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PART I

GEOMECHANICS
IN ELASTICITY





CHAPTER 1

REVIEW OF TENSOR ALGEBRA

PROBLEMS

1.1 Prove the following equations:

a× (b× c) = (a · c)b− (a · b)c
(a× d) · (b× c) = (a · b)(c · d)− (a · c)(b · d)

a× (b× c) + b× (c× a) + c× (a× b) = 0

Solution:
See Figure 1.1 for proof of:

a× (b× c) = (a · c)b− (a · b)c

See Figure 1.2 for proof of:

(a× d) · (b× c) = (a · b)(c · d)− (a · c)(b · d)

See Figure 1.3 for proof of:

a× (b× c) + b× (c× a) + c× (a× b) = 0
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Figure 1.1 Proof of Problem 1.1 - Equation 1.
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Figure 1.2 Proof of Problem 1.1 - Equation 2.

Figure 1.3 Proof of Problem 1.1 - Equation 3.
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1.2 For a 2 x 2 matrix [A], show that:

det(A) = A11A22 −A12A21

For a 3 x 3 matrix, show that:

det(A) = A11 det

([
A22

A32

A23

A33

])

−A12 det

([
A21

A31

A23

A33

])
+A13 det

([
A21

A31

A22

A32

])

Solution: see Figure 1.4.

Figure 1.4 Solution of Problem 1.2.
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1.3 Find the eigenvalues of [A], and for each eigenvalue, find an eigenvector, where:

[A] =

[
−3

3

15

9

]

Solution: see Figure 1.5.

Figure 1.5 Solution of Problem 1.3.
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1.4 Let us consider an Euclidian space of dimension 3, with the Cartesian coordinate
system (e1,e2,e3). In the following, tensors noted in lower case are vectors, tensors noted
with capital letters are tensors of order 2 and tensors noted in calligraphic font are tensors
of order 4. Develop the following expressions in index notation:

a · T · b, a⊗ b : T , T ⊗A ... B ⊗ c

a⊗ b : T : c⊗ d, T ...
.
a⊗ b⊗ c⊗ d

Solution:
a · T · b = aiTijklbl ej ⊗ ek
a⊗ b : T = aibjTjik ej ⊗ ek

T ⊗A ... B ⊗ c = TijklAmnBnmTlopq ei ⊗ ej ⊗ ek ⊗ eo ⊗ ep ⊗ eq
a⊗ b : T : c⊗ d = aibjTjiklcldk

T ...
.
a⊗ b⊗ c⊗ d = Tijklalbkcjdi

1.5 Prove the formulas given in the following Table:

Solution:

1.6 A force of magnitude F acts in a direction radially away from the axes origin, at a
point with coordinates (a/3, 2b/3, 2c/3) on the surface of the ellipsoid of equation:(x1

a

)2

+
(x2

b

)2

+
(x3

c

)2

= 1
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Determine the component of the force in the direction normal to the surface.

Solution: see Figure 1.6.

Figure 1.6 Solution of Problem 1.6.
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1.7 In the following, U is a scalar and a is a vector. Prove the following equations:

div (∇U) = ∆U

∇× (∇U) = 0

∇ · (∇× a) = 0

∇× (∇× a) = ∇ (∇ · a)−∆a

Solution:
See Figure 1.7 for the proofs of:

div (∇U) = ∆U

∇× (∇U) = 0

∇ · (∇× a) = 0

See Figure 1.8 for the proof of:

∇× (∇× a) = ∇ (∇ · a)−∆a
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Figure 1.7 Solution of Problem 1.7 - Equations 1-3.
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Figure 1.8 Solution of Problem 1.7 - Equation 4.
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1.8 In the following, U and V are scalars and a and b are vectors. Prove the following
equations:

∇ (U V ) = V ∇(U) + U∇(V )

∇ · (U a) = a ·∇(U) + U (∇ · a)

∇× (U a) = ∇(U)× a+ U (∇× a)

∇ · (a× b) = b · (∇× a)− a · (∇× b)

∇× (a× b) = (∇ · b)a− (∇ · a) b+ (b ·∇)a− (a ·∇) b

∇ (a · b) = a× (∇× b) + b× (∇× a) + (b ·∇)a+ (a ·∇) b

Solution:
See Figure 1.9 for the proofs of:

∇ (U V ) = V ∇(U) + U∇(V )

∇ · (U a) = a ·∇(U) + U (∇ · a)

∇× (U a) = ∇(U)× a+ U (∇× a)

∇ · (a× b) = b · (∇× a)− a · (∇× b)

See Figure 1.10 for the proof of:

∇× (a× b) = (∇ · b)a− (∇ · a) b+ (b ·∇)a− (a ·∇) b

See Figure 1.11 for the proof of:

∇ (a · b) = a× (∇× b) + b× (∇× a) + (b ·∇)a+ (a ·∇) b
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Figure 1.9 Solution of Problem 1.8 - Equations 1-4.
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Figure 1.10 Solution of Problem 1.8 - Equation 5.
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Figure 1.11 Solution of Problem 1.8 - Equation 6.
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1.9 Homework 1 - Problem 1
We define the third-order permutation tensor e as follows:

∀i, j, k, eijk =


0 when two indices are equal
+1 when the indices are 1,2,3 or an even permutation of 1,2,3
−1 when the indices are an odd permutation of 1,2,3

1. Show that the components of the permutation tensor can be calculated as follows:

eijk =
1

2
(i− j)(j − k)(k − i)

2. Calculate hte numerical expression of the following:

δijδij ; eijkeijk; δijeijk; eijkekji

Solution:

1. Let us pose A = (i − j)(j − k)(k − i)/2. By construction, (i − j)(j − k)(k − i)
is equal to zero whenever two indices are equal. So A = 0 whenever two indices
are equal. Now suppose that i, j and k are all different from one another. There are
six possible sets of indices, including three even permutations: (1,2,3); (3,1,2) and
(2,3,1), and including three odd permutations: (1,3,2); (2,1,3) and (3,2,1). If we test
each of the six sets in the expression of A, we find that A = 1 when permutations are
even and A = −1 for odd permutations. As a result, A = eijk.

2. Let us calculate the given expressions.

δijδij = δii =

1∑
i=1

(1) = 3

eijkeijk =
∑
i,j,k

(eijk)
2

=
∑

i6=j,j 6=k,k 6=i

(1) = 6

since there exists six sets of permutations for which the three indices are different
from one another.

δijeijk = eiik = 0

since the permutation tensor is zero whenever two indices are equal.

eijkekji = eijk × (−eijk) = −eijkeijk = −6

according to the previous calculations.

1.10 Homework 1 - Problem 2
In the following, v and r are vectors and φ is a scalar. Prove the following relations:

∇× (∇× v) = ∇ · (∇ · v)−∇2 (v)
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∇× (φv) = φ (∇× v)− v ×∇φ

∇ · r = 3

∇× r = 0

in which r = xiei is the position vector, and r =
√
xixi is the magnitude of the position

vector. Hint: Use index notations to prove the relations above.

Solution:
For the first relationship:

∇× (∇× v) · e1 =

(
∂2v2

∂x1∂x2
− ∂2v1

∂x2
2

)
−
(
∂2v1

∂x2
3

− ∂2v3

∂x1∂x3

)

=
∂

∂x1

(
∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3

)
−
(
∂2v1

∂x2
1

+
∂2v2

∂x2
2

+
∂2v3

∂x2
3

)
=

∂

∂x1
(∇ · v)−∇2 (v) · e1

= ∇ (∇ · v) · e1 −∇
2 (v) · e1

and the same result can be obtained for the other components, from which we deduce:

∇× (∇× v) = ∇ · (∇ · v)−∇2 (v)

For the second relationship, we can use the distributivity of the tensorial product:

∇× (φv) = ∇φ× v + φ (∇× v) = φ (∇× v)− v ×∇φ

For the third relationship:

∇ · r =

3∑
i=1

3∑
i=j

∂xi
∂xj

ei · ej =

3∑
i=1

3∑
i=j

∂xi
∂xj

δij =

3∑
i=1

∂xi
∂xi

3∑
i=1

(1) = 3

For the fourth relationship:

∇× r =


∂x3

∂x2
− ∂x2

∂x3

∂x1

∂x3
− ∂x3

∂x1

∂x2

∂x1
− ∂x1

∂x2

=


0

0

0



CHAPTER 2

ELEMENTS OF CONTINUUM MECHANICS

PROBLEMS

2.1 We consider the 2D domain 0 < x1 < L, −c < x2 < c (in Cartesian coordinates).
We define: I = 4c3/3. The state of stress in the domain is given as follows:

σ11 =
p

I

(
x2

1x2 −
2

3
x3

2

)
, σ22 =

p

I

(
1

3
x3

2 − c2x2 +
2

3
c3
)
, σ12 =

p

I

((
c2 − x2

2

)
x1

)
a. Show that the state of stress is in equilibrium, i.e., div

(
σ
)

= 0.
b. Calculate the state of stress on each of the four sides of the domain.
c. Calculate the resulting force that is applied on the face x1 = x10 by the part of the
domain x1 ≥ x10. Calculate the resulting moment at the point (x10, 0).
d. Suppose that c << L. Give a loading boundary condition that approximates the stress
field given in the equation above.
e. Numerical application: consider a plane wing (shaped as a parallelepiped) that is 20m
long (i.e., L=20m), and that has a half width c=1 cm. The wing is subjected to a uniformly
distributed lifting surface force p = CzρaV

2/2. We give: Cz=0.8; V=200 m/s; ρa=1
kg/m3. Calculate σmax11 .

Solution:
a. Calculate:

∂σij(x1, x2)

∂xj
for i=1,2

Theoretical Geomechanics.
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and verify that div
(
σ
)

= 0.

b. On the top face, x2 = +c and the normal vector is e2, therefore the stress tensor
components are:

σ12(x1, x2 = +c) = 0, σ22(x1, x2 = +c) = 0

On the right face, x1 = +L and the normal vector is e1, therefore the stress tensor compo-
nents are:

σ11(x1 = L, x2) =
3p

4

(
L2x2

c3
− 2x3

2

3c3

)
, σ21(x1 = L, x2) = σ12(L, x2) =

3pL

4c

(
1− x2

2

c2

)
On the bottom face, x2 = −c and the normal vector is −e2, therefore the stress tensor
components are:

σ12(x1, x2 = −c) = 0, σ22(x1, x2 = −c) = p

On the left face, x1 = 0 and the normal vector is −e1, therefore the stress tensor compo-
nents are:

σ12(x1 = 0, x2) = 0, σ22(x1 = 0, x2) = −p x
3
2

2 c3

c. The traction F on the face of equation x1 = x10 and extending from x2 = −C to
x2 = +c can be written in terms of the surface distribution of tractions t that are applied
on that face, as follows:

F =

∫ +c

−c
tdx2

Note that here, a ”surface” distribution is actually a line distribution, since the problem is
2D. Using the definition of Cauchy’s stress tensor:

F =

∫ +c

−c
σ · ndx2

in which here, n = e1, and so:

∀i = 1, 2, Fi =

∫ +c

−c
σi1dx2

We find:
F1 = 0, F2 = p x10

The moment about the point of coordinates (x10,0), is, by definition:

M =

∫ +c

−c
r × tdx2

in which r = (x1 − x10)e1 + x2e2 is the vector position. Since x1 = x10 on the face:∫ +c

−c
(x1 − x10)σ21dx2 = 0
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So the moment reduces to:

M = −e3
∫ +c

−c
x2σ11dx2 = −e3

p

I

∫ +c

−c

(
(x10)2(x2)2 − 2

3
(x2)4

)

M = −e3
2

3

p

I
(x10)2c3 + e3

4

15

p

I
(c)5

M = −e3
p

2
(x10)2 + e3

p

5
c2

d. If the beam is slender, c << L, σ11(0, x2) is of order 0 in L/c while σ11(L, x2)
and σ12(L, x2) are of order (L/c)2 and L/c, respectively. The force that acts on the face
x1 = 0 becomes negligible. Stresses reach a maximum at x1 = L. Stresses are almost
uniaxial since σ12 is one order of magnitude less than σ11. It can also be noted that σ11 is
linear in x2.

e. We find p= 16,000 Pa and:

σmax11 = σ11(L, c) ' 3pL2

4c2
' 5 MPa

2.2 By considering the initial state of stress σij at a point and a general increment of
stress ∆σij , determine which of the stress invariants I allows superposition such that:
Ifinal = Iinitial + Iincremental.

Solution:
The first invariant is the only invariant that is linear in stress and that can satisfy the super-
position equation.

2.3 The stress state at a point is given as:

[σ] =

4

3

2

3

5

1

2

1

6

 [kPa]

a. Determine the stress invariants I1, I2 and I3 at the point.
b. Determine the invariants J1, J2 and J3 of the deviatoric stress tensor sij .

Solution:
a. Invariants of [σ], calculated with MATLAB:

I1 = Tr (σ) = 15, I2 =
1

2

(
(Tr (σ))

2 − Tr
(
σ2
))

= 60, I3 = det (σ) = 54
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b. Deviatoric stress tensor [s] = [σ]− p[I] with p = Tr([σ])/3:

[s] =

−1

3

2

3

0

1

2

1

1

 [kPa]

Invariants of the deviatoric stress, calculated with MATLAB:

J1 = Tr (σ) = 0 J2 =
1

2
Tr
(
s2
)

= 15, J3 = det (s) = 4

2.4 Consider a point in plane stress, at which the state of stress is given by: σxx = 2 MPa,
σyy = −1 MPa and σxy = 0.5 MPa. For the given state of stress:
a. Draw Mohr’s circle.
b. Determine the orientation of the principal planes and the corresponding principal stresses.
c. Determine the state of stress after the element has been rotated through and angle of 30o

clockwise.

Solution:
a. To draw Mohr’s circle (not represented here), calculate the coordinates of the center
C(σavg ,0) and calculate the radius R:

σavg =
1

2
(σxx + σyy) = 0.5 MPa, R =

√(
σxx − σyy

2

)2

+ (σxy)
2 ' 1.58 MPa

b. Principal stresses, from Mohr’s circle:

σ1 = OP1 = 0C + CP1 = σavg +R = 2.08 MPa

σ2 = OP2 = 0C − CP2 = σavg −R = −1.08 MPa

Orientation of the principal planes, from Mohr’s circle:

tan 2θp =
AA′

CA
=

σxy
(σxx − σyy)/2

=
1

3
, ⇒ θp = 9o + k ∗ 90o, k ∈ Z

c. State of stress after rotation by −30o, using Mohr’s circle:

σx′x′ = CD′ = OC + CD′ = σavg +R cos (2 ∗ 30o + 2θp) = 829 kPa

σy′y′ = CE′ = OC − CE′ = σavg −R cos (2 ∗ 30o + 2θp) = 171 kPa

σx′y′ = DD′ = R sin (2 ∗ 30o + 2θp) = 1.55 MPa
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2.5 A steel penstock has a 750-mm outer diameter, a 12-mm wall thickness and connects
a reservoir at A with a generating station at B, as shown in Figure 2.1. Knowing that the
density of water is 1000kg/m3, determine the maximum normal stress and the maximum
shearing stress in the penstock under static conditions. Hint: in a cylindrical pressurized
vessel (i.e., in a cylindrical container that has a radius that is large compared to the thick-
ness of the shell, and in which the pressure inside is larger than the pressure outside), the
hoop stress is equal to pr/t and the longitudinal stress is equal to pr/2t, in which p is
the pressure of the fluid inside the vessel, r is the inner radius of the vessel and t is the
thickness of the shell.

Figure 2.1 Penstock studied in Problem 2.5.

Solution:

p = ρw g h = 2.94 MPa

σ1 =
pr

t
= 89 MPa

σ3 = σz = 0 MPa

τmax =
σ1 − σ3

2
= 44.5 MPa

2.6 Square plates, each of 16-mm thickness, can be bent and welded together in either
of the two ways shown to form the cylindrical portion of a compressed air tank, as shown
in Figure Figure 2.2. Knowing that the allowable normal stress perpendicular to the weld
is 65MPa, determine the largest allowable gage pressure in each case. Use the same hint
as in Problem 2.5.

Solution:
Configuration (a):
It is required that:

σ1 =
pr

t
≤ σallow, σ2 =

pr

2t
≤ σallow
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Figure 2.2 Compressed air tanks studied in Problem 2.6.

which is satisfied as long as:
pr

t
≤ σallow

from which we get:

p ≤ t σallow
r

= 419 kPa

Configuration (b):
A rotation by 45o in the physical plane corresponds to a rotation by an angle of 90o in the
stress plane (in Mohr?s circle). At 90o from P1 (maximum principal stress), the stress in
Mohr?s circle is:

σ′1 = σ′2 = σavg =
1

2

(pr
t

+
pr

2t

)
=

3pr

4t

As a result, it is required that:
3pr

4t
≤ σallow

from which we get:
3pr

4t
≤ 4tσallow

3r
= 558 kPa

Configuration (b) is 33% more efficient than configuration (a).

2.7 Show which of the following strain states satisfies the compatibility condition:

u3 = 0, ε11 =

(
x2

1 + x2
2

)
a2

, ε22 =
x2

2

a2
, ε12 =

x1x2

a2

u3 = 0, ε11 =
x3

(
x2

1 + x2
2

)
a3

, ε22 =
x2

2x3

a3
, ε12 =

x1x2x3

a3

Solution:
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For the first strain state, we are in plane strain since all the derivatives by x3 are zero and
the displacement along direction 3 is zero. In the expression

∂2εij
∂xk∂xl

+
∂2εkl
∂xi∂xj

− ∂2εik
∂xj∂xl

− ∂2εjl
∂xi∂xk

(2.1)

the possible combination of indexes (i,j,k,l) are

(1, 1, 1, 1)

(2, 1, 1, 1) (1, 2, 1, 1) (1, 1, 2, 1) (1, 1, 1, 2)

(2, 2, 1, 1) (1, 2, 2, 1) (1, 1, 2, 2) (2, 1, 1, 2)

(2, 2, 2, 1) (1, 2, 2, 2) (2, 1, 2, 2) (2, 2, 1, 2)

(2, 2, 2, 2)

and we check that the expression in Equation 2.1 is zero in all cases, which means that the
strain state satisfies the compatibility condition.
For the second strain state, we are not in a plane strain condition because not all the deriva-
tives about x3 are zero. The expression in Equation 2.1 is not zero for all possible combi-
nation of indexes. In particular, for (i,j,k,l)=(1,2,3,2), we have:

A =
∂2ε12

∂x3∂x2
+

∂2ε32

∂x1∂x2
− ∂2ε13

∂x2∂x2
− ∂2ε22

∂x1∂x3

=
x1

a3
+ 0 − 0 − 0 6= 0

The result above shows that the second strain state does not satisfy the compatibility con-
dition.

