— vy (8.22)
Oyy T Oz
From Equation 8.21:
2
B2 — (0yy = Tua) (8.23)
5 .
3(oyy +2045)
From Equation 8.22:
O'ww_l—‘y-SiH(I)TE (824)
Oyy o ].—SiI’ICDTE '
Combining equations 8.22 and 8.23:
. 2 . 2
B2 (sin®rg)? (oyy + 0uz) _ (sin®)? (14 04s/0yy) (8.25)
3 (oyy + 20w1)2 31+ QUﬂcI/Uyy)2
Combining equations 8.24 and 8.26 and re-arranging:
2sin ®
h= o TE (8.26)
\/5(3 + sin (I)TE)

3. Here, we combine equations 8.19 and 8.26 to relate 7o to Prp:

sin (I)TC 3 + sin (IDTE -1

sin®rg 3 —sin®p¢

After re-arranging:

o 3sin P
Sin =
T 3 9sin dre

From there, it is possible to plot &7 as a function of 7.

8.14 Homework 5 - Problem 4
The objective of this problem is to derive the incremental constitutive equations of an
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elasto-plastic rock, for a plastic potential similar to Drucker-Prager’s. Assume that in
the elastic domain, the rock has a linear isotropic behavior. The following notations are
adopted:

p— €
Sij = 2G eij
p— e
p = Kej,,
In which: e;; stands for deviatoric strain, s;; and p are the deviatoric and mean stress,

respectively, and G and K are the shear and bulk modulus, respectively. Drucker-Prager
plastic criterion writes:

1
F =\ 585 — flg—p)

In which ¢ is a constant and f is a friction parameter, assumed to depend on deviatoric
plastic deformation g”. Drucker-Prager plastic potential writes:

1
Q= 551155 +dp
In which d is a dilatancy parameter, assumed to depend on deviatoric plastic deformation
gv.

1. Recall the decomposition of stress in volumetric and deviatoric parts. Apply this
decomposition to the elastic and plastic parts of the strain tensor.

2. Determine the derivatives of the yield function and plastic potential. Write the con-
sistency condition to derive an equation relating the increment of stress to the rate of

deviatoric plastic deformation g¥ = , /2¢? ; éﬁ-’ .

3. Write the plastic flow rule and show that the plastic multiplier writes )'\p = gP. De-
rive an equation relating the rate of volumetric plastic deformation €? to the rate of
deviatoric plastic deformation g”.

4. Use elastic constitutive equations and the consistency condition to show that:

. <1l> Sij
G+ fdK + (g —p)h

g° + K fdij | &;

§3ij5ji

In which h; = %, and d;; is the second-order identity tensor.

Explain the meaning of the notation: < 1 > (in terms of loading and unloading
phases).

5. Derive an explicit relationship between the increment of stress and the rate of total
deformation, i.e. provide the expression of L7, and L? i 10 the equation ; =

e p :
(Lijkl - Lijkl) €kl

Solution: See the following pages.



DEA GEOMATERIAUX
Comportement des sols et des roches

ELASTO-PLASTICITE

o Bx€
Le but de cet exercice est de donner une expression explicite des équations constitutives
incrémentales d'une roche ayant un comportement élasto-plastique avec écrouissage dans le
cas d'un critere de plasticité et d'un potentiel plastique de type Drucker-Prager.

C

On suppose que le tenseur d'élasticité est linéaire et isotrope. On rappelle les relations
d'élasticité

S = 2Gefj
p=Key

On rappelle également les expressions du critére de plasticité et du potentiel plastique de
Drucker-Prager

L/‘P"“’“‘M‘ Je J(la(“u.kcg
ol

F=T-/(g-p) TTORERT

X4
e c.£0© B
TS s

On suppose que le paramétre g est une constante et que les paramétre de frottement et de
dilatance f et d sont des fonctions de la déformation déviatorique plastique accumulée g*.

1. Ecrire la décomposition des tenseurs des contraintes et des déformations en une partie
sphérique et une partie déviatorique ainsi que la décomposition du tenseur de déformations en
une partie élastique et une partie plastique.