2.8 Let us consider a vertical beam of length L = 2m and half-width h=0.2 m, as shown
in Figure 4.6.a. The position vector is given as OP = XeX + Y eY in the Cartesian
coordinate system, with −h ≤ X ≤ +h and 0 ≤ Y ≤ L. Consider the deformed
configuration shown in Figure 4.6.b. such that the new position vector is given as:

OP = x0(Y, t) +Xer (θ(Y, t)) , er = cos θeX+sin θeY , eθ(θ) = − sin θeX+cos θeY

in which x0(Y, t) and θ(Y, t) will be defined later.
a. Calculate the Green-Lagrange deformation tensor e as a function of x0(Y, t) and θ(Y, t).
b. Calculate the elongation in the eX -direction.
c. Calculate the elongation in the eY -direction, on the vertical axis (X = 0) and on the
lateral sides (X = ±h).
d. Calculate the distortion in the direction (eX ,eY ) as a function of Y .
e. Now we pose:

x0(Y, t) =
L

π
(−eX + er (θ(Y, t))) , θ(Y, t) =

π Y

L
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Repeat questions a.-d. above.
f. Now suppose that the deformed configuration is that shown in Figure 4.6.c, in which:

OP = x0(Y, t) +Xer (1.1θ(Y, t))

Explain the difference between Figure 4.6.b and Figure 4.6.c.

Figure 2.3 Beam problem studied in Problem 2.8.

Solution:
a. By definition of the Green-Lagrange deformation tensor:

e =
1

2

(
∇ (u) +T ∇ (u) +∇ (u) ·T ∇ (u)

)
We first calculate the gradient of the displacement field:

∇ (u) =

(
∂xi
∂Xj

− δij
)
ei ⊗ ej

in which Xiei is the position vector in the undeformed configuration and xiei is the posi-
tion vector in the deformed configuration. Using the notations of the problem, we calculate:

∇ (u) =
dx0(Y, t)

dY
⊗eY +er (θ(Y, t))⊗eX +X

der (θ(Y, t))

dY
⊗eY −eX⊗eX−eY ⊗eY

From there, the Green-Lagrange deformation tensor is obtained:

e =
1

2

dx0(Y, t)

dY
· er (eX ⊗ eY + eY ⊗ eX)

+


(
|dx0(Y,t)

dY |2 − 1
)

2
+X

dθ(Y, t)

dY

dx0(Y, t)

dY
· eθ +

1

2
X2

(
dθ(Y, t)

dY

)2
 eY ⊗ eY

b. From Equation 2.2, we see that eX · e · eX = eXX = 0.
c. From Equation 2.2, we have:

eY Y =

(
|dx0(Y,t)

dY |2 − 1
)

2
+X

dθ(Y, t)

dY

dx0(Y, t)

dY
· eθ +

1

2
X2

(
dθ(Y, t)

dY

)2
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On the vertical axis (X = 0):

eY Y (X = 0) =

(
|dx0(Y,t)

dY |2 − 1
)

2

On the lateral sides (X = ±h):

eY Y (X = ±h) =

(
|dx0(Y,t)

dY |2 − 1
)

2
± hdθ(Y, t)

dY

dx0(Y, t)

dY
· eθ +

1

2
h2

(
dθ(Y, t)

dY

)2

If dθ(Y,t)
dY > 0, the maximum elongation is on the side X = +h. If dθ(Y,t)

dY < 0, the
maximum elongation is on the side X = −h.
d. Here, we calculate the distortion of the angle (eX , eY ), as follows:

γ = TF (eX) · F (eY )− eX · eY = TF (eX) · F (eY )

in which F is the gradient of the transport function φ, which associate a position vector in
the deformed configuration to a vector in the undeformed configuration. We have:

e =
1

2

(
TF · F − I

)
from which we get:

TF · F = 2e+ I

and in particular:

TF (eX) · F (eY ) = FXjFjY = 2eXY =
dx0(Y, t)

dY
· er

We find that the distortion is zero if the the tangent to the neutral axis is orthogonal to the
deformed section (Bernouilli’s assumption).
e. For the proposed functions x0 and θ, we have:

e =
πX

L

(
1 +

πX

2L

)
eY ⊗ eY

We have: eXX = eXY = 0 (no elongation in the X-direction and no distortion), eY Y =
πX
L

(
1 + πX

2L

)
' 36% according to the figure. Few materials can resist such an elongation

in the direction of the fibers (latex can).
f. In the right figure, the distortion is non-zero: the material points shown in the right figure
experience shear deformation. We can indeed check that:

dx0(Y, t)

dY
· er(1.1θ) = eθ(θ) · er(1.1θ) 6= 0

2.9 A cube of granite with sides of length a = 89 mm (see Figure 2.4) is tested in a
laboratory under triaxial stress. Assume E = 80 GPa, ν = 0.25. Gages mounted on the
testing machine show that the compressive strains in the material are εxx = -138 x 10−5

and εyy = εzz = -510 x 10−6. Determine the following quantities:
a. The normal stresses σxx, σyy , and σzz acting on the x, y, and z faces of the cube;
b. The maximum shear stress τmax in the material;
c. The change ∆V in the volume of the cube;
d. The maximum value of σxx when the change in volume must be limited to -0.11%.
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Figure 2.4 Granite sample studied in Problem 2.9.
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Solution:

a. Using Hook’s law in terms of the Young’s modulus and the Poisson’s ratio:

σii =
E

(1 + ν)(1− 2ν)
[(1− ν)εii + ν(εjj + εkk)] , i 6= j, j 6= k, k 6= i

in which there is no summation on the indices. Numerically:

σxx = −82.6 MPa, σyy = −54.7 MPa, σzz = −54.7 MPa

b. The cube is in a state of triaxial stress, therefore there is no shear stress on any of the
faces and σxx, σyy and σzz are principal stresses. The maximum shear stress is half of the
difference between the major and minor principal stresses, and can therefore be calculated
as follows:

τmax =
σyy − σxx

2
= 13.92 MPa

c. Change of volume:

∆V = V1 − V0 = (a+ ∆a)(b+ ∆b)(c+ ∆c)− abc
= (a+ aεxx)(b+ bεyy)(c+ cεzz)− abc
= abc [(1 + εxx)(1 + εyy)(1 + εzz)− 1]

Under the small deformation assumption:

∆V ' abc (εxx + εyy + εzz) = abc εv

Numerically:
εv = −1.2× 10−3, ∆V = −846 mm3

d. We impose:
εmaxv = −0.11%

Developing the expression of the volumetric strain:

max (εxx + εyy + εzz) = −0.11%

Substituting the deformations by their relationship to stress via Hooke’s law:

(1− 2ν)

E
max (σxx + σyy + σzz) = −0.11%

If σyy and σzz are fixed, then:

σmaxxx = − 0.11%E

(1− 2ν)
− σyy − σzz

Numerically:
σmaxxx = −73 MPa
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2.10 Consider a parallelepidic specimen of length L, with a square section of edge length
a. The square section of the specimen lies on the plane (0, x1, x2). The parallelepiped can
slide on the plane but cannot loose contact with the plane. The specimen is loaded at
x3 = L by a uniform compression −F in the e3 direction. The material that makes the
specimen is isotropic and linear elastic,with a Young’s modulus E and a Poisson’s ratio ν.
We assume that deformations are very small, and we neglect the gravity and inertia forces.
We give: L=20 cm, a=1 cm, E=200 GPa, ν=0.3, F=100 N.
a. Calculate the displacement field at x3 = L if the lateral faces of the specimen are free
of stress.
b. Calculate the displacement field at x3 = L if the specimen is encased in a very rigid
support, within which it can slide. c. Calculate the displacement field at x3 = L if the the
faces x1 ± a/2 are fixed and if the other two lateral faces are free of stress.
d. Now suppose that the specimen is encased in a very rogod support and that there is
an initial misfit of 0.01 mm between the lateral faces. What is the required value of the
compression force F for which the lateral faces of the specimen get in contact with the
rigid support?

Solution: see Figure 2.5.
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Figure 2.5 Solution of Problem 2.10.

2.11 Homework 1 - Problem 3
Consider an initial state of stress at a point, given by: σxx/σzz = 0.5, σyy/σzz = 0.75,
σxz/σzz = 0.25, σxy/σzz = 0, σyz/σzz = 0, σzz = 1.

1. Calculate the invariants of the stress tensor: I1, I2 and I3.

2. Calculate the magnitude of the principal stresses σ1, σ2 and σ3. Calculate the angles
of orientation of the principal planes.

3. The state of stress at the point is changed by application of the following stress in-
crements: ∆σzz = 0, ∆σxx/σzz = −0.25, ∆σxz/σzz = 0.25. Draw the initial and
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final Mohr cirlces. What are the final magnitudes of the principal stresses and the
orientations of the principal planes?

Solution:

1. Calculations can easily be handled with MATLAB:

I1 = Tr (σ) = 2.25, I2 =
1

2

[
(Tr (σ))

2 − Tr
(
σ2
)]

= 1.5625, I3 = det (σ) = 0.3281

2. Solving the characteristic equation with MATLAB, we get:

σ1 = 1.1036, σ2 = σyy = 0.75, σ3 = 0.3964

It was expected that σyy would be a principal stress, since σxy = σyz = 0. As a
result, ey is a principal direction. The other tow principal directions are in the plane
(ex ,ex). We can find the orientation of the principal axes by calculating first the angle
θp between the normal to the plane subjected to the major principal stress, as follows:

tan(2θp) =
2σxz

σzz − σxx
= 1 ⇒ θp = 22.5o + k ∗ 90o, k ∈ Z

One principal plane has a normal oriented by an angle of 22.5o to the x-axis, and
another principal plane is oriented to an angle 112.5o to the x-axis. The unit vectors
that are normal to the principal planes are expressed in the Cartesian base as follows:

0

1

0

 ,


cos(22.5o)

0

sin(22.5o)

 ,


sin(22.5o)

0

cos(22.5o)


3. The new state of stress is:

[σ′] = [σ + ∆σ] =

0.25

0

0.5

0

0.75

0

0.5

0

1


σ′yy is a principal stress. The other two principal stresses are found by solving the
characteristic equation in MATLAB:

σ′1 = 1.25, σ′2 = σ′yy = 0.75, σ′3 = 0

One principal plane is normal to ey . The normal vector of the other two planes is
contained in the plane (ex,ez). The orientation of these two normal vectors compared
to the x-axis is found in the same way as in question 2:

tan
(
2θ′p
)

=
2σ′xz

σ′zz − σ′xx
=

4

3
⇒ θ′p = 26.56o + k ∗ 90o, k ∈ Z
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The unit vectors normal to the principal planes are the following:
0

1

0

 ,


cos(26.56o)

0

sin(26.56o)

 ,


sin(26.56o)

0

cos(26.56o)



2.12 Homework 1 - Problem 4
Consider a specimen that has the shape of a disc with a diameter d. The disc is subjected
to two forces P that are diametrically opposite, as shown in Figure 2.6. We consider the
following stress field:

σ

a
=

(
cos θ1

r1

)
er1 ⊗ er1 +

(
cos θ2

r2

)
er1 ⊗ er1 −

1

d
I

in which a is a constant that will be defined later, I is the second-order identity tensor and
r1, r2, θ1, θ2, er1 and er2 are defined in Figure 2.6.

1. Show that div [(cos θ/r)er ⊗ er] = 0, in which r, θ and er are the usual coordinates
and coordinate directions used in a cylindrical coordinate system.

2. Deduce from the previous question that the stress field is in equilibrium, i.e. that
divσ = 0. Neglect the forces of gravity and inertia.

3. Show that the traction force t = σ · n is zero on the free surface r = d/2. Consider
points of the free surface that are far from the point of application of the forces P .

4. Calculate the stress tensor on the axis x1 = 0. Explain why the specimen has a low
resistance in traction on this axis.

Figure 2.6 Schematic of the Brazilian test studied in Problem 4.
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1. Proof of : div [(cos θ/r)er ⊗ er] = 0:

div [(cos θ/r)er ⊗ er] = div [(cos θ/r)] · (er ⊗ er) + (cos θ/r)div [er ⊗ er]
(2.2)

in which: er = cos θex + sin θey (noting x for x1 and y for x2 for compactness). We
have eθ = − sin θex + cos θey , so that:

∂er
∂θ

= eθ

We thus have:
∇ [er] = 0× er ⊗ er +

1

r
eθ ⊗ eθ

∇ [er ⊗ er] =
1

r
er ⊗ eθ ⊗ eθ +

1

r
eθ ⊗ eθ ⊗ er

And so:
div [er ⊗ er] =

1

r
er (2.3)

On the other hand:

∇ [(cos θ/r)] = −cos θ

r2
er −

sin θ

r2
eθ (2.4)

From equations 2.2, 2.3 and 2.4, we have:

div [(cos θ/r)er ⊗ er] = −cos θ

r2
er +

cos θ

r

1

r
er = 0 (2.5)

So we showed that div [(cos θ/r)er ⊗ er] = 0.

2. Proof of equilibrium: Noting x for x1 and y for x2 for compactness, we have:

er1 = − cos θ1 ey + sin θ1 ex

eθ1 = sin θ1 ey + cos θ1 ex

er2 = cos θ2 ey + sin θ2 ex

eθ2 = − sin θ2 ey + cos θ2 ex

Equation 2.5 is valid for any cylindircal coordinate system, and so:

divr1,θ1 [(cos θ1/r1)er1 ⊗ er1 ] = 0

divr2,θ2 [(cos θ2/r2)er2 ⊗ er2 ] = 0

Note that the two equations above are derived in a different coordinate system than
equation 2.5. To perform the coordinate change and convert a derivation in (r1, θ1) or
(r2, θ2) into a derivation in (r, θ, we introduce the following Jacobian matrices:

[Ji] =

∂ri∂r
∂ri
r∂θ

ri
∂θi
∂r

∂θi
∂θ

 , i = 1, 2
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We have:

divr,θ [(cos θ1/r1)er1 ⊗ er1 ] = [J ]1 · divr1,θ1 [(cos θ1/r1)er1 ⊗ er1 ] = 0

divr,θ [(cos θ2/r2)er2 ⊗ er2 ] = [J ]2 · divr2,θ2 [(cos θ2/r2)er2 ⊗ er2 ] = 0

Since: I/d is a constant tensor, we deduce from the two previous equations that:

divr,θσ = 0

which shows that the system is in equilibrium.

3. When r = d/2, cos θ1/r1 = cos θ2/r2 = 1/d. We have n = er and so the surface
traction is:

σ · n =
a

d
(er1 · er)er1 +

a

d
(er2 · er)er2 −

a

d
er

We have er1 · er2 = 0 and so er1 · er)er1 + er2 · er)er2 = er. So we have:

σ · n =
a

d
er −

a

d
er = 0

So the radial traction force is zero on the circumference of the specimen.

4. On the vertical axis (x1 = 0), we have θ1 = θ2 = 0, θ = ±π/2, er1 = −ey and
er2 = ey (using x = x1, y = x2). The stress is:

σ

a
=

1

r1
ey ⊗ ey +

1

r2
ey ⊗ ey −

1

d
ex ⊗ ex −

1

d
ey ⊗ ey

Take a vetical cut in the specimen and analyze the traction force that applies on the
right side. We haven = −ex and σ

a = ex/d. Similarly, the traction force that applies
on the left side, where n = ex, is σ

a = −ex/d. So the specimen is subjected to a
horizontal force pointing the the left on the left side, and to a horizontal force pointing
to the right on the right side. That means that along the axis x1 = 0, the specimen
is subjected to opposite horzontal forces that subject the specimen to traction. That
explains why the specimen has a low resistance to traction along the axis x1 = 0.

See Figure 2.7 for more details.
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Figure 2.7 Solution of Problem 2.12.
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2.13 Homework 1 - Problem 5
Taking the axis x3 normal to the sheet of the paper, draw the final configuration of the
displacement fields (u) given below, in which a is a small positive quantity. Calculate the
deformation tensor that contributes to these displacements:

1. u1 = a x1, u2 = a x2, u3 = 0

2. u1 = a x2, u2 = a x1, u3 = 0

3. u1 = a x2, u2 = a x2, u3 = 0

4. u1 = a x2, u2 = −a x1, u3 = 0

Solution: There is no displacement in direction 3, and none of the other displacements
depends on x3, so that all the derivatives ∂ui/∂x3 are zero. As a result, each of the
configurations presented are in plane strain, with the strains remaining in the plane (x1,x2).
Additionally, a << 1, so we can make the assumption of small deformation. The final
configurations of the four displacement fields are shown in Figure 2.8. The deformation
tensor is 2 x 2 because we are in plane strain (i.e., the components 33, 23 and 13 are zero)
and it is calculated by using the definition of the linearized deformation tensor since we
are in small deformation. Results are as follows:

1. Gradient of the displacement field:

[
∇ (u)

]
=

[
a

0

0

a

]

Deformation tensor:

[
ε
]

=
1

2

(
∇ (u) +T ∇ (u)

)
=

[
a

0

0

a

]

This is a volumetric deformation.

2. Gradient of the displacement field:

[
∇ (u)

]
=

[
0

a

a

0

]

Deformation tensor:

[
ε
]

=
1

2

(
∇ (u) +T ∇ (u)

)
=

[
0

a

a

0

]

This is a shear deformation.

3. Gradient of the displacement field:

[
∇ (u)

]
=

[
0

0

a

a

]
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Deformation tensor:

[
ε
]

=
1

2

(
∇ (u) +T ∇ (u)

)
=

[
0

a/2

a/2

a

]

4. Gradient of the displacement field:

[
∇ (u)

]
=

[
0

−a
a

0

]

Deformation tensor:

[
ε
]

=
1

2

(
∇ (u) +T ∇ (u)

)
=

[
0

0

0

0

]

This is a rotation, which is a rigid body motion. Therefore, there is no deformation.

Figure 2.8 Illustration of the deformations produced by the displacements in Problem 2.13.

2.14 Homework 1 - Problem 6
A constant volume axial compression test is conducted on a soil sample which has initial
dimensions x1, x2, x2 = x3. Assuming that the specimen has lubricated ends and that
it deforms with plane sides, express the strain state in the sample using the Lagrangian
and Eulerian finite strain tensors for a vertical displacement, u1 = k x1 . Show how the
major principal strains compare with the principal strains under the assumption of small
deformation, as functions of k.