2. Calculer le gradient de la surface de charge et du potentiel plastique et en déduire

I'expression explicite de la condition de consistance. On notera 4, = do?
g

3. Exprimer la régle d'écoulement plastique et montrer que le multiplicateur plastique \y vérifie

la relation \y = g” (rappel: g” =,/2¢fef) . En déduire la relation entre le taux de

déformation volumique plastique €7 et le taux de déformation déviatorique plastique g”.

4. En utilisant les relations élastiques et la condition de consistance montrer la relation
suivante:

af = G§i+Kf6.~ =
" G+fdK+(q-ph,t T = 5

Expliciter le sens de la notation de Mc Auley <1>.

5. En déduire l'expression explicite des relations incrémentales de comportement.

6. On suppose que I'état initial & partir duquel on considére un incrément de contrainte et de
déformation correspond a un état de compression triaxiale axisymétrique. Donner I'expression
du tenseur élastoplastique dans ce cas particulier.



Equations incrémentales de comportement

élastoplastique pour un modele de
Drucker-Prager

1 Deécomposition des tenseurs

Oij = Sij + pbij
éij = éij + E‘-,_,(Sij/?)
: .e =
Eij = E?- -+ egj
€ij = eéij -+ i.,'_j

Eon b, +ES

2 QGradients de la surface de charge et du po-

tentiel plastique et équation de consistance

Equation de la surface de charge:

F=T-f(¢")(@—p)=0
Potentiel plastique

Q=T+d(¢")p
oF —_3l.+f_5P_

30','5 3 60‘;_,' 30',;_-,'

= e & o T
o §Ukk o '3'0'1'3'61'3, 00;j v 36"'.7

e die o . L o N
T =4/ 35ii%% 9oy = 2T

d’ott
6F Sij 553'
6(7.,;_7' - 2T o f 3
8Q P Sij +d(5§j

80’,:3' = 2T 3

Equation de consistance

(1)

(2)

3)

(4)



' oy . OF .p
S A Moty S GET
a O'ij Tij % g (5)
L’expression 3 du gradient de la surface de charge introduite dans I’expressic
5 de la relation de consistance conduit &

(;?IJ“_'-JC 2J) . (Q“p)ht.épzo

df

avec hy = 4P

3 Evaluation du multiplicateur plastique

La régle d’écoulement s’écrit éz-)- = @b—QQ- 1,0 > 0 ou en utilisant 1’expression

4 du gradient du potentiel plastique 6” =9 'z,b (32 +d-i). On peut alors
exprimer la partie déviatorique et la partie volumique du tenseur de vitesses
déforma,tions plastiques sous la forme

¢%,v—¢d
PP 3, > ,

g ¥ 2e;5€j; =

on obtient
P '
g =9 (6)

d’ou la relation de dilatance
& =dg (7)

4 Evaluation de g

La relation de consistance 5 permet d’écrire

g = (q—p)ht ( 33 f
En utilisant les relations de comportement élastique

= (B r4) (2Ge; + Ke by )

s (g—p)ht



Si'é:' -€ o 1 8is . .P 2 by
T (q—ii)ht (G JT T Ke'") — (g—p)he (G?l (eij sy eij) + fK (Ev = Ev)/
TS e sij -P : -P
= T (Gs—:ﬁ"‘ (%' ~ 79 ) +fK (Ev =4 d))
Soit k = K/G , 'expression ci-dessus conduit &

(1 - f!i',d . & Lq:(%&t‘) Qp == (%iéij . Iﬁ:fé‘v) = (%‘L -+ nfé,-j) é.ij
On note H = (1 + frd + Lq;gm) (module plastique) et bj; = & + K f6;;
d’ott

. R
H

bF i (8)
avec

| 1si F =0 et bZe;; > 0 (charge)
<1>= . F<0 (doma.me élastique) (9)
- ou F' = 0 et bfie;; < 0 (décharge élastique)

5 Equations élasto-plastiques incrémentales

;i = 2Gey; + Ke, 6 = (zGé,-,- £ Ké,,a,-,-) — 9 G (% + rdsy;)
Smt bQ 2 + kdb;;
5_7 ==y ((26,'j 4 fﬁEvﬁij) = %bgbﬁﬁkl)

f"z'j T ( fjkt - L?jkl) ékl (10)
avec
e 2
Y G (25,'];5_7'[ -+ (Iﬁ — g) 5,'3-6];1) (11)
1
By e ped H>be (12)

6 Etat initial: compression triaxiale

En compression triaxiale
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