Solution: The specimen is lubricated at top and bottom, its faces remain plane, and the
deformations in direction 2 and 3 are expected to be the same. Therefore it is anticipated
that the specimen will undergo no distortion (or shear), and that it will undergo the same
elongation in directions 2 and 3. Additionally, there is a negative elongation in direction 1,
due to the loading. The displacement field is thus of the form:

u = k x1e1 + αx2e2 + αx3e3
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The experiment is conducted under constant volume, so x1x2x3 = x′1x
′
2x
′
3. Since x′1 =

(1 + k)x1, then we have x′2 = x2/
√

(1 + k) and x′2 = x3/
√

(1 + k) and therefore:

u = k x1e1 +

(
1√

1 + k
− 1

)
x2e2 +

(
1√

1 + k
− 1

)
x3e3

The Lagrangian finite strain tensor L is defined as follows:

Lij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

]
and we calculate:

[L] =
1

2

2k + k2

0

0

0

− k
1+k

0

0

0

− k
1+k


By definition of the displacement vector, u = x′ − x, in which x′ is the the new position
vector, which can be expressed explicitly as:

x′ = (1 + k)x1e1 + (1 + α)x2e2 + (1 + α)x3e3

We can now express the displacement vector in terms of the new position vector:

u =
k

1 + k
x′1e1 +

α

1 + α
x′2e2 +

α

1 + α
x′3e3

u =
k

1 + k
x′1e1 +

(
1−
√

1 + k
)
x′2e2 +

(
1−
√

1 + k
)
x′3e3

We can now calculate the Eulerian finite strain tensor, which is defined as:

Eij =
1

2

[
∂ui
∂x′j

+
∂uj
∂x′i
− ∂uk
∂x′i

∂uk
∂x′j

]

We find:

[E] =
1

2


2k+k2

(1+k)2

0

0

0

−k
0

0

0

−k


In small deformation, the linearized deformation tensor, defined as the symmetric part of
the gradient of displacement in the initial configuration, is:

[ε] =

k0
0

0(
1√
1+k
− 1
)

0

0

0(
1√
1+k
− 1
)


The major principal strains are ε11 = k in small deformation, L11 = k + k2/2 in La-
grangian finite strain and E11 = k+k2/2

(1+k)2 in Eulerian finite strain.
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2.15 Homework 2 - Problem 1
Let us consider a cylinder of length L and circular cross-section with radius a. We assume
that the state of stress in the cylinder is given as σ = α r (eθ ⊗ ez + ez ⊗ eθ). Gravity
and inertia forces are neglected.

1. Show that the state of stress satisfies the equations of equilibrium and the boundary
condition on the lateral face (free of stress).

2. Calculate the state of stress on the top and bottom faces (z = 0 and z = L). Calculate
the resulting moment about the axis of the cylinder. From there, calculate α as a
function of the loading and as a function of Ip, the polar moment of inertia of the
section.

3. Propose an experimental set-up that can create this state of stress. Discuss any chal-
lenge that you anticipate in this set-up.

4. Calculate the first two invariants of the stress tensor and of the deviatoric tensor.

5. Suppose that the constitutive material breaks when the norm of the deviatoric stress
exceeds a certain limit k. Calculate the maximum couple that can be exerted on the
cylinder. Dimension the cylindrical transmission axis of a truck for a couple C =
3, 000N.m, with k = 120MPa (steel).

6. Now suppose that the cylindrical transmission axis is made of a composite material
with long fibers. In what direction should the fibers be oriented to optimize the design
of the cylindrical transmission axis?

Solution:

1. Since gravity and inertia forces are neglected, the equation of equilibrium is satsified
if and only if:

divσ = 0

We have:
divσ =

∂σij
∂xj

ei =
∂σrj
∂xj

er +
∂σθj
∂xj

eθ +
∂σzj
∂xj

ez

Since σrr = 0 and σθr = σθθ = σzr = σzz = 0

divσ =
∂σθz
∂z

eθ +
∂σzθ
∂θ

ez

Since σθz = σzθ does not depend on θ or z:

divσ = 0

which shows that the proposed state of stress verifies the conditions of equilibrium.
On the lateral face, r = a and the normal is er. With the proposed state of stress, the
tractions on the lateral face are thus:

t = σ(r = a) · er = αa (eθ ⊗ ez + ez ⊗ eθ) · er = 0

Hence, the proposed state of stress ensures that the lateral faces are free of stress.
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2. On the top face, z = L and n = +ez . The state of stress is thus:

σrz = er·σ(z = L)·ez = 0, σθz = eθ·σ(z = L)·ez = +α r, σzz = ez·σ(z = L)·ez = 0

Similarly on the borrom face, z = 0 and n = −ez , and the state of stress is:

σrz = 0, σθz = −α r, σzz = 0

The resulting moment about the axis of the cylinder is:

Mz =

∫
Sz

(r er)× (σ · ez) dS =

∫
Sz

(r er)× (α reθ) dS

Using cylindrical coordinates:

Mz = α

(∫ a

r=0

r3dr

∫ 2π

θ=0

dθ

)
ez =

παa4

2
ez

Noting that:

Ip =
πa4

2

We have:

α =
Mz · ez
Ip

3. The proposed state of stress could be created by fixing the bottom face and subjecting
the top face to a couple equal to Mz , while leaving the lateral faces free of stress.
Some challenges: (i) Ensuring propoer grip at the top and bottom; (ii) Avoiding con-
centration of stresses for those grips.

4. Stress invariants:
I1 = Tr (σ) = 0

I2 =
1

2

[
Tr (σ)

2 − Tr
(
σ2
)]

= −1

2
Tr
(
σ2
)

with:

σ2 = α2 r2 (eθ ⊗ ez + ez ⊗ eθ)·(eθ ⊗ ez + ez ⊗ eθ) = α2 r2 (eθ ⊗ eθ + ez ⊗ ez)

So that:
I2 = −α2 r2

The stress tensor is equal to the deviatoric stress tensor, so that I1 = J1 = 0 and
I2 = −J2 = −α2 r2.

5. Here we recall that the norm of a matrix is:

|A| = Tr
(
A ·AT

)1/2
As a result, the norm of the deviatoric stress is:

|s| = Tr
(
s2
)1/2

=
√

2 J2 =
(
2α2 r2

)1/2
=
√

2α r
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The maximum deviatoric stress is reached at r = a:

|smax| =
√

2αa

If the material breaks when |smax| reaches the value k, then the maximum possible
value of α is:

αmax =
k

a
√

2

and the maximum couple that can be exerted on the specimen is:

Cmax = αmax Ip = αmax
πa4

2
=
kπa3

2
√

2

For the dimensions given in the problem, we find that the minimum radius of the
cylinder should be: amin = 2.82 cm.

6. It is advised to orient the fibers such that the direction of maximum shear in the
specimen corresponds to the direction of maximum strength of the fibers. Fibers
typically resist the most to tension in the direction of their axis. The maximum shear
stress in the specimen is oriented at an angle of ±45o to the specimen axis. Hence, it
is recomended to orient the fibers at ±45o to the cylinder axis.

2.16 Homework 2 - Problem 2
For standard triaxial tests (axisymmetric geometry) on soils, a good representation of stress
states in the soil is obtained by introducing the stresses σoct = σkk/3 and q = σ1 − σ3,
which are related to the invariants of the stress tensor I1 and J2, respectively. The stress-
strain behavior can be considered by introducing two measures of strains, εvol and εs,
which are energetically compatible with theses stresses such that:

δW = σijδεij = σoctδεvol + qδεs

1. Find an expression for εs to satisfy this relationship. Show that εvol and εs can be
expressed in terms of the invariants of the strain tensor.

2. Figure 2.9 lists the results of two drained triaxial tests on medium dense sand. Plot the
results (i.e. plot q vs. σoct, q vs. εs, εvol vs. εs and σoct vs. εvol). How well does the
linear, isotropic elastic model describe the behavior of sands measured in these tests?
(Assume values for the elastic moduli K, G and compare with the measurements).

Solution:

1. We first note that due to the symmetry of the test, the stress and strain tensors take the
following forms: σ = σ1e1 ⊗ e1 + σ3e2 ⊗ e2 + σ3e3 ⊗ e3

ε = ε1e1 ⊗ e1 + ε3e2 ⊗ e2 + ε3e3 ⊗ e3
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Figure 2.9 Triaxial test data.

in which the loading is done in the first direction. We have:δW = σijδεij = σ1δε1 + 2σ3δε3

δW = 1
3 (σ1 + 2σ3) (δε1 + 2δε3) + (σ1 − σ3) δεs

To find the expression of εs, we proceed by identification, and we find:

εs =
2

3
(ε1 − ε3)

Let us recall that the second invariant of the deviatoric stress tensor can be calculated
as:

J2 =
1

2
Tr(s2) =

1

2

[
4

9
(σ1 − σ3)

2
+

1

9
(σ3 − σ1)

2
+

1

9
(σ3 − σ1)

2

]
After simplification:

J2 =
1

3
(σ1 − σ3)

2

And in the same way, the second invariant of the deviatoric strain tensor is:

Jε2 =
1

3
(ε1 − ε3)

2

As a result, we have:

εs =
2

3

√
3 Jε2

Additionally, we can readily see that:

εvol = Tr (ε) = Iε1

2. This question requires plotting the experimental results, fitting them with a linear
elastic law, and calculating the error made by this fit.
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2.17 Homework 2 - Problem 3
When we interpret the results of a triaxial axisymmetric test, we assume a uniform state
of stress in the sample (as described in Problem 2), which requires that the porous stones
(platens) are frictionless.

1. Draw a sketch of the triaxial specimen (with height H and diameter D) and indicate
the boundary conditions which are implied by this assumption. If the piston is rigid
and the sample is made of linear, isotropic (elastic) material, determine the stresses
and strains in the sample in terms of the confining pressure, σ3, and the displacement
of the upper piston, δ.

2. In a real experiment, there is no slippage between the specimen and the porous stones.
How does this affect the solution of the problem? Can you solve this problem when
σ3 = 0 and ν = 0?

Solution:

1. Boundary conditions (direction 1 is the loading direction):

Top surface, z = H , normal +e1: u1 = δ (controlled displacement), σ21 =
σ31 = 0 (no friction);

Bottom surface, z = 0, normal −e1: u1 = 0 (fixed displacement), central node:
u2 = u3 = 0 (fixed) and rest of the boundary: σ21 = σ31 = 0 (no friction);

Lateral surface, r = D/2, normal er: σ22 = σ33 = σrr = σ3 (uniform confining
stress) and σ12 = σ13 = σ23 = 0 (no tangential traction on the lateral face).

In the absence of shear stresses, the stresses σ1 and σ3 are the principal stresses and
the strains ε1 and ε3 are the principal strains. Due to the symmetry of the test, the
stress and strain tensors take the following forms:

σ = σ1e1 ⊗ e1 + σ3e2 ⊗ e2 + σ3e3 ⊗ e3

ε = ε1e1 ⊗ e1 + ε3e2 ⊗ e2 + ε3e3 ⊗ e3

in which σ3 is known and in which ε1 is imposed by the boundary conditions:

ε1 = δ/H

Next, σ1 and ε3 can be found by using Hooke’s law, as follows:σ1 = E
(1+ν)(1−2ν) [(1− ν)ε1 + 2νε3]

ε3 = σ3

E − ν
(σ1+σ3)

E

We get:

ε3 =
(1− ν)σ3

E
− ν

E
× E

(1 + ν)(1− 2ν)

[
(1− ν)

δ

H
+ 2νε3

]
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from which we get:

ε3 =
(1 + ν)(1− 2ν)

E
σ3 −

ν(1 + ν)

(1− ν)
× δ

H

and lastly:

σ1 =
E

(1 + ν)(1− 2ν)

[
(1− ν)

δ

H
− 2ν2(1 + ν)

(1− ν)
× δ

H
+ 2ν

(1 + ν)(1− 2ν)

E
σ3

]

σ1 = 2νσ3 +
E

(1 + ν)(1− 2ν)

[
(1− ν)− 2ν2(1 + ν)

(1− ν)

]
δ

H

2. In a real problem, the boundary conditions are:

Top surface, z = H , normal +e1: u1 = δ (controlled displacement), u2 = u3 = 0
(no slippage);

Bottom surface, z = 0, normal −e1: u1 = 0 (fixed displacement), u2 = u3 = 0
(no slippage);

Lateral surface, r = D/2, normal er: σ22 = σ33 = σrr = σ3 (uniform confining
stress) and σ12 = σ13 = σ23 = 0 (no tangential traction on the lateral face).

In a real test, shear stresses σ12 and σ13 can develop at the the top and bottom surfaces
of the specimen. The state of stress is not uniform, since σ12 and σ13 are zero at the
lateral surface for 0 < z < H . Maintaining the axis-smmetry assumption, the stress
and strain tensors are now expressed as:

σ = σ11e1 ⊗ e1 + σ3e2 ⊗ e2 + σ3e3 ⊗ e3 + σ13e1 ⊗ e2 + σ13e1 ⊗ e3

ε = ε1e1 ⊗ e1 + ε33e2 ⊗ e2 + ε33e3 ⊗ e3 + ε13e1 ⊗ e2 + σ13e1 ⊗ e3

with ε1 = δ/H and σ3 given. The unknowns are σ11, σ13, ε33 and ε13, which now
depend on the position in the specimen. It is immossible to solve for the stress and
strain fields in the specimen unless additional assumptions are made. For instance, if
ν = 0, then the specimen will not undergo any lateral strains due to the compression
in direction 1 and by the same token, there will not be any friction applied on the top
and bottom platens. As a result: σ13 = ε13 = 0 and ε33 = σ3/E. If, in addition,
σ3 = 0, we get ε33 = 0, and also: σ1 = Eε1 = E δ/H . So we can solve the problem
if we assume ν = 0 and σ3 = 0.

2.18 Exam 1 - Problem 1
Let us consider a cylindrical specimen of length L and initial section S0. We seek to design
a mechanical test in order to reproduce a uniform state of stress σ = αe3 ⊗ e3 in the
specimen, by only applying tractions at the boundary of the cylinder. α is a scalar constant
and e3 is a unit vector parallel to the axis of the cylinder. Inertia forces are neglected.

1. Calculate the forces that need to be applied to the specimen. Propose an experimental
set-up to apply those forces. Comment on the way the specimen will be anchored.
Calculate the value of α as a function of the applied forces.
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2. The peak force at failure, noted Ff , is measured during the experiment.What is the
error made on the calculation of the ultimate stress (i.e. the stress at failure) if the
stress is calculated by using the initial cross-section of the specimen (S0) instead of the
current cross section (noted St). Calcualte the error for the special case St = 0.8S0.

3. Suppose that the stress field induced by gravity is of the formσg = −ρ g x3e3⊗e3, in
which ρ is the specific mass of the material (expressed in kg/m3) and g is the gravity
acceleration. Show that the equilibrium equations are satisfied. At what condition on
the value of α can the gravity stress be neglected? Now suppose that the material that
makes the specimen is used to design elevator cables. If the maximum stress that can
be applied to the elevator cable is 200 MPa, what is the minimum number of elevators
necessary to reach the bottom of a diamond mine located at a depth of 4 km? Assume
ρ = 7.7× 103 kg/m3.

4. In the following, gravity forces are neglected. Express the stress components on a
plane of normal n in the specimen. What is the orientation of the plane where the
shear stress is maximum?

5. Three simple traction tests are performed with three different materials:

a material that breaks when the normal stress exceeds a certain resistance R;

a poly-crystalline material that breaks when the maximum shear stress exceeds
the threshold R;

a mono-crystalline material that breaks when the shear stress in the direction
m0 = 1√

2
(−1, 0,+1) on a plane of normal n0 = 1√

3
(1, 1, 1) exceeds the thresh-

old R.

Calculate the maximum force that can be applied to each of the three specimens.
Assume small deformations.

Solution: see Figure 2.10
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Figure 2.10 Solution of Exam 1, Problem 1.





CHAPTER 3

ANALYTICAL SOLUTIONS OF BOUNDARY
VALUE PROBLEMS IN LINEAR
ELASTICITY

PROBLEMS

3.1 Prove the Navier’s equations of motion in Cartesian coordinates:

λ

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)
+G

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z
+
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ρfx = 0

λ

(
∂2u

∂x∂y
+
∂2v

∂y2
+

∂2w

∂y∂z

)
+G

(
∂2u

∂x∂y
+
∂2v

∂y2
+

∂2w

∂y∂z
+
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ρfy = 0

λ

(
∂2u

∂x∂z
+

∂2v

∂y∂z
+
∂2w

∂z2

)
+G

(
∂2u

∂z∂y
+

∂2v

∂y∂z
+
∂2w

∂z2
+
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ρfz = 0

Solution: We start with the equilibrium equation:

div (σ) + ρf = 0

A projection along the x-direction provides:

∂σxj
∂xj

+ ρfx = 0

Theoretical Geomechanics.
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Now, we recall the constitutive equation, in index notation:

σij = λTr (ε) δij + 2Gεij

Combining the two last equations above, we get:

λ
∂Tr (ε)

∂xj
δx,j + 2G

∂εxj
∂xj

+ ρfx = 0

λ
∂

∂x
(εxx + εyy + εzz) + 2G

(
∂εxx
∂x

+
∂εxy
∂y

+
∂εxz
∂z

)
+ ρfx = 0

We now recall the strain-displacement relationships:

εxx =
∂u

∂x
, εyy =

∂v

∂y
, εzz =

∂w

∂z
, εxy =

1

2

(
∂u

∂y
+
∂v

∂x

)
, εxz =

1

2

(
∂u

∂z
+
∂w

∂x

)
, εyz =

1

2

(
∂v

∂z
+
∂w

∂y

)
The combination of the two last equations provides:

λ

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)
+G

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z
+
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ρfx = 0

which is the first of the three Navier’s equations. The two other equations are obtained in
the same way, by projecting the equilibrium equation in directions y and z, respectively.

3.2 We consider a pressurized circular cavity of radius a subjected to a uniform state of
stress at a distance b from the center, as shown in Figure 3.1. We focus on a 2D elasticity
problem (plane strain or plane stress). Find the state of stress around the cavity, between a
and b, by solving the biharmonic equation.

Figure 3.1 Circular pressurized cavity subject to isotropic stress in the far field. Picture taken from
(Brady & Brown, 2004).

Solution: The equilibrium equation in terms of Airy’s stress function is:

∇4 U = 0
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In cylindrical coordinates:

∇U(r, θ, z) =
∂U

∂r
er +

1

r

∂U

∂θ
eθ +

∂U

∂z
ez

This problem is axis-symmetric. Suppose it is plane stress (the solution for the plane strain
case is left for the reader). Then the equation above reduces to:

∇U(r) =
dU

dr
er

Using the formulae given in chapter 1 for the gradient of a vector in cylindrical coordinates,
we find:

∇ (∇U(r)) =
d2U

dr2
er ⊗ er +

1

r

dU

dr
eθ ⊗ eθ (3.1)

so that:

∇2U = Tr (∇ (∇U)) =
d2U

dr2
+

1

r

dU

dr

From there, we get:

∇
(
∇2U

)
=

(
d3U

dr3
+

1

r

d2U

dr2
− 1

r2

dU

dr

)
er

∇
(
∇
(
∇2U

))
=

(
d4U

dr4
+

1

r

d3U

dr3
− 1

r2

d2U

dr2
− 1

r2

d2U

dr2
+

2

r3

dU

dr

)
er ⊗ er

1

r

(
d3U

dr3
+

1

r

d2U

dr2
− 1

r2

dU

dr

)
eθ ⊗ eθ

And we finally get:

∇4U =
d4U

dr4
+

2

r

d3U

dr3
− 1

r2

d2U

dr2
+

1

r3

dU

dr
(3.2)

The solution to this equation is not trivial. We listed two of them in the notebook:

The solution by Timoshenko and Goodier (1970):

U(r) = A ln(r) +Br2 ln(r) + Cr2 +D

The solution by Barber (2010):

U(rθ) = A ln(r) + Cr2 + Eθ

in which A, B, C, D and E are constants. The reader can check that both solutions
satisfy equation 3.2.

Using the relationships between the stress components and Airy’s stress function, and using
equation 3.1:

σrr = ∇θθ (∇U) =
1

r

dU

dr
, σθθ = ∇rr (∇U) =

d2U

dr2
, σrθ = ∇θr (∇U) = 0
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From which we get:

For the solution of Timoshenko and Goodier (1970):

σrr =
A

r2
+ 2B ln(r) +B + 2C, σθθ = −A

r2
+ 2B ln(r) + 3B + 2C, σrθ = 0

For the solution of Barber (2010):

σrr =
A

r2
+ 2C, σθθ = −A

r2
+ 2C, σrθ = 0

We now use the boundary conditions to find the unknown constants: σrr(r = a) = pi,
σrr(r = b) = p0. For instance, using the solution of Barber:

A =
(pi − p0)a2b2

(b2 − a2)
, 2C =

p0b
2 − pia2

(b2 − a2)

At this point, the state of stress is known. The reader can show that the same state of stress
is found if the solution of Timoshenko and Goodier is used.

3.3 Show that in Cartesian coordinates, the stress solution can be expressed in terms of
two complex potentials φ(z) and ψ(z) = χ′(z), as follows:

σxx + σyy =
∂2U

∂x2
+
∂2U

∂y2
= 2

[
φ′(z) + φ′(z)

]
= 2R [φ′(z)]

σyy − σxx + 2iσxy =
∂2U

∂x2
− ∂2U

∂y2
− 2i

∂2U

∂x∂y
= 2 [zφ′′(z) + ψ′(z)]

Solution: To solve this problem, one has to be able to calculate the second derivatives of
Airy’s stress function, by using the derivation rules that apply to complex functions. To
illustrate the procedure, we provide the details of the calculation of the first order deriva-
tives of Airy’s stress function. The second-order derivations are left to the reader. The final
expressions of the fist and second - order derivatives of Airy’s stress function are provided
in the notebook for reference. We recall that, in virtue of Cauchy-Rieman’s equation, for a
complex function ζ(z) = ξ(z) + iη(z):

ζ ′(z) =
∂ξ

∂x
− i ∂ξ

∂y
=
∂η

∂y
+ i

∂η

∂x
=
∂ξ

∂x
+ i

∂η

∂x
=
∂η

∂y
− i ∂ξ

∂y

Then, noting that z = x+ iy and z = x− iy, we have:

2
∂U

∂x
=

∂

∂x

(
zφ(z) + zφ(z) + χ(z) + χ(z)

)
2
∂U

∂x
= φ(z) + zφ′(z) + φ(z) + zφ

′
(z) + χ′(z) + χ′(z)
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Similarly:

2
∂U

∂y
=

∂

∂y

(
zφ(z) + zφ(z) + χ(z) + χ(z)

)
2
∂U

∂y
= −iφ(z) + izφ′(z) + iφ(z)− izφ′(z) + iχ′(z)− iχ′(z)

3.4 At a depth of 750 m, a 10-m diameter circular tunnel is driven in rock having a
unit weight of 26 kN/m3 and uniaxial compressive and tensile strengths of 80 MPa and 3
MPa, respectively. Will the strength of the rock on the tunnel boundary be exceeded if: (i)
K=0.3? (ii) K=2?

Solution: This is a problem of free circular cavity subjected to a biaxial state of stress in the
far field. We can solve it by using Kirsch’s equations. At the cavity wall, σrr = σrθ = 0
(free cavity), and we have:

σθθ(r = a) = σv (1 +K + 2(1−K) cos 2θ)

We have:
σv = −γh = 26× 103 × 750 = −19.5MPa

(i) If K = 0.3:
σθθ(r = a) = −γh (1.3 + 1.4 cos 2θ)

The maximum tension (counted positive here) occurs when cos 2θ = −1, and σθθ(r =
a) = +0.1γh = 1.95MPa. The maximum tension is below the tensile strength, so there
is no risk of tensile failure at the cavity wall. The maximum compression occurs when
cos 2θ = +1, and σθθ(r = a) = −2.7γh = −52.7MPa. The maximum compression
is below the compressive strength, so there is no risk of compressive failure at the cavity
wall.
(ii) If K = 2:

σθθ(r = a) = −γh (3− 2 cos 2θ)

The maximum value of σθθ(r = a) occurs when cos 2θ = +1. The stress is still nega-
tive for those angles, which means that for K = 2, the cavity is entirely in compression.
Therefore there is no risk of tensile failure at the cavity wall. The maximum compression
occurs when cos 2θ = −1, and σθθ(r = a) = −5γh = −97.5MPa, which exceeds the
compressive strength. So there is a risk of compressive failure at the cavity wall.

3.5 A gold-bearing quartz vein, 2 m thick and dipping 90o, is to be exploited by a small-
cut-and-fill stoping operation. The mining is to take place at a depth of 800 m, and the
average unit weight of the granite host rock above this level is 29 kN/m3. The strike of the
vein is parallel to the intermediate stress, and the major principal stress is horizontal with a
magnitude of 37 MPa. The uniaxial compressive strength of the vein material is 218 MPa
(in absolute value), and the tensile strength of the host rock is 5 MPa (in absolute value).
What is the maximum permissible stope height before failure occurs?
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Solution: Here, the cross section of the cavity is oriented with its width horizontal, its
height vertical, and the axis of the cavity is orthogonal to the plane of the paper sheet
(parallel to the intermediate stress direction). The width W of the cavity is 2 meters (to
exploit full the vein), and the height H of the cavity is to be determined to avoid failure.
To solve the problem, we use the formulae of the course that give the extremum values of
the orthoradial stress σθθ, at A (sidewall) and and at B (crown):

σA = p

(
1−K + 2

W

H

)
, σB = p

(
K − 1 + 2K

H

W

)
In this problem, p = −γh = 29× 103× 800 = −23.2MPa, and K = σH/p = 37/23.2 =
1.59. Since the horizontal stress is larger than the vertical stress, it is expected that there
will be compression at the crown (B) and tension at the sidewall (A). So to avoid failure at
the wall, one must ensure: σA ≤ 5MPa and σB ≥ 218MPa. From there, we get:

−23.2

(
−0.59 +

4

H

)
≤ 5

−23.2

(
0.59 + 3.18

H

2

)
≥ −218

We get:

4

H
≥ 0.59− 5

23.2

3.18
H

2
≤ 218

23.2
+ 0.59

and lastly:

H ≤ 5.5m

H ≤ 10.7m

So overall, the height of the cavity should not exceed 5.5 meters.

3.6 In Figure 3.2, the uniaxial rock compressive strength is 50 MPa and the correspond-
ing crack initiation stress is σc = 16 MPa. Calculate the extent of the failure zone in
tension and compression.

Solution: This is a problem of free circular cavity subjected to a biaxial state of stress in the
far field. We can solve it by using Kirsch’s equations. At the cavity wall, σrr = σrθ = 0
(free cavity), and we have:

σθθ(r = a) = p (1 +K + 2(1−K) cos 2θ)

with p = 7.5 MPa (compression counted positive) and K = 1/3:

σθθ(r = a) =
4p

3
(1 + cos 2θ)
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Figure 3.2 Cavity studied in Problem 3.6.

Failure occurs at the wall in compression if σθθ(r = a) ≥ 16MPa, i.e. cos 2θ ≥ 0.6,
i.e. for −26o ≤ θ ≥ 26o. Failure occurs at the wall in tension if σθθ(r = a) ≤ 0MPa,
i.e. 1+cos 2θ ≤ 0. This only happens at the crown (θ = 90o) and at the foot (θ = −90o).

3.7 Provided the boundary conditions in Figure 3.3, and knowing that the following
purely frictional strength criterion holds: σ1 = d σ3 +C0, C0 = 0, calculate: (i) the extent
of the damaged zone (re), (ii) the pressure in the damaged zone (p1).

Figure 3.3 Cavity studied in Problem 3.7. (Brady & Brown, 2004)
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Solution: It is not possible to use a known analytical solution in the damaged zone, since
the behavior of the rock mass is not linear elastic. So we start by establishing the equation
of equilibrium in the damaged zone:

div (σ) = 0

We calculate the divergence of the stress tensor in cylindrical coordinates:

div (σ) = ∇ · σ =

(
∂

∂r
er +

1

r

∂

∂θ
eθ +

∂

∂z
ez

)
· (σrrer ⊗ er + σrθer ⊗ eθ + σrzer ⊗ ez)

+

(
∂

∂r
er +

1

r

∂

∂θ
eθ +

∂

∂z
ez

)
· (σθreθ ⊗ er + σrθeθ ⊗ eθ + σθzeθ ⊗ ez)

+

(
∂

∂r
er +

1

r

∂

∂θ
eθ +

∂

∂z
ez

)
· (σzrez ⊗ er + σzθez ⊗ eθ + σzzez ⊗ ez)

The full derivation of this expression requires deriving the position vectors er and eθ by
θ. We have: er = cos θex + sin θey and eθ = − sin θex + cos θey so that der/dθ = eθ
and deθ/dθ = −er. One can show that the divergence of the stress tensor in cylindrical
coordinates is:

div (σ) = ∇ · σ =

(
∂σrr
∂r

+
σrr
r

+
1

r

∂σθr
∂θ

+
∂σzr
∂z
− σθθ

r

)
er

+

(
1

r

∂σθθ
∂θ

+
∂σrθ
∂r

+ 2
σrθ
r

+
∂σzθ
∂z

)
eθ

+

(
∂σzz
∂z

+
∂σrz
∂r

+
σrz
r

+
1

r

∂σθz
∂θ

)
ez

The present problem is plane stress and axis-symmetric, so:

div (σ) = ∇ · σ =

(
∂σrr
∂r

+
σrr
r
− σθθ

r

)
er

+

(
∂σrθ
∂r

+ 2
σrθ
r

)
eθ

The projection of the divergence on the radial axis provides the following equilibrium
equation (often encountered in axis-symmetric problems of cavity expansion):

dσrr
dr

+
σrr − σθθ

r
= 0

The problem is isotropic so there is no shear stress. Therefore σ1 = σθθ (compressive hoop
stress) and σ3 = σrr. In the damaged zone, the frictional strength criterion is expressed
as: σ1 = d σ3, therefore σθθ = d σrr. The introduction of that relation in the equation of
equilibrium provides:

dσrr
dr

+ (1− d)
σrr
r

= 0
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Or:
dσrr
σrr

= (d− 1)
dr

r

Integrating the above equation between r = a (cavity wall) and r ≤ re (where r = re is
the boundary between the damaged zone and the elastic zone, we get:

ln

(
σrr
pi

)
= (d− 1) ln

( r
a

)
And finally:

σrr = pi

( r
a

)(d−1)

At the boundary between the elastic zone and the damaged zone: σrr = p1 (by definition)
and r = re. Therefore:

p1 = pi

(re
a

)(d−1)

and we get:

re = a

(
p1

pi

)1/(d−1)

(3.3)

So if we find p1, Equation 3.3 provides re and we solved the problem. To find p1, we ana-
lyze the state of stress in the elastic zone. The elastic zone can be viewed as a pressurized
circular cavity of internal radius re, internal pressure p1, and far-field pressure p. We use
the analytical solution seen in class for this case:

σrr = p+
(re
r

)2

(p1 − p)

σθθ = p−
(re
r

)2

(p1 − p)

σrθ = 0

At r = re: the boundary conditions impose: σrr = p1 and we find σθθ = 2p − p1.
In the elastic zone, the material has some cohesion and the strength criterion is therefore
σ1 = d σ3 + C0, i.e. σθθ = d σrr + C0. As a result, we have:

2p− p1 = d p1 + C0

and finally:

p1 =
2p− C0

d+ 1

Then re is found from Equation 3.3:

re = a

(
2p− C0

(d+ 1)pi

)1/(d−1)

3.8 In Figure 3.4: Does the plane of weakness affect the elastic stress distribution? Under
which conditions does the rock mass slip along the plane of weakness?
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Figure 3.4 Cavity studied in Problem 3.8. (Brady & Brown, 2004)

Solution: This is a problem of free circular cavity subjected to a biaxial state of stress in
the far field. We can solve it by using Kirsch’s equations. The shear stress that is applied
on the plane of weakness is equal to σrθ at θ = 0. According to Kirsch’s equations,
σrθ(θ = 0) = 0, which means that no shear stress is applied on the plane of weakness, and
therefore, there is no slip on the plane of weakness. According to Kirsch’s equations, the
hoop stress σθθ on the plane of weakness at the cavity wall is:

σθθ(r = a, θ = 90o) = p(1 +K) + 2p(1−K) = p(3−K)

If K ≤ 3, σθθ is compressive (compression counted positive) and the plane of weakness
cannot open; the presence of the plane of weakness does not change the elastic state of
stress. If K ≥ 3, σθθ is tensile and the plane of weakness could open, and disturb the
elastic state of stress.

3.9 In Figure 3.5: Does the plane of weakness affect the elastic stress distribution? Under
which conditions does the rock mass slip along the plane of weakness?

Figure 3.5 Cavity studied in Problem 3.9. (Brady & Brown, 2004)

Solution: This is a problem of free circular cavity subjected to a biaxial state of stress in
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the far field. We can solve it by using Kirsch’s equations. The shear stress that is applied
on the plane of weakness is equal to σrθ at θ = 90o. According to Kirsch’s equations,
σrθ(θ = 0) = 0, which means that no shear stress is applied on the plane of weakness,
and therefore, there is no slip on the plane of weakness. The plane of weakness could
open if σθθ was positive (tension). At the cavity wall, σrr = 0 and, according to Kirsch’s
equations:

σθθ(r = a, θ = 90o) = p(1 +K)− 2p(1−K) = p(3K − 1)

If K ≥ 1/3, σθθ is compressive and the plane of weakness cannot open; the presence
of the plane of weakness does not change the elastic state of stress. If K ≤ 1/3, there is
a risk that the fracture (plane of weakness) opens, thus disturbing the elastic state of stress.

3.10 In Figure 3.6: Does the plane of weakness affect the elastic stress distribution? Un-
der which conditions does the rock mass slip along the plane of weakness?

Figure 3.6 Cavity studied in Problem 3.10. (Brady & Brown, 2004)

Solution: There is slippage along the plane of weakness if τ ≥ tanφσn. The transforma-
tion of stress provides:

τ = σθθ sin θ cos θ

σn = σθθ(cos θ)2

So there is slippage if:
sin θ ≥ tanφ cos θ

In other words:
tan θ ≥ tanφ

And we conclude that for angles that are under 90o, that implies that there is slippage if:

θ ≥ φ
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Figure 3.7 Cavity studied in Problem 3.11. (Brady & Brown, 2004)

3.11 In Figure 3.7: Does the plane of weakness affect the elastic stress distribution?
Under which conditions does the rock mass slip along the plane of weakness?

Solution: This is a problem of free circular cavity subjected to a biaxial state of stress in
the far field. We can solve it by using Kirsch’s equations. According to Kirsch’s equations,
for θ = 45o and K = 0.5:

σn = σθθ =
3p

4

(
1 +

a2

r2

)

τ = σrθ =
p

4

(
1 + 2

a2

r2
− 3

a4

r4

)

From here, it is possible to plot τ/σn and to check when this ratio exceeds tanφ (when
τ/σn ≥ tanφ, there is slippage). The plot shows that τ/σn reaches a maximum for
r/a = 2.5, with τ = 0.357σn, which corresponds to φ = 19.6o. Most rock materials
have a larger friction angle, so the risk of slippage along the plane of weakness is low. One
can see that σn is always compressive so there is no risk of plane weakness opening. As a
conclusion, the plane of weakness is unlikely to change the state of elastic stress.

3.12 In Figure 3.8: Does the plane of weakness affect the elastic stress distribution?
Under which conditions does the rock mass slip along the plane of weakness?

Solution: This is a problem of free circular cavity subjected to a biaxial state of stress in
the far field. We can solve it by using Kirsch’s equations. According to Kirsch’s equations,
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Figure 3.8 Cavity studied in Problem 3.12. (Brady & Brown, 2004)

for K = 1:

σrr = p

(
1− a2

r2

)

σθθ = p

(
1 +

a2

r2

)
σrθ = 0

We can find the state of stress on the plane of weakness by performing a transformation of
stress:

σn =
1

2
(σrr + σθθ) +

1

2
(σrr − σθθ) cos 2θ

τ = −1

2
(σrr − σθθ) sin 2θ

By combining the two sets of equations above, we get that:

σn = p+ p

(
a2

r2

)
cos 2θ

τ = −p
(
a2

r2

)
sin 2θ

One can readily see that σn is always compressive, so there is no risk of fracture opening.
Slip could happen along the plane of weakness if τ/σn ≥ tanφ. To determine whether
there is slippage or not, one has to plot τ/σn, find the maximum of τ/σn and check the
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value of the friction angle required to trigger slippage (see previous problem).

3.13 Considering Figure 3.9: How can we improve the design in order to avoid com-
pressive failure at the sidewalls?

Figure 3.9 Cavity studied in Problem 3.13. (Brady & Brown, 2004)

Solution: We recall the stress at the wall of an ellipse: at A (sidewall) and and at B (crown):

σA = p

(
1−K + 2

W

H

)
, σB = p

(
K − 1 + 2K

H

W

)
For a field stress ratio K of 0.3, an inscribed ellipse indicates approximate sidewall stresses
of 2.5p, using equation 3.13. If the observed performance of the opening involved crush-
ing of the sidewalls, its redesign should aim to reduce stresses in these areas. Inspection
of equation 3.13 indicates this can be achieved by reducing the excavation width/height
ratio. For example, if the width/height ratio is reduced to 0.5, the peak sidewall stress is
calculated to be 1.7p. While the practicality of mining an opening to this shape is not cer-
tain, the general principle is clear, that the maximum boundary stress can be reduced if the
opening dimension is increased in the direction of the major principal stress. For this case,
a practical solution could be achieved by mining an opening with a low width/height ratio,
and leaving a bed of mullock in the base of the excavation.

3.14 Considering Figure 3.10: What are the stresses at the sidewall and at the crown?
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Figure 3.10 Cavity studied in Problem 3.14. (Brady & Brown, 2004)

Solution: The width/height ratio for the opening is three, and the radius of curvature for the
side wall is H/2. For a ratio of 0.5 of the horizontal and vertical field principal stresses, the
sidewall boundary stress is given, by substitution in Equation 3.13 (see previous problem):

σA = p

(
1− 0.5 +

√
2× 3H

H/2

)
= 3.96p

An independent boundary element analysis of this problem yields a sidewall boundary
stress of 3.60p, which is sufficiently close for practical design purposes. Although the ra-
dius of curvature, for the ovaloid, is infinite at point B in the centre of the crown of the
excavation, it is useful to consider the state of stress at the centre of the crown of an ellipse
inscribed in the ovaloid. This predicts a value of B, according to Equation 3.13, of -0.17p,
while the boundary element analysis for the ovaloid produces a value at B of -0.15p. This
suggests that excavation aspect ratio (say, W/H), as well as boundary curvature, can be
used to develop a reasonably accurate picture of the state of stress around an opening.

3.15 Considering Figure 3.11: What are is the stress at edge A?

Figure 3.11 Cavity studied in Problem 3.15. (Brady & Brown, 2004)

Solution: The square hole has rounded corners, each with radius of curvature ρ = 0.2B.
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For a hydrostatic stress field, the problem shown in the left figure is mechanically equiv-
alent to that shown in the right figure. The inscribed ovaloid has a width of 2B[21/2 −
0.4(21/2 − 1)], from the geometry. The boundary stress at the rounded corner is estimated
from Equation 3.13, as:

σA = p

(
1− 1 +

√
2B(21/2 − 0.4(21/2 − 1))

0.2B

)
= 3.53p

The corresponding boundary element solution is 3.14p. The effect of boundary curvature
on boundary stress appears to be a particular consequence of St Venant’s Principle, in that
the boundary state of stress is dominated by the local geometry, provided the excavation
surface contour is relatively smooth.

3.16 Considering Figure 3.12: Comment on the boundary stresses at the crown, at the
sidewall, and at edges A, B, C and D.

Figure 3.12 Cavity studied in Problem 3.16. (Brady & Brown, 2004)

Solution: Using the general notions developed above, the opening geometry (width/height
ratio = 2/3) and pre-mining stress ratio (K = 0.5), the following information concerning
boundary stresses can be deduced:

The zones A, B, C are likely to be highly stressed, since the boundary curvature at
these locations is high. Local cracking is to be expected in these zones, but this
would compromise neither the integrity of the excavation nor the validity of the stress
analysis.

The bench area D is likely to be at a low state of stress, due to the notionally negative
curvature of the prominence forming the bench.
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The boundary stress at the centre of the crown would be approximately 0.72p, esti-
mated from Equation 3.13 (The boundary element solution is 0.82p.)

An estimate of the sidewall boundary stress, obtained by considering an inscribed
ellipse and applying Equation 3.13, yields A=1.83p. For the sifewall locations in the
left wall, boundary element analysis gives values of 1.87p, 1.75p and 2.08p. For the
locations in the right wall, the A values are 1.35p, 1.36p and 1.61p. The average of
these six values is 1.67p.

Boundary element analysis also confirms the two first conclusions above. The demonstra-
tion, in an elastic analysis, of a zone of tensile stress, such as in the bench of the current
excavation design, has significant engineering implications. Since a rock mass must be
assumed to have zero tensile strength, stress redistribution must occur in the vicinity of the
bench. This implies the development of a de-stressed zone in the bench and some loss of
control over the behaviour of rock in this region. The important point is that a rock mass
in compression may behave as a stable continuum. In a de-stressed state, small imposed or
gravitational loads can cause large displacements of component rock units.

3.17 Consider Figure 3.13. We give:

Solution for the line load:

σxx =
2P

π

x2 z

R4
, σzz =

2P

π

z3

R4
, σxz =

2P

π

z2 x

R4

Solution for the footing:

σzz =
Q

π
(a+ sin a cos(a+ 2δ))

1. Using the solution for the stresses (σxx, σzz , σxz) under a line load of intensity P
(force/unit length) acting normal to the surface, obtain the stresses due to a strip foot-
ing of width 2a with an applied surface traction Q(x). Write specific solutions for the
case when Q = Q0 (i.e. for surface constant loading).

2. Show that the loci of points with σ1 = constant (or σ3 = constant) describe a circle.

3. What is the locus of q = 0.5(σ1 − σ3)=constant? The value of q represents the
maximum shear stress acting at a point. Show that qmax = Q/π.

Solution:

1. The first question can be answered by integrating the given line loads over the width
of the strip:

σxx(x, z) =
2z

π

∫ +a

x′=−a

x′2Q(x′)

(z2 + (x− x′)2
dx′

σzz(x, z) =
2z3

π

∫ +a

x′=−a

Q(x′)

(z2 + (x− x′)2
dx′
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Figure 3.13 Distributed load studied in Problem 3.17. (Assimaki, 2014)

σxz(x, z) =
2z2

π

∫ +a

x′=−a

x′Q(x′)

(z2 + (x− x′)2
dx′

For a uniform surface traction:

σxx(x, z) =
2Q0z

π

∫ +a

x′=−a

x′2

(z2 + (x− x′)2
dx′

σzz(x, z) =
2Q0z

3

π

∫ +a

x′=−a

1

(z2 + (x− x′)2
dx′

σxz(x, z) =
2Q0z

2

π

∫ +a

x′=−a

x′

(z2 + (x− x′)2
dx′

The end result of these calculations is provided in the notebook:

σzz =
Q0

π
[(θ1 − θ2)− sin(θ1 − θ2) cos(θ1 + θ2)]

σxx =
Q0

π
[(θ1 − θ2) + sin(θ1 − θ2) cos(θ1 + θ2)]

σxz =
Q0

π
[sin(θ1 − θ2) sin(θ1 + θ2)]

in which θ1 = 90o − δ and θ2 = 90o − (δ + α).

2. We first calculate the principal stresses:

σ1 = σav +R, σ3 = σav −R

with:

σav =
1

2
(σxx + σzz) , R2 =

(
σzz − σxx

2

)2

+ (σxz)
2
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We have:
σav =

Q0

π
(θ1 − θ2), R =

Q0

π
sin(θ1 − θ2)

σ1 is constant if:

σ1 =
Q0

π
((θ1 − θ2) + sin(θ1 − θ2)) = cst

By deriving the above expression by θ1 − θ2, we obtain the following requirement:

1 + cos(θ1 − θ2) = 0

which implies:
θ1 = θ2 + 180o + k × 360o

Working with σ3, we similarly obtain:

σ3 =
Q0

π
((θ1 − θ2)− sin(θ1 − θ2)) = cst

1− cos(θ1 − θ2) = 0

θ1 = θ2 + k × 360o

We have θ1 = θ2 or θ1 = θ2 + 180o, which both indicate that the point of observation
lies on a circle [check why].

3. We can calculate the value of q from the calculation of σ1 and σ3:

q = 0.5(σ1 − σ3) = R =
Q0

π
sin(θ1 − θ2)

We see that the maximum value of the maximum shear stress is:

qmax =
Q0

π

The locus of the points characterized by q = cst is found by deriving the expression
of q by θ1 − θ2:

cos(θ1 − θ2) = 0

which implies:
θ1 = θ2 + 90o + 2× 180o

The locus is the vertical axis z [check].
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3.18 Homework 2 - Problem 4
A strain cell was used to determine the state of strain in the walls of a borehole. The
borehole was oriented 300o/70o, in which 300o is the angle of strike, and 70o is the angle
of dip (Figure 3.14). Using the angular coordinates and orientations defined in Figure 3.14,
the measured states of strain in the wall of the hole, for various angles θ and ψ, are reported
in Table 3.1. The Young’s modulus of the rock was 40 GPa, and the Poisson’s ratio, 0.25.

Table 3.1 Measures taken by the strain cell at the wall of a borehole (expressed in microstrains).

ψ = 0o ψ = 45o ψ = 90o ψ = 135o

θ = 0o N/A 213.67 934.41 821.11

θ = 120o 96.36 N/A 349.15 131.45

θ = 240o 96.36 N/A 560.76 116.15

(Wikipedia, 08/2014) (Brady & Brown, 2004)

Figure 3.14 Conventions adopted to define orientations in strain cell tests.

1. Set up the set of nine equations relating measured strain and gauge location.
Note that, for ψ = 0o, identical equations are obtained, independent of θ.

2. Solve the system of equations for the field stress components pll, pmm, pnn, plm, pln,
pmn.
It is recommended to use a computational tool (such as MATLAB). Note that you will
have to select six independent equations from the set of eight equations established in
question 2.1.

3. Determine the field principal stresses.

4. Determine the orientations of the field principal stresses relative to the mine global
axes (x-north, y-east, z-down).

Solution:

1. First let us recall (or establish) Leeman’s analytical solution for the stress distribution
around circular cavities subject to the 3D field stress p. Using the notations of Figure
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3.14:

σrr = σrθ = σrn = 0

σθθ = pll(1− 2cos(2θ)) + pmm(1 + 2cos(2θ)) − 4plmsin(2θ)

σnn = pnn + 2ν (−pllcos(2θ) + pmmcos(2θ)− 2plmsin(2θ))

σθn = 2pmncosθ − 2pnlsinθ

Changing coordinate systems to express the state of plane stress, the normal compo-
nents of the boundary stress, in the directions OA, OB are given by:

σA =
σnn + σθθ

2
+
σnn − σθ

2
cos(2ψ) + σnθsin(2ψ)

σB =
σnn + σθθ

2
− σnn − σθ

2
cos(2ψ) − σnθsin(2ψ)

Six independent stress measures in six different directions (OA) provide six indepen-
dent equations:

σAi =
σnn + σθθ

2
+
σnn − σθ

2
cos(2ψ) + σnθsin(2ψ), i = 1, ..., 6

Which depend on six unknowns pll, pmm, pnn, plm, pln, pmn. The 3D field stress p
is determined by solving a system of equations which is written in the form:

[M ]{p} = {σA}

Assuming a state of plane stress in the plane of the borehole cross section:

εA =
σA
E
− ν

E
σB

εB =
σB
E
− ν

E
σA

Six independent strain measures in six different directions (OA) provide six indepen-
dent equations, which depend on six unknowns pll, pmm, pnn, plm, pln, pmn. The
3D field stress p is determined by solving a system of equations which is written in
the form:

[M ]{p} = {εA}
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The system of 9 equations is set up by introducing the values of the measured strains
in the following equations, for the positions θ and ψ reported in the table:

E εA = pll

[
1

2
((1− ν)− (1 + ν) cos 2ψ)− (1− ν2)(1− cos 2ψ) cos 2θ

]

+pmm

[
1

2
((1− ν)− (1 + ν) cos 2ψ) + (1− ν2)(1− cos 2ψ) cos 2θ

]
+pnn ×

1

2
[(1− ν) + (1 + ν) cos 2ψ]

−plm × 2(1− ν2)(1− cos 2ψ) sin 2θ

+pmn × 2(1 + ν) sin 2ψ cos θ

−pnl × 2(1 + ν) sin 2ψ sin θ

2. The 9 equations obtained are not independent. A subsystem of 6 independent equa-
tions is solved for the unknown field stress components (with a computational tool
such as MATLAB):

pll = 10.22MPa

pmm = 17.09MPa

pnn = 10.68MPa

plm = −1.30MPa

pmn = −4.86MPa

pnl = 1.12MPa

3. Principal stresses are obtained by using the governing equations of Mohr’s circles (3
Mohr’s circles in 3D):

p1 = 20MPa

p2 = 10MPa

p3 = 8MPa

4. The directions of principal stresses relative to the mine global axes are determined by
establishing geometric relations with Mohr’s circles:

p1 is oriented 030o/30o (strike/dip)
p2 is oriented 135o/24o (strike/dip)
p3 is oriented 257o/50o (strike/dip)
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3.19 Homework 2 - Problem 5
Figure 3.15 represents a cross section through a long opening. The magnitudes of the plane
components of the field stresses are pxx = 13.75MPa, pyy = 19.25 MPa, pxy = 4.76 MPa,
expressed relative to the reference axes shown.

1. Calculate the maximum and minimum boundary stresses in the excavation perimeter,
defining the locations of the relevant points.

2. If the strength of the rock mass is defined by a maximum shear strength criterion, and
the shear strength is 20MPa, estimate the extent of boundary failure, in terms of the
angular range over the perimeter.

3. Comment on the significance of this result for any mining operations in the opening.

Figure 3.15 Orientation of the axes of cross section through a long opening.

Solution:

1. According to Leeman’s equations (equation 3.4), the boundary stresses in the plane
of the tunnel cross section are:

σrr = σrθ = 0

σθθ = pxx(1− 2cos(2θ − π)) + pyy(1 + 2cos(2θ + π)) − 4pxysin(2θ + π)

Injecting the values of the field stress in the expression of the hoop stress at the cavity
boundary:

σθθ = 13.75 (1 + 2cos(2θ)) + 19.25 (1− 2cos(2θ)) + 19.04 sin(2θ)

The maximum value is σθθ = 55MPa, for θ = 60o and θ = 240o (relative to the
vertical axis pointing downwards, Figure ??), i.e. for points located 30o below the
horizontal on the right hand-side, and 30o above the horizontal on the left hand-side.
The minimum value is σθθ = 11MPa, for for θ = 150o and θ = 330o (relative to
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the vertical axis pointing downwards, Figure ??), i.e. for points located 60o above the
horizontal on the right hand-side, and 60o below the horizontal on the left hand-side.

2. A coordinate change provides the expression of shear stress in a material element at
point P located at the cavity wall:

σr1 θ1 = −σrr − σθθ
2

sin(2α) + σrθcos(2α) =
σθθ
2
sin(2α)

In which α is the angle between axes r and r1. The shear strength criterion provides
the following requirement:

σθθ sin(2α) ≤ 2 τc

With τc = 20 MPa. At any point at the cavity wall (i.e. for any θ), shear failure first
occurs for α = 45o, i.e. along planes oriented at 45o from the radial axis, for which
sin(2α) = 1. Failure occurs for elements in which the hoop stress can exceed shear
strength. Using equation 3.4:

f(θ) = 13.75 (1 + 2cos(2θ)) + 19.25 (1− 2cos(2θ)) + 19.04 sin(2θ) ≥ τc

A plot of f(θ) against θ indicates that shear failure can occur for 25.5o ≤ θ ≤ 95.5o

and for 204.5o ≤ θ ≤ 275.5o, i.e. at +/ − 35.5o from the points of the cavity wall
where the hoop stress is maximum.

3. The maximum principal field stress is 22 MPa, oriented at 30o below the horizontal,
and the minimum principal field stress is 11 MPa, at 60o above the horizontal. Bray’s
solution of stress distribution around an elliptical cavity provides the following ex-
pressions for the stress at the sidewall (σA) and at the crown (σB):

σA = p(1−K + 2q)

σB = p(K − 1 +
2K

q
)

(3.4)

In which q = W/H is the aspect ratio of the ellipse. The present cavity can be
viewed as an elliptical cavity subject to shear failure at the crown in a plane oriented
according to the principal directions of the field stress, as shown in Figure 3.16. To
avoid failure, the stress at the crown must be decreased. According to equations 3.4,
this can be achieved by increasing q, i.e., by enlarging the size of the opening in the
direction perpendicular to the maximum principal field stress direction, as shown in
Figure 3.16. The additional volume at the bottom of the opening can be filled with
rock to maintain the depth location of the infrastructure in the tunnel.

3.20 Exam 1 - Problem 2
A vertical shaft of elliptical section is being considered in a region of high horizontal
stress. Measurements along the shaft route indicate the preshaft principal stresses in psi
(compression positive) are given by a vertical stress σv = 1.1h and horizontal stresses
σh = 100 +1.5h, σH = 500 +2.2h, in which h is the depth in feet. Figure 3.17 gives the
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Figure 3.16 Adaptation of the mine shape to avoid shear failure.

Figure 3.17 Peak stress concentrations at the wall of an elliptical cavity.

expressions of the peak stress concentrations at the wall of an elliptical section. Determine
the optimum orientation and aspect ratio of the section.

Solution: see the two following pages (from Pariseau, 2007)
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98 Shafts

can now be obtained by reducing the larger of Ka or Kb. Ideally, one has neither Ka > Kb nor
Kb > Ka. Hence, the optimum occurs when Ka = Kb, that is, when k = 1. Thus, a circular
shape, a special case of an ellipse, is optimum when the preshaft stress state is hydrostatic.
This situation occurs for vertical shafts in ground where the stress state is caused by gravity
alone.

Example 3.5 A vertical shaft of elliptical section is being considered in a region of high
horizontal stress. Measurements along the shaft route indicate the preshaft principal stresses
in psi (compression positive) are given by Sv = 1.1h, Sh = 100 + 1.5h, SH = 500 + 2.2h
(h is depth in feet). Determine the optimum orientation and aspect ratio of the section.

Solution: The peak stress concentrations at the wall of an elliptical section occur at the
ends of the geometric axes. The peak stresses are given by the formulas

σa = KaS1 = −S1 + (1 + 2/k)S3 = S1[(1 + 2/k)M − 1]
σb = KbS1 = −S3 + (1 + 2k)S1 = S1[(1 + 2k) − M ]

where the meaning of terms is shown in the sketch, k = b/a and M = S3/S1.

S3

S3

S1

S1

�b

�b

�a

�a

a

a
b

b

(a) Long axis parallel to S1

Sketch illustrating the meaning of ellipse formula terms

(b) Short axis parallel to S1

An optimum orientation would be one that reduces stress concentration to a minimum, so
the stress concentration at b is no greater or less than at a and tension is absent. Thus,

Ka = Kb ≥ 0

∴
(1 + 2/k)M − 1 = (1 + 2k) − M

∴

k = M = 100 + 1.5h

500 + 2.2h

so the aspect ratio varies with depth, but is equal to the preexcavation stress ratio at any
particular depth. At the surface k = 0.200 and at great depth k = 1.5/2.2 = 0.682.

© 2007 Taylor & Francis
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The best orientation is with the long axis a parallel to SH. In this orientation, with k = M,
Ka = Kb = 1 + M and indeed the wall of the ellipse is in a uniform compression. At the
surface, the stress concentration is 1.2; at great depth the stress concentration is 1.682.

With the short axis parallel to SH, K ′
a = 2M 2 + M and K ′

b = 1 − M + 2/M , which is
greater than 1 + M and therefore less favorable at any depth.

If a circular section were considered, the stress concentrations would be −1 + 3M and
3 − M or −0.4 and 2.8 at the surface; 1.046 and 2.318 at great depth. The elliptical section
shows a considerable advantage over the circular section in this stress field. However, other
considerations such as difficulty in excavation to the proper shape would need to be considered
before final selection of the shaft shape.

In vertical section, the shaft wall stress is equal to the preshaft stress and stress concentration
is one. This value is less than stress concentration in plan view of the best orientation and
aspect ratio (1+M) for M = k > 0. Hence, the plan view section governs design.

Example 3.6 Suppose a vertical shaft of elliptical section 14 ft × 21 ft is being considered
for sinking to a depth of 4,350 ft. The horizontal stress in the north–south direction is esti-
mated to be twice the vertical stress caused by rock mass weight, while the east–west stress
is estimated to be equal to the “overburden” stress. Unconfined compressive strength of rock
is 22,000 psi, as measured in the laboratory; tensile strength is 2,200 psi. Determine shaft
wall safety factors as functions of depth with the section oriented in a way that minimizes
compressive stress concentration.

Solution: Shaft wall safety factors with respect to compression and tension, by defini-
tion, are

FSc = Co

σc
, FSt = To

σt

In case of an ellipse, the peak stresses at the ends of the semi-axes are:

σa = KaS1 = −S1 + (1 + 2/k)S3 = S1[(1 + 2/k)M − 1]
σb = KbS1 = −S3 + (1 + 2k)S1 = S1[(1 + 2k) − M ]
k = 14/21 = 2/3 ≤ 1, M = SEW/SNS = 1/2,

σa = KaS1 = −S1 + (1 + 2/k)S3 = S1[(1 + 2/(2/3))(1/2) − 1] = S1(1.00)

σb = KbS1 = −S3 + (1 + 2k)S1 = S1[(1 + 2(2/3)) − 1/2] = S1(1.83)

The maximum and minimum stress concentration factors are both positive, so no tension
is present. With respect to compressive stress, the shaft wall safety factor as a function of
depth is

FSc = Co

1.83S1

= 22,000

1.83(2)(158/144)h

FSc = 5,478

h

© 2007 Taylor & Francis





CHAPTER 4

FINITE ELEMENT METHOD IN LINEAR
ELASTICITY

PROBLEMS

4.1 Write the variational formulation of the following problem:

d2

dx2

[
EI

d2u(x)

dx2

]
− q0 = 0, 0 < x < L

u(0) =

[
du(x)

dx

]
x=0

= 0, EI

[
d2u(x)

dx2

]
x=L

= −M0, EI

[
d3u(x)

dx3

]
x=L

= F0

Solution: Weighted integral statement:

∀δw ∼ u,
∫ L

0

w(x)
d2

dx2

[
EI

d2u(x)

dx2

]
dx −

∫ L

0

w(x)q0dx = 0

First integration by parts (assuming E, I constants):

∀δw ∼ u,
[
w(x)EI

d3u(x)

dx3

]L
0

−
∫ L

0

dw

dx
EI

d3u(x)

dx3
dx −

∫ L

0

w(x)q0dx = 0

Second integration by parts:

∀δw ∼ u,
[
w(x)EI

d3u(x)

dx3

]L
0

−
[
dw

dx
EI

d2u(x)

dx2

]L
0

+

∫ L

0

d2w

dx2
EI

d2u(x)

dx2
dx−

∫ L

0

w(x)q0dx = 0

Theoretical Geomechanics.
By Chloé Arson Copyright c© 2020
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Primary variables: u(x) (deflection) and du/dx (deflection angle). Secondary variables:
EI d

3u(x)
dx3 (shear force) and EI d

2u(x)
dx2 (bending moment). Applying boundary conditions:

∀δw ∼ u, w(L)F0 +
dw

dx
(L)M0 +

∫ L

0

d2w

dx2
EI

d2u(x)

dx2
dx −

∫ L

0

w(x)q0dx = 0

4.2 Find the expression of the interpolation functions of order 1 is by using the interpo-
lation property. Consider elements with 2 and 3 nodes.

Figure 4.1 Finite Elements considered in Problem 4.2.

Solution: Element with two nodes:

Ψ1(x1) = 1, Ψ1(x2) = 0, Ψ2(x1) = 0, Ψ2(x2) = 1

Using linear polynomials:

Ψ1(x) =
x2 − x
x2 − x1

, Ψ2(x) =
x1 − x
x1 − x2

Element with three nodes:

Ψ1(x1) = 1, Ψ1(x2) = 0, Ψ1(x3) = 0

Ψ2(x1) = 0, Ψ2(x2) = 1, Ψ2(x3) = 0

Ψ3(x1) = 0, Ψ3(x2) = 0, Ψ3(x3) = 1
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Using quadratic polynomials:

Ψ1(x) =
(x2 − x)(x3 − x)

(x2 − x1)(x3 − x1)
, Ψ2(x) =

(x1 − x)(x3 − x)

(x1 − x2)(x3 − x2)
, Ψ3(x) =

(x1 − x)(x2 − x)

(x1 − x3)(x2 − x3)

4.3 Consider the following boundary value problem:

−d
2u(x)

dx2
− u(x) + x2 = 0, 0 < x < 1

u(0) = u(1) = 0

Provide the FEM equations to solve for the unknown primary and secondary variables
when the domain is discretized with: (a) four linear elements; (b) two quadratic elements
(Figure 4.2).

Figure 4.2 Meshes considered in Problem 4.3.

Solution: Weak formulation of the problem on one element [xa, xb]:

∀w ∼ δu, −
[
w(x)

du(x)

dx

]xb

xa

+

∫ xb

xa

dw

dx

du

dx
dx−

∫ xb

xa

w(x)u(x)dx+

∫ xb

xa

w(x)x2dx = 0

Using Ritz method with N nodes per element:

∀i = 1...N, −
[
Ψi(x)

du(x)

dx

]xb

xa

+

N∑
j=1

[∫ xb

xa

dΨi

dx

dΨj

dx
dx

]
uj−

N∑
j=1

[∫ xb

xa

Ψi(x)Ψj(x)dx

]
uj+

∫ xb

xa

Ψi(x)x2dx = 0

In a matrix form:
∀i, j = 1...N, Kijuj +Mijuj = Fi +Qi

with:

Kij =

∫ xb

xa

dΨi

dx

dΨj

dx
dx

Mij = −
∫ xb

xa

Ψi(x)Ψj(x)dx

Fi = −
∫ xb

xa

Ψi(x)x2dx

Qi =

[
Ψi(x)

du(x)

dx

]xb

xa
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For the mesh with four linear elements, the length of each element is 1/4 and for each
element:

[K] = 4

[
1

−1

−1

1

]

[M ] =
−1

24

[
2

1

1

2

]

For the mesh with two quadratic elements, the length of each element is 1/2 and for each
element:

[K] =
2

3

 7

−8

1

−8

16

−8

1

−8

7



[M ] =
−1

60

 4

2

−1

2

16

2

−1

2

4


Assembly for 4 linear elements (note: we only show the top triangle of the stiffness matrix,
since the stiffness matrix is symmetric; the same assembly process is used to find the global
mass matrix; the assembly process is the same for {F} and {Q}):

[K] =


K1

11 K1
12

K1
22 +K2

11

0

K2
12

K2
22 +K3

11

0

0

K3
12

K3
22 +K4

11

0

0

0

K4
12

K4
22



{F} =



F 1
1

F 1
2 + F 2

1

F 2
2 + F 3

1

F 3
2 + F 4

1

F 4
2


Assembly for 2 quadratic elements (note: we only show the top triangle of the stiffness
matrix, since the stiffness matrix is symmetric; the same assembly process is used to find
the global mass matrix; the assembly process is the same for {F} and {Q}):

[K] =


K1

11 K1
12

K1
22

K1
13

K1
23

K1
33 +K2

11

0

0

K2
12

K2
22

0

0

K2
13

K2
23

K2
33


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{F} =



F 1
1

F 1
2

F 1
3 + F 2

1

F 2
2

F 2
3


Since the primary variable is known at nodes 1 and 5, the global system of FEM equations
can be condensed as follows (regardless of the mesh considered):

K22 K23

K33

0

K34

K44

 +

M22 M23

M33

0

M34

M44




F 2

F 3

F 4


in which we used u1 = u5 = 0 andQ2 = Q3 = Q4 = 0. From there, it is possible to solve
for u2, u3 and u4. Usually, the secondary variable is post-processed. In the following, we
explain the post-processing process for both meshes. For the four linear elements:

Q1 = Q1
1 = Ψ1

1(x1)
d

dx

(
u1Ψ1

1(x) + u2Ψ1
2(x)

)
x=x1

Q1 = u2
dΨ2(x)

dx
|x=x1

= u2
d

dx

(
x

(1/4)

)
x=0

Q1 = 4u2

In the same way:
Q5 = 4u4

For the two quadratic elements:

Q1 = Q1
1 = Ψ1

1(x1)
d

dx

(
u1Ψ1

1(x) + u2Ψ1
2(x) + u3Ψ1

3(x)
)
x=x1

Q1 = u2
d

dx

(
x(1/2− x)

(1/16)

)
x=0

+ u3
d

dx

(
x(x− 1/4)

(1/8)

)
x=0

Q1 = 8u2 − 2u3

In the same way:
Q5 = 8u4 − 2u3

4.4 Solve the problem of heat transfer through the composite wall shown in Figure 4.3
by using Ritz method, with four linear elements.

− ∂

∂x

(
kA

∂T

∂x

)
+ βP (T − T∞) = Aq0

Solution: There is no heat source in the problem. Advection takes place on the lect and
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Figure 4.3 Heat transfer through a composite wall.

right hand sides of the domain, but not on the top or bottom, i.e., there is no advection along
the periphery of the walls (advection can be accounted for in the boundary conditions). As
a result, the governing equation reduces to:

− ∂

∂x

(
kA

∂T

∂x

)
= 0

The Ritz Finite Element equations are the following (for each element):

KijTj = Qi

with:

Kij =

∫ xb

xa

kA
dΨi

dx

dΨj

dx
dx

Qi =

[
Ψi(x)kA

dT

dx

]xb

xa

For linear elements:

[K] =
kA

l

[
1

−1

−1

1

]
where l is the length of the element. The assembled FE equations are (note: we do not
write the coefficients below the diagonal, which can be obtained by symmetry):

K1
11 K1

12

K1
22 +K2

11 +K3
11

0

K2
12 +K3

12

K2
22 +K3

22

0

0

K4
12

K4
22



T1

T2

T3

T4

 =


Q1

1

Q1
2 +Q2

1 +Q3
1

Q2
2 +Q3

2 +Q4
1

Q4
2


The prescribed nodal conditions are: T1 = T0, Q2 = Q3 = 0 and Q4 = −βA(T4 − T∞)
(advection with atmosphere). Using these nodal conditions, the condensed system of Finite
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Element equations is:K
1
22 +K2

11 +K3
11 K2

12 +K3
12

K2
22 +K3

22

0

K4
12

K4
22 − βA



T2

T3

T4

 =


−K21T0

−K31T0

βAT∞ −K41T0


in which [K] is the global stiffness matrix (before condensation). Using the elementary
stiffness matrices, we get: A1k1/l1 +A2k2/l2 +A3k3/l3 −A2k2/l2 −A3k3/l3

A2k2/l2 +A3k3/l3

0

−A4k4/l4

A4k4/l4 − βA4



T2

T3

T4

 =


A1k1T0/l1

0

βA4T∞


From there, it is possible to solve for the nodal values of the temperature (T2, T3 and T4),
and then, for the nodal value of the heat flux Q1.

4.5 Solve the problem of heat transfer through the cylindrical canister shown in Figure
4.4 by using Ritz method, with two linear elements.

−1

r

d

dr

(
kr
dT

dr

)
= q0(r)

Figure 4.4 Heat transfer through a cylindrical canister.

Solution:

1. Discretization
Linear interpolation functions: for an element defined on the segment [ra, rb]

Ψe
1(r) =

−(r − rb)
he

, Ψe
2(r) =

(r − ra)

he
, he = rb − ra
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2. Elementary equations
Using Ritz Method:

[K]e{T}e = {F}e + {Q}e

Ke
ij = 2π

∫ rb

ra

k
dΨe

i

dr

dΨe
j

dr
rdr

F ei = 2π

∫ rb

ra

Ψe
i (r)q0(r)rdr

Qei = ±2π kr
dT

dr
(r = rei )

The integrals depends on the bounds. The stiffness matrix and the force vector have
thus different expressions for the two elements. In a matrix form:

[K(1)] = kπ

[
1

−1

−1

1

]

[K(2)] = kπ

[
3

−3

−3

3

]
Assuming that the heat source function is a constant: q0(r) = q0:

{F (1)} =
π q0R0

2

12

{
1

2

}

{F (2)} =
π q0R0

2

12

{
4

5

}

3. Assembly

kπ

 1

−1

0

−1

4

−3

0

−3

3



T1

T2

T3

 =
π q0R0

2

12


1

6

5

 +


Q

(1)
1

Q
(1)
2 +Q

(2)
1

Q
(2)
2


4. Nodal conditions

Q1 = 0, Q2 = 0, T3 = T0

5. Condensation and resolution

kπ

[
1

−1

−1

4

] {
T1

T2

}
=

π q0R0
2

12

{
1

6

}
+

{
0

3k r T0

}

From here, solve for T1 and T2.

6. Post-processing Q3 can be obtained by a direct method, using the stiffness matrix, as
follows:

Q3 = −3πkT2 + 3πkT0 −
5πq0R0

2

12
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7. Approximate solution:

T (r) '

T1Ψ
(1)
1 (r) + T2Ψ

(1)
2 (r), r ∈]0, R0/2[

T2Ψ
(2)
1 (r) + T3Ψ

(2)
2 (r), r ∈]R0/2, R0[

T (r) '

T1
R0/2−r
R0/2

+ T2
r

R0/2
, r ∈]0, R0/2[

T2
R0−r
R0/2

+ T0
r−R0/2
R0/2

, r ∈]R0/2, R0[

4.6 Solve the 1D Newtonian fluid flow problem with Ritz method, by using two linear
elements, and for the two following sets of boundary conditions: (a) vx(−L) = vx(L) = 0;
(b) vx(−L) = 0, vx(L) = v0.

Solution: The governing equation is:

µ
d2vx(y)

dy2
=
dP

dx

The Ritz Finite Element equations (for one element) are:

Kijvj = Fi +Qi

in which:

Kij =

∫
ya
ybµ

dΨi

dy

dΨj

dy
dy

Fi = −
∫
ya
ybΨi(y)

dP

dx
dy

Qi =

[
Ψ(y)µ

dvx
dy

]yb
ya

For linear elements:

[K] =
µ

l

[
1

−1

−1

1

]
For the special where dP

dx = f0 (constant):

{F} =
f0l

2

{
1

1

}

where l is the length of the element. After assembling the elementary equations (assuming
that all elements have same length l):

µ

l

 1

−1

0

−1

2

−1

0

−1

1



v1

v2

v3

 =
f0l

2


1

2

1

 +


Q1

1

Q1
2 +Q2

1

Q2
2


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For the first set of boundary conditions: v1 = v3 = 0 and Q2 = 0, the system of equations
can be condensed as:

2µ

l
v2 = f0l

In other words, the solution for the primary variable is:

v2 =
f0l

2

2µ

And the FEM approximation of the solution on [−l,+l] is:

vx(y) =
f0l

2

2µ

y + l

l
, −l ≤ y ≤ 0

vx(y) =
f0l

2

2µ

y

l
, 0 ≤ y ≤ l

Using the FEM equations to solve for the secondary variable:

Q1 +
f0l

2
= −µ

l
v2 = −f0l

2

Q3 +
f0l

2
= −µ

l
v2 = −f0l

2

so that: Q1 = Q3 = −f0l.
For the second set of boundary conditions: v1 = 0, Q2 = 0 and v3 = v0 and the system of
equations can be condensed as:

2µ

l
v2 = f0l +

µ

l
v0

In other words, the solution for the primary variable is:

v2 =
f0l

2

2µ
+
v0

2

And the FEM approximation of the solution on [−l,+l] is:

vx(y) =

(
f0l

2

2µ
+
v0

2

)
y + l

l
, −l ≤ y ≤ 0

vx(y) =

(
f0l

2

2µ
+
v0

2

)
y

l
, 0 ≤ y ≤ l

Using the FEM equations to solve for the secondary variables:

Q1 +
f0l

2
= −µ

l
v2 = −f0l

2
− µv0

2l

Q3 +
f0l

2
= −µ

l
v2 +

µ

l
v0 = −f0l

2
+
µv0

2l



PROBLEMS 87

so that:

Q1 = −f0l −
µv0

2l

Q3 = −f0l +
µv0

2l

4.7 Solve the problem of bar elongation shown in Figure 4.5 by using Ritz method, with
two linear elements.

− d

dx

(
EA

du

dx

)
= f(x)

Figure 4.5 Bar element with a non-uniform cross section.

Solution: Here, there is no distributed horizontal force, i.e. f(x) = 0, but there is a
concentrated load 2P0 applied at x = h1. The concentrated load will be accounted for in
theboundary conditions. The governing equation is thus:

− d

dx

(
EA

du

dx

)
= 0

The area of the cross section of the bar for 0 ≤ x ≤ h1 is:

A1(x) = π(c1 + c2x)2

The area of the cross section of the bar for h1 ≤ x ≤ h1 + h2 is:

A2(x) = A2 = π(c1 + c2h1)2

We use two linear elements (one for 0 ≤ x ≤ h1 and one for h1 ≤ x ≤ h1 +h2). The Ritz
Finite Element equations are:

Kijuj = Qi

For the first element:

K1
ij = πE

∫ h1

0

(c1 + c2x)2 dΨi

dx

dΨj

dx
dx
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For the second element:

K2
ij = EA2

∫ h2

h1

dΨi

dx

dΨj

dx
dx

We calculate the average cross section on the first element:

A1 =
1

h1

∫ h1

0

π(c1 + c2x)2dx

And we evaluate the stiffness coefficients of the first element as:

K1
ij = EA1

∫ h1

0

dΨi

dx

dΨj

dx
dx

Using the expression of the stiffnes matrix of a linear 1D element, the assembled system of
FEM equations becomes (only writing the terms of the stiffness matrix above the diagonal): A1E/h1 −A1E/h1

A1E/h1 +A2E/h2

0

−A2E/h1

A2E/h2



u1

u2

u3

 =


Q1

1

Q1
2 +Q2

1

Q2
2


The prescribed nodal conditions are: u1 = 0, Q2 = 2P0 and Q3 = 0. Therefore, we can
condense the system of equations as:[

A1E/h1 +A2E/h2

−A2E/h1

−A2E/h1

A2E/h2

]{
u2

u3

}
=

{
2P0

0

}
From there, it is possible to solve for u2 and u3, and then for the reaction Q1 (either by
using hte FEM equations, or by post-processing).

4.8 Solve the problem of beam deflection shown in Figure 4.6 by using two Euler-
Bernouilli elements.

Figure 4.6 Deflection problem with Euler-Bernouilli beam elements.

Solution: The governing equation is:

EI
d4w(x)

dx4
= q0 −

q0

L
x
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in which w(x) is the deflection. The Ritz Finite Element equations are (for one cubic
Euler-Bernouilli element):

∀i = 1...4,

4∑
j=1

(
EI

∫ xb

xa

d2Ψi(x)

dx2

d2Ψj(x)

dx2
dx

)
Wj =

∫ xb

xa

Ψi(x)
(
q0 −

q0

L
x
)
dx−

[
ΨixEI

d3w(x)

dx3

]xb

xa

+

[
dΨix

dx
EI

d2w(x)

dx2

]xb

xa

in which Wj designates the jth degree of freedom (for each node, the deflection is listed
first, and the deflection angle, second). The cubic Hermite polynomial interpolation func-
tions are:

Ψ1(x) = 1− 3

(
x− xa
xb − xa

)2

+ 2

(
x− xa
xb − xa

)3

Ψ2(x) = −(x− xa)

(
1− x− xa

xb − xa

)2

Ψ3(x) = 3

(
x− xa
xb − xa

)2

− 2

(
x− xa
xb − xa

)3

Ψ4(x) = −(x− xa)

(
x− xa
xb − xa

)(
x− xa
xb − xa

− 1

)

in which degrees of freedom 1, 2, 3 and 4 are respectively: the deflection at node 1, the
deflection angle at node 1, the deflection at node 2 and the deflection angle at node 2.
Noting that the length of each element is L/2, the elementary stiffness matrix is:

[K] =
16EI

L3


6

−3L/2

−6

−3L/2

−3L/2

L2/2

3L/2

L2/4

−6

3L/2

6

3L/2

−3L/2

L2/4

3L/2

L2/2


Assembling the Finite Element equations, we obtain the following global Finite Element
equations (in which only the coefficients of hte stiffness matrix that are above the diagonal
are noted):

K1
11 K1

12

K1
22

K1
13

K1
23

K1
33 +K2

11

K1
14

K1
24

K1
34 +K2

12

K1
44 +K2

22

0

0

K2
13

K2
23

K2
33

0

0

K2
14

K2
24

K2
34

K2
44





W1

W2

W3

W4

W5

W6


=



F 1
1

F 1
2

F 1
3 + F 2

1

F 1
4 + F 2

2

F 2
3

F 2
4


+



Q1
1

Q1
2

Q1
3 +Q2

1

Q1
4 +Q2

2

Q2
3

Q2
4


The nodal conditions are the following: W1 = W2 = 0 (fixed support), Q3 = Q4 = 0 (no
concentrated loads), Q5 = F0, Q6 = −M0. The system of equations can be condensed as
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follows:

16EI

L2


12

0

−6

−3L/2

0

L2

3L/2

L2/4

−6

3L/2

6

3L/2

−3L/2

L2/4

3L/2

L2/2



W3

W4

W5

W6

 =


F 1

3 + F 2
1

F 1
4 + F 2

2

F 2
3

F 2
4

 +


0

0

F0

−M0


From there, it is possible to solve for W3, W4, W5 and W6. The secondary variables Q1

and Q2 can be post-processed as follows:

Q1 = Q1
1 = EI

d3

dx3
(W1Ψ1(x) +W2Ψ2(x) +W3Ψ3(x) +W4Ψ4(x))x=0

Q1 = EI

(
− 96

L3
W3 −

24

L2
W4

)

In the same way:

Q2 =
24EI

L2
W3 +

4EI

L
W4

The approximate solution for the deflection is expressed as follows:
For 0 ≤ x ≤ L/2:

w(x) = W3

[
3

(
x

L/2

)2

− 2

(
x

L/2

)3
]

+W4

[
−x
(

x

L/2

)(
x

L/2
− 1

)]
For L/2 ≤ x ≤ L:

w(x) = W3

[
1− 3

(
x− L/2
L/2

)2

+ 2

(
x− L/2
L/2

)3
]

+W4

[
−(x− L/2)

(
1− x− L/2

L/2

)2
]

W5

[
3

(
x− L/2
L/2

)2

− 2

(
x− L/2
L/2

)3
]

+W6

[
−(x− L/2)

(
x− L/2
L/2

)(
x− L/2
L/2

− 1

)]

4.9 Calculate the coefficients of the elementary stiffness matrix and force vector of a
linear trianular element, if the numbering convention in Figure ?? is changed such that:
node 1 is (a,0); node 2 is (0,b); node 3 is (0,0).

Solution: The solution is obtained by performin permutations of the coefficients of the
stiffness matrix given in the problem:

[K] =
1

2ab

a11

 b2

0

−b2

0

0

0

−b2

0

b2

+ a22

 0

0

0

0

a2

−a2

0

−a2

a2



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4.10 Calculate the three boundary integrals Q1, Q2 and Q3 for the linear triangular ele-
ment shown in Figure 4.7.

Figure 4.7 Triangular element subject to boundary loads.

Solution: We calculate the boundary integrals, one by one. For the first node:

Q1 =

∮
Ψ1(s)qn(s)ds =

∫ h12

0

Ψ1(s)qn(s)ds+

∫ h23

0

Ψ1(s)qn(s)ds+

∫ h31

0

Ψ1(s)qn(s)ds

Since Ψ1(s) = 0 on side 2-3:

Q1 =

∫ h12

0

Ψ1(s)q0ds+

∫ h31

0

Ψ1(s)q0
s

h31
ds

On side 1-2, Ψ1(s) is equal to the 1D Lagrange polynomial at node 1. On side 3-1, Ψ1(s)
is equal to the 1D Lagrange polynomial at node 2. As a result:

Q1 =

∫ h12

0

h12 − s
h12

q0ds+

∫ h31

0

s

h12
q0

s

h31
ds

After integrating, we get:
Q1 =

q0

3
h31 +

q0

2
h12

For the second node:

Q2 =

∮
Ψ2(s)qn(s)ds =

∫ h12

0

Ψ2(s)qn(s)ds

because Ψ2(s) = 0 on side 3-1 and because qn(s) = 0 on side 2-3. Moreover, on side 1-2,
Ψ2(s) is equal to the 1D Lagrange polynomial at node 2, so that:

Q2 =

∫ h12

0

s

h12
q0ds
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After integrating:

Q2 =
q0h12

2

For the third node:

Q3 =

∮
Ψ3(s)qn(s)ds =

∫ h31

0

Ψ3(s)qn(s)ds

because Ψ3(s) = 0 on side 1-2 and because qn(s) = 0 on side 2-3. Moreover, on side 3-1,
Ψ3(s) is equal to the 1D Lagrange polynomial at node 1, so that:

Q3 =

∫ h31

0

h31 − s
h31

q0
s

h31
ds

After integrating:

Q3 =
q0h31

6

We check that Q1 + Q2 + Q3 = q0h12 + q0h31/2, which corresponds to the total load
applied to the element.

4.11 Consider a problem described by the Poisson’s equation:

−∇2u = −
(
∂2u

∂x2
+
∂2u

∂y2

)
= f0 in Ω

in the square region shown in Figure 4.8. The boundary conditions are:

Figure 4.8 2D FEM to solve Poisson’s equation

u(x, y) = 0 on Γ

We wish to use the FEM to determine u(x, y) on the domain Ω.

1. Show that it is sufficient to solve the problem on 1/8-th of the domain only to deter-
mine the solution everywhere in Ω.

2. Mesh this deduced domain with four linear triangular elements (justify).
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3. Solve the FEM problem on the reduced domain (i.e. calculate the unknown nodal
values of the primary variable).

4. Post-process the results of the FEM model (i.e. calculate the unknown boundary
integrals of the secondary variable).

Solution: See the notes in the next 8 pages.
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4.12 Determine the Lagrange interpolation polynomials for:

a triangular element that has two nodes per side (k = 2)

a triangular element that has three nodes per side (k = 3)

a triangular element that has four nodes per side (k = 4)

Solution: Here, we express the interpolation functions of the triangular elements as func-
tions of the area coordinates, by using the interpolation property.

Triangular element with two nodes per side:

Ψ1(x, y) = L1(s), Ψ2(x, y) = L2(s), Ψ3(x, y) = L3(s)

Triangular element with three nodes per side (see Figure 4.9 for the node numbering):

Ψ1(x, y) = 2L1(s)

(
L1(s)− 1

2

)

Ψ2(x, y) = 2L2(s)

(
L2(s)− 1

2

)

Ψ3(x, y) = 2L3(s)

(
L3(s)− 1

2

)
Ψ4(x, y) = 4L1(s)L2(s)

Ψ5(x, y) = 4L2(s)L3(s)

Ψ6(x, y) = 4L1(s)L3(s)
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Triangular element with four nodes per side (see Figure 4.9 for the node numbering):

Ψ1(x, y) =
9

2
L1(s)

(
L1(s)− 1

3

)(
L1(s)− 2

3

)

Ψ2(x, y) =
9

2
L2(s)

(
L2(s)− 1

3

)(
L2(s)− 2

3

)

Ψ3(x, y) =
9

2
L3(s)

(
L3(s)− 1

3

)(
L3(s)− 2

3

)

Ψ4(x, y) =
27

2
L1(s)L2(s)

(
L1(s)− 1

3

)

Ψ5(x, y) =
27

2
L1(s)L2(s)

(
L2(s)− 1

3

)

Ψ6(x, y) =
27

2
L2(s)L3(s)

(
L2(s)− 1

3

)

Ψ7(x, y) =
27

2
L2(s)L3(s)

(
L3(s)− 1

3

)

Ψ8(x, y) =
27

2
L1(s)L3(s)

(
L3(s)− 1

3

)

Ψ9(x, y) =
27

2
L1(s)L3(s)

(
L1(s)− 1

3

)
Ψ10(x, y) = 27L1(s)L2(s)L3(s)

Figure 4.9 Node numbering adopted in Problem 4.12.
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4.13 Determine the interpolation function Ψ14 for the triangular element shown in Fig-
ure 4.10. Assume that nodes on the sides of the element are equally spaced.

Figure 4.10 A higher-order triangular element. Image taken from [?]

Solution: We express the interpolation function at node 14 as a function of the area coor-
dinates, by using the interpolation property:

Ψ14(x, y) = 128LI(s)LII(s)LIII(s)

(
LII(s)−

1

4

)
in which we note the edges of the element as nodes I, II and III, as shown in the figure.

4.14 Calculate the Jacobian of each of the three elements of the mesh shown in Figure
4.11. Explain whether the geometry and numbering conventions are acceptable or not.

Figure 4.11 Meshing problem requiring calculating the Jacobian. Image taken from [?]

Solution: To calculate the Jacobian on each element, we first need to explain how the
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geometry is interpolated on each element, according to the following equations:

x(ξ, η) =

4∑
j=1

xjΨj(ξ, η), y(ξ, η) =

4∑
j=1

yjΨj(ξ, η)

in which the interpolation functions Ψj(ξ, η) are those of the linear quadrilateral master
element:

Ψ1(ξ, η) =
1

4
(1− ξ)(1− η)

Ψ2(ξ, η) =
1

4
(1 + ξ)(1− η)

Ψ3(ξ, η) =
1

4
(1 + ξ)(1 + η)

Ψ4(ξ, η) =
1

4
(1− ξ)(1 + η)

Then, the Jacobian is calculated for each element, as follows

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

For element 1, x1 = 0, x2 = 2, x3 = 2, x4 = 0, y1 = 0, y2 = 0, y3 = 3 and y4 = 5.
We find: J1 = (4− ξ)/16, which is always positive, since ξ ∈ [−1, 1]. Element 1 is thus
properly meshed. For element 2, x1 = 2, x2 = 3, x3 = 5, x4 = 2, y1 = 0, y2 = 2, y3 = 3
and y4 = 3. We find J2 = 2(1 − ξ + η)/4. So J2 > 0 only if η > ξ − 1, i.e. only when
the point considered is in the convex hull of the element. Hence, element 2 is not properly
meshed, because it is not convex. For element 3, x1 = 2, x2 = 0, x3 = 5, x4 = 5, y1 = 3,
y2 = 5, y3 = 5 and y4 = 3. We find J3 = −(4 + ξ)/2, which is always negative, since
ξ ∈ [−1, 1]. Hence, element 3 is not properly meshed. Here, this is because the node
numbering convention chosen in the element goes clockwise, while the node numbering
convention in the master element goes counter-clockwise (the same node numbering sense
has to be chosen for both).
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4.15 Determine the conditions on the location of node 3 of the quadrilateral element
shown in Figure 4.12.

Figure 4.12 Finding an acceptable element shape. Image taken from (Reddy, 2004)

Solution: To calculate the Jacobian of the element, we first need to explain how the geom-
etry is interpolated, according to the following equations:

x(ξ, η) =

4∑
j=1

xjΨj(ξ, η), y(ξ, η) =

4∑
j=1

yjΨj(ξ, η)

Using the expressions of the interpolation functions (linear quadrilateral master element):

Ψ1(ξ, η) =
1

4
(1− ξ)(1− η)

Ψ2(ξ, η) =
1

4
(1 + ξ)(1− η)

Ψ3(ξ, η) =
1

4
(1 + ξ)(1 + η)

Ψ4(ξ, η) =
1

4
(1− ξ)(1 + η)

and using the coordinates of the nodes: x1 = 0, x2 = 2, x3 = a, x4 = 0, y1 = 0, y2 = 0,
y3 = b and y4 = 2, we have:

x(ξ, η) =
1

4
(1 + ξ) [2(1− η) + a(1 + η)]

y(ξ, η) =
1

4
(1 + η) [b(1 + ξ) + 2(1− ξ)]

We then calculate the Jacobian:

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
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J = a+ b+ (b− 2)ξ + (a− 2)η

At node 1 (ξ = −1, η = −1): J = 4, positive. At node 2 (ξ = 1, η = −1): J = 2b,
which is positive, since according to the figure shown, b > 0. At node 3 (ξ = 1, η = 1):
J = 2(a + b − 2), which is positive only if b > 2 − a. At node 4 (ξ = −1, η = 1):
J = 2a, which is positive, since according to the figure shown, a > 0. So to summarize,
the element will be acceptable only if b > 2− a, i.e., only if point 3 is above the line that
links nodes 2 and 4. In other words, the element is only acceptable if it is convex.

4.16 Consider the isoparametric quadrilateral element shown iFigure 4.13. Use the
Gauss-Legendre numerical integration scheme of the lowest order possible to calculate
the following integrals:

S00
ij =

∫
Ω

Ψi(x, y)Ψj(x, y)dxdy

S12
ij =

∫
Ω

∂Ψi(x, y)

∂x

∂Ψi(x, y)

∂y
dxdy

Figure 4.13 Evaluating integrals defined on an element of irregular shape. Image taken from
(Reddy, 2004)

Solution: For the first integral:

S00
ij =

∫ 1

−1

∫ 1

−1

Φi(ξ, η)Φj(ξ, η) Jdξdη
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in which the expressions of the interpolation functions for the linear quadrilateral master
element are:

Φ1(ξ, η) =
1

4
(1− ξ)(1− η)

Φ2(ξ, η) =
1

4
(1 + ξ)(1− η)

Φ3(ξ, η) =
1

4
(1 + ξ)(1 + η)

Φ4(ξ, η) =
1

4
(1− ξ)(1 + η)

To evaluate S00
ij , we thus need to calculate the Jacobian J on the element:

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

with:

x(ξ, η) =

4∑
j=1

xjΦj(ξ, η), y(ξ, η) =

4∑
j=1

yjΦj(ξ, η)

Noting that x1 = 0, x2 = 5, x3 = 4, x4 = 1, y1 = 0, y2 = −1, y3 = 5 and y4 = 4, we
get:

x(ξ, η) =
1

4
(10 + 8ξ − 2ξη) , y(ξ, η) =

1

4
(8 + 10η + 2ξη)

and we find:

J =
1

4
(20 + 4ξ − ξη)

The integrand in S00
ij is thus cubic in ξ and cubic in η. Therefore, we need to perform a

Gauss Legendre numerical integration of order r ≥ (p+ 1)/2 = 2. As an example, let us
calculate S00

11 . We have:

S00
11 =

∫ 1

−1

∫ 1

−1

1

64
(1− ξ)2(1− η)2(20 + 4ξ − ξη)dξdη

We note P (ξ, η) = 1
64 (1 − ξ)2(1 − η)2(20 + 4ξ − ξη). The Gauss-Legendre quadrature

of order 2 approximates the integral as follows:

S00
11 ' P (− 1√

3
,− 1√

3
) + P (

1√
3
,− 1√

3
) + P (

1√
3
,

1√
3

) + P (− 1√
3
,

1√
3

)

The integral will be calculated exactly since P is a polynomial, with an order p = 2r − 1.
Then, S00

12 = S00
21 and S00

22 will be calcualted in the same way.
For the second integral:

S12
ij =

∫ 1

−1

∫ 1

−1

(
J∗11

∂Φi(ξ, η)

∂ξ
+ J∗12

∂Φi(ξ, η)

∂η

)(
J∗21

∂Φi(ξ, η)

∂ξ
+ J∗22

∂Φi(ξ, η)

∂η

)
Jdξdη
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in which [J∗] is the inverse of the Jacobian matrix. The Jacobian matrix is calculated as:

[J ] =

[
∂x
∂ξ
∂x
∂η

∂y
∂ξ
∂y
∂η

]
=

1

4

[
8− 2η

−2ξ

2η

10 + 2ξ

]
The inverse of the Jacobian matrix is calculated as:

[J∗] = [J ]−1 =
1

4J

[
10 + 2ξ

2ξ

−2η

8− 2η

]
Each term in the brackets of the integrand of S12

ij is the ratio of a plynomial that is linear in
ξ and in η, by J . So the integrand is the product of J by a polynomial that is quadratic in ξ
and in η. Overall, the integrand is thus cubic in ξ and in η, so a Gauss-Legendre quadrature
of order 2 should allow calculating the integrals S12

ij exactly.

4.17 Prove the equations given for the weak formulation of a plane elasticity problem.

Solution: The balance of momentum in directions x and y is expressed as:

∂σxx

∂x +
∂σxy
∂y

+ fx = ρ
∂2ux
∂t2

∂σyx

∂x +
∂σyy
∂y

+ fy = ρ
∂2uy
∂t2

The general form of the constitutive law is:
σxx

σyy

σxy

 =

 c11

c21

0

c12

c22

0

0

0

c66




εxx

εyy

2εxy


Combining the balance and constitutive equations, one gets:

∂

∂x
(c11εxx + c12εyy) +

∂

∂y
(2c66εxy) + fx = ρ

∂2ux
∂t2

∂

∂x
(2c66εxy) +

∂

∂y
(c21εxx + c22εyy) + fy = ρ

∂2uy
∂t2

Then, we use the definition of the small deformation tensor:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
and we obtain:

∂

∂x

(
c11

∂ux
∂x

+ c12
∂uy
∂y

)
+

∂

∂y

(
c66

∂ux
∂y

+ c66
∂uy
∂x

)
+ fx = ρ

∂2ux
∂t2

∂

∂x

(
c66

∂ux
∂y

+ c66
∂uy
∂x

)
+

∂

∂y

(
c21

∂ux
∂x

+ c22
∂uy
∂y

)
+ fy = ρ

∂2uy
∂t2
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From there, we can write the weak formulation. From the balance equation in the x-
direction: ∀w1(x, y) ∼ δux(x, y):∫

Ωe

[
he

[
∂w1

∂x

(
c11

∂ux

∂x + c12
∂uy

∂y

)
+ c66

∂w1

∂y

(
∂ux

∂y +
∂uy

∂x

)]
+ ρw1üx

]
dxdy

=
∫

Ωe
hew1fxdxdy +

∮
Γe
hew1t̂xds

From the balance equation in the y-direction: ∀w2(x, y) ∼ δuy(x, y):∫
Ωe

[
he

[
∂w2

∂y

(
c12

∂ux

∂x + c22
∂uy

∂y

)
+ c66

∂w2

∂x

(
∂ux

∂y +
∂uy

∂x

)]
+ ρw2üy

]
dxdy

=
∫

Ωe
hew2fydxdy +

∮
Γe
hew2t̂yds

4.18 For the Finite Element in plane elasticity shown in Figure 4.14, determine the sur-
face load vector {Qe}.

Figure 4.14 Calculation of boundary integrals in plane elasticity.

Solution: See the solution in the notes provided in the next 3 pages.
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4.19 In the plane stress problem shown in Figure 4.15, determine the horizontal compo-
nent of the load vector at node 16 (Q16x) and the vertical component of the load vector at
node 11 (Q11y).

Figure 4.15 Calculation of boundary integrals in plane elasticity.

Solution: See the solution in the next 4 pages of notes.
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4.20 Homework 3 - Problem 1
The Finite Element Method based on Ritz Method is used to study an insulating wall con-
stituted of three homogeneous layers, each of which being characterized by a thermal con-
ductivity ki (Fig. 4.16). There is no energy production (no source) in the wall. The outer
surfaces are exposed to heat exchanges with the atmosphere. These convective transfers
are modeled as boundary conditions on heat flow: Q = −β(T −T∞). The film coefficient
is βL on the left side, and βR on the right side (Fig. 4.16). The objective of this problem
is to determine the temperature distribution inside the wall by using three one-dimensional
linear Finite Elements.

Figure 4.16 Heat Transfer Problem.

1. What is the equation of 1D heat transfer in the most general case? Explain each term
of this equation. Explain why in this particular problem, the elementary governing
equation reduces to:

− d

dx

(
kiA

dT

dx

)
= 0, i = 1, 2, 3 (4.1)

2. Consider an element defined on ]xa, xb[. Write the weak formulation for this element,
up to the integration by parts.

3. Give the “nodal” conditions (boundary conditions and concentrated loads). Indicate
whether the boundary conditions are essential or natural.

4. Provide the elementary stiffness matrices and elementary force vectors. Provide the
general form of the stiffness matrix and force coefficients (using Ψj to denote interpo-
lation functions). Then provide the numerical values of the coefficients of the stiffness
matrix.

5. Draw the connectivity table and assemble the elementary equations obtained in ques-
tion 4.

6. Write the system of condensed equations. Rearrange the system of equations in order
to have all unknown variables on the left hand-side of the matrix equation. Do not
solve.
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Solution:

1. In the most general case, the governing equation for 1D heat transfer writes:

− d

dx

(
kA

dT

dx

)
+ βP (T (x)− T∞) = Ag(x) (4.2)

The first term of equation 4.2 represents conductive flow, the second term represents
convective flow (heat exchanges with the atmosphere), and the right-hand side rep-
resents the influence of heat sources. There is no heating source to consider in this
problem, thus: g(x) = 0. There is no convection along the perimeter of the out-of-
plane cross-section of the wall. Convection is included in the boundary conditions
because heat exchanges with the atmosphere are only possible at the left and right
faces of the wall. Therefore, the governing equation reduces to a heat conduction
equation:

− d

dx

(
kiA

dT

dx

)
= 0, i = 1, 2, 3 (4.3)

2. Weighted Integral Statement:

∀w ' δT, −
∫ xb

xa

w(x)
d

dx

(
kiA

dT

dx

)
dx = 0, i = 1, 2, 3 (4.4)

Integration by Parts:

∀w ' δT,
∫ xb

xa

dw

dx
kiA

dT

dx
dx =

[
w(x)kiA

dT

dx

]xb

xa

, i = 1, 2, 3 (4.5)

3. The primary variable is temperature. The secondary variable is heat flow, defined
as: Qi = kiA

dT
dx for element i. At internal nodes, no concentrated load is applied:

Q2 = Q3 = 0. Two natural boundary conditions are applied, on the left and right
sides of the wall. Two convective flows are imposed: Q(0) = QL = −βL(T (0)−TL∞)
and Q(h1 + h2 + h3) = QR = −βR(T (h1 + h2 + h3) − TR∞). In terms of nodal
conditions: Q1 = −βL(T1 − T∞) and Q4 = −βR(T4 − T∞).
Note: Actually, the boundary conditions mix imposed values for heat flux (Q(0),
Q(h1 +h2 +h3)) and imposed values of temperature (T (0), T (h1 +h2 +h3)). Such
boundary conditions are called “mixed boundary conditions”.

4. Each layer is modeled by a one-dimensional linear Finite Element. In a local coordi-
nate system, the interpolation functions are expressed as:

Ψe
1(x) =

(
1− x

he

)
Ψe

2(x) = x
he

(4.6)

in which he is the length of the element. Here, the elements have different lengths:
h1 6= h2, h2 6= h3 and h3 6= h1. The weak formulation 4.5 provides the typical
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elementary equation which has to be used in this Finite Element model:

∀k = 1, 2,

[∫ hi

0

kiA
dΨk

dx

dΨj

dx
dx

]
Tj = Qik, i = 1, 2, 3 (4.7)

with Qik = +/ −
[
Ψk(x)kiA

dT
dx

]
(the sign depends on the node considered after the

integration by parts). There is no contribution of a volumetric force: {F i} = {0} for
i=1,2,3. With the interpolation functions used in this problem (equation 4.6), and with
A and ki parameters being constant, the typical elementary stiffness matrix turns to
be:

[Ki] =
kiA

hi

 1

−1

−1

1

 , i = 1, 2, 3 (4.8)

5. The connectivity table for this Finite Element model is provided in Tab. 4.1. Assem-

Table 4.1 Connectivity Table for Problem 1.

Element T1 T2

1 1 2

2 2 3

3 3 4

bling the elementary equations provides the global matrix equation of this problem:

A



k1/h1

−k1/h1

0

0

−k1/h1

k1/h1 + k2/h2

−k2/h2

0

0

−k2/h2

k2/h2 + k3/h3

−k3/h3

0

0

−k3/h3

k3/h3





T1

T2

T3

T4


=



Q1
1

Q1
2 +Q2

1

Q2
2 +Q3

1

Q3
2


(4.9)

6. The “nodal” conditions are the following (see question 3): Q1 = −βL(T1 − T∞),
Q2 = Q3 = 0, Q4 = −βR(T4 − T∞). There is no boundary condition imposed on
the primary variable. Therefore, the system of equations cannot be condensed. After
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introducing the boundary conditions, the FE equation 4.9 writes:

A



k1/h1 + βL/A

−k1/h1

0

0

−k1/h1

k1/h1 + k2/h2

−k2/h2

0

0

−k2/h2

k2/h2 + k3/h3

−k3/h3

0

0

−k3/h3

k3/h3 + βR/A





T1

T2

T3

T4


=



−βLT∞

0

0

−βRT∞


(4.10)

4.21 Homework 3 - Problem 2
A field problem is governed by the following differential equation:

−∇2u(x, y) = f0

The problem is solved with a linear triangular element. The nodal values of the dependent
variable are the following:

u1 = 389.79, u2 = 337.19, u3 = 395.08

The interpolation functions of the element are given by:

Ψ1(x, y) =
1

8.25
(12.25− 2.5x− 1.5y)

Ψ2(x, y) =
1

8.25
(−1.5 + 3x− 1.5y)

Ψ3(x, y) =
1

8.25
(−2.5− 0.5x+ 3y)

The flux vector is approximated as:

q(x, y) = ∇ (uFEM (x, y)) =
∂uFEM
∂x

i +
∂uFEM
∂y

j

1. Find the component of the flux in the direction of the vector 4ex + 3ey at (x = 3,
y = 2).

2. A point source of magnitude Q0 is located at point (x0, y0) = (3,2) inside the trian-
gular element. Determine the contribution of the point source to the element source
vector. Express your answer in terms of Q0.

Solution:

1. The flux vector is approximated as:

q(x, y) = ∇ (uFEM (x, y)) =
∂uFEM
∂x

i +
∂uFEM
∂y

j
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which can be expressed as:

q(x, y) =

3∑
k=1

[
uk
∂Ψk

∂x
i + uk

∂Ψk

∂y
j

]
Using the expressions of the interpolation functions and of the nodal values provided
in the problem:

q(x, y) = 389.79

(
−2.5

8.25
i− 1.5

8.25
j

)
+337.19

(
3

8.25
i− 1.5

8.25
j

)
+395.08

(
−0.5

8.25
i +

3

8.25
j

)
We find:

q(x, y) = −19.45i + 11.49j

We notice that the expression of the flux vector does not depend on the position (x,y)
in the element. The component of the flux vector on 4i + 3j is obtained by projection.
We find: q · (4i + 3j) = −43.33.

2. A point source Q0 at (x0, y0) can be expressed as a distributed flux Q0δ(x− x0, y −
y0), in which δ(x′, y′) represents here the Dirac function (equals one when x′ =
y′ = 0, and zero otherwise). According to the weak formulation, the force terms are
obtained by integration, as follows:

Fi =

∫
Ωe

Ψi(x, y)Q0δ(x− x0, y − y0)dxdy = Ψi(x0, y0)Q0

With x0 = 3 and y0 = 2, from the expressions of we find: F1 = 1.75Q0/8.25,
F2 = 4.5Q0/8.25, F3 = 2Q0/8.25.





CHAPTER 5

ELEMENTS OF PORO-ELASTICITY

PROBLEMS

5.1 [FEM for 1D steady fluid flow] Consider the steady laminar flow of a viscous in-
compressible fluid with constant density in a long annular region between two coaxial
cylinders of radii Ri and R0 (see Figure 5.1). The differential equation for this case is
given by:

−1

r

d

dr

(
r µ

dw

dr

)
= f0, f0 =

P1 − P2

L

where w is the velocity along the cylinders (i.e., the z component of velocity), µ is the vis-
cosity, L is the length of the region along the cylinders in which the flow is fully developed,
and P1 and P2 are the pressures at z = 0 and z = L, respectively (P1 and P2 represent the
combined effect of static pressure and gravitational force). The boundary conditions are:

w(r = R0) = w(r = Ri) = 0

1. Write the weak formulation of the problem.

2. Consider two linear elements over the segment [R0, Ri]. Write the two elementary
equations that govern the problem, using Ritz method.

3. Assemble and condense the system of equations.

4. Solve the system of finite element equations for the primary variable and write the
expression of approximate solution over the segment [R0, Ri].

Theoretical Geomechanics.
By Chloé Arson Copyright c© 2020
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5. Post-process the finite element results to calculate the unknown nodal secondary vari-
ables.

6. Repeat questions 2 and 3 with one quadratic element. Do not solve.

Figure 5.1 Viscous incompressible fluid flow in an annular area.

Solution:

1. Weak formulation:

∀u ∼ δw, −2π

∫ rb

ra

u(r)
1

r

d

dr

(
r µ

dw

dr

)
r dr = 2π

∫ rb

ra

u(r)f0 r dr

∀u ∼ δw,
∫ rb

ra

du

dr

(
r µ

dw

dr

)
dr =

∫ rb

ra

u(r)f0 r dr +

[
u(r)

(
r µ

dw

dr

)]rb
ra

Secondary variable:

q(r) = r µ
dw

dr

2. Elementary equations:
For each element defined on the segment [ra, rb]:

ψ1(r) =
rb − r
rb − ra

, ψ2(r) =
r − ra
rb − ra

∀i = 1, 2,

2∑
j=1

wj

∫ rb

ra

dψi
dr

(
r µ

dψj
dr

)
dr =

∫ rb

ra

ψi(r)f0 r dr + [ψi(r)q(r)]
rb
ra

[Ke] =
µ (ra + rb)

2 (rb − ra)

[
1

−1

−1

1

]
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{F e} =
f0

6

{
−2(ra)2 + (rb)

2 + rarb

−(ra)2 + 2(rb)
2 − rarb

}

{Qe} =

{
−q(ra)

+q(rb)

}
For the two elements in this problem:

[K(1)] =
µ (3Ri +R0)

2 (R0 −Ri)

[
1

−1

−1

1

]

[K(2)] =
µ (Ri + 3R0)

2 (R0 −Ri)

[
1

−1

−1

1

]
3. Assembly:K

(1)
11

K
(1)
21

0

K
(1)
12

K
(1)
22 +K

(2)
11

K
(2)
21

0

K
(2)
12

K
(2)
22



w1

w2

w3

 =


Q

(1)
1

Q
(1)
2 +Q

(2)
1

Q
(2)
2

+


F

(1)
1

F
(1)
2 + F

(2)
1

F
(2)
2


After some computation...

µ
2(R0−Ri)

 (3Ri +R0)

−(3Ri +R0)

0

−(3Ri +R0)

4(Ri +R0)

−(Ri + 3R0)

0

−(Ri + 3R0)

(Ri + 3R0)



w1

w2

w3



=


Q1

Q2

Q3

 + f0×(R0−Ri)
24


5Ri +R0

6(Ri +R0)

Ri + 5R0


The nodal conditions are w1 = w3 = 0, Q2 = 0. The condensation process yields
one equation for one variable (w2):

K22 w2 = F2

2µ(Ri +R0)

R0 −Ri
w2 =

f0 × (R0 −Ri)(Ri +R0)

4

4. Resolution and approximation:
We solve for w2:

w2 =
f0 × (R0 −Ri)2

8µ

Approximation for each element:

we(r) ' we1ψ
e
1(r) + we2ψ

e
2(r)

Specifically:

∀r ∈ [Ri, (R0 +Ri)/2], w(r) ' w2
R0 +Ri − 2r

R0 −Ri
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∀r ∈ [(Ri +R0)/2, R0], w(r) ' w2
2r − (R0 +Ri)

R0 −Ri

5. Post-processing:
We approximate Q1 and Q3:

Q1 = Q
(1)
1 =

(
rµ
dw

dr

)
r=r

(1)
a

Q1 ' −
2µw2Ri
R0 −Ri

= −f0Ri(R0 −Ri)
4

Q3 = Q
(2)
2 =

(
rµ
dw

dr

)
r=r

(2)
b

Q2 '
2µw2Ri
R0 −Ri

=
f0Ri(R0 −Ri)

4

6. One quadratic element:

5.2 [FEM for 1D steady fluid flow] Consider the irrotational flow of an ideal fluid
about a circular cylinder with its axis perpendicular to the plane of flow, which takes place
between two long horizontal walls (see figure 5.2). The governing equation is:

−∇2u = 0 (5.1)

Is it more computationally efficient to model the flow problem with the stream function
(u = Ψ) or the flow potential (u = Φ)?

Solution: See the next four pages of notes.
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Figure 5.2 Flow around a non-penetrable obstacle in 2D. Image taken from (Reddy, 2004).
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5.3 [FEM for 1D steady fluid flow] Consider the groundwater flow problem governed
by the following equation:

− ∂

∂x

(
a11

∂Φ

∂x

)
− ∂

∂y

(
a22

∂Φ

∂y

)
= f(x, y) (5.2)

Two pumps are used to extract the water brought by a river, modeled as a lineic fluid source.
The boundary and loading conditions are shown in the Figure 5.3. Propose a FEM model
made of linear triangular elements to approximate the distribution of water fluxes.

Figure 5.3 Seepage problem in 2D. Image taken from (Reddy, 2004).

Solution: See the next six pages of notes.
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5.4 To account for a percolation porosity, the following modified Kozeny-Carman rela-
tion was established:

K = B
(φ− φc)3

(1 + φc − φ)2
d2

1. Calculate the permeability of a sandstone sample which has porosity 0.32 and an
average grain size of 100 µm. Assume B = 15 and φc = 0.035.

2. Compare the permeabilities κ1 and κ2 of two sandstones that have the same porosity
and pore microstructure, but different average grain sizes, d1 = 80µm and d2 =
240µm.

Solution:

1. The units of B in this equation are such that expressing d in microns gives permeability
in milliDarcy. Then:

K = B
(φ− φc)3

(1 + φc − φ)2
d2 = 15

(0.32− 0.035)3

(1 + 0.035− 0.32)2
× 1002 = 6.79 Darcy

2. Assuming that B and φc are the same for both sandstones since they have the same
pore microstructure, we can express the ratio of their permeabilities as:

κ1

κ2
=
d2

1

d2
2

=
802

2402
=

1

9

The sandstone with larger average grain size has a higher permeability (by a factor of
9), even though both have the same total porosity.

5.5 We recall that the 1D laminar flow in a pipe of circular cross-section of radius r is:

q = −π r
4

8 η

∆p

L

In a tubular pore of circular cross-section, with radius r, Darcy’s law is expressed as:

q = −K A

η

∆p

L
= K

π r2

η

∆p

L

Consider a unit rock volume that contains N tubular pores of circular cross-section, fol-
lowing an isotropic distribution, with a radius size distribution p(r). Show that the intrinsic
permeability K has the following expression:

κ =
Φ

8

1∫∞
0
f(r)dr

∫ ∞
0

r2f(r)dr

In which Φ is the porosity of the rock sample, and in which the radius volume frequency
f(r) is defined as f(r) = N Lπ r2 p(r).
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Solution: For a porous medium that contains N pores of different radii, with a radius size
distribution p(r), the equation of laminar flow is:

q = −
N π

∫∞
0
r4p(r)dr

8 η

∆p

L
(5.3)

And Darcy law is expressed as:

q = −κ 1

η

N π
∫∞

0
r2p(r)dr

Φ

∆p

L
(5.4)

Multiplying Equations 5.4 and 5.3 by L, and then combining them, provides:

Φ

8

∫ ∞
0

r2f(r)dr = κ

∫ ∞
0

f(r)dr

which gives the required expression of permeability:

κ =
Φ

8

1∫∞
0
f(r)dr

∫ ∞
0

r2f(r)dr

5.6 Show that for the pipe model illustrated in Figure 5.4, the intrinsic permeability
above the percolation threshold has the following expression:

K =
π

32

λr4

l
3

in which λ is the average capillary length and r is the average capillary radius. Assume
that the distribution of capillaries centers along the z-axis is homogeneous and isotropic,
and that the probability density functions of r, λ, θ and φ are isotropic and statistically
independent.

Figure 5.4 Pipe model: Unit section S intercepts pipes of various orientations (θ, φ), radius r and
length λ. l is the average spacing between two pipes. Image taken from (Gueguen and Dienes, 1989)

Solution: See the paper by Gueguen and Dienes (1989) provided in the following pages.
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Transport Properties of Rocks from Statistics and 
Percolation 1 

Y. G u e g u e n  2 and J. Dienes  3 

Two simplified microstructural models that account for permeability and conductivity of  low-po- 
rosity rocks are compared. Both models result from statistics and percolation theory. The first 
model assumes that transport results from the connection of  1D objects or "'pipes "'; the second 
model assumes that transport results from the connection of  2D objects or "cracks. "In both cases, 
statistical methods permit calculation o f  permeability k and conductivity o, which are dependent 
on three independent microvariables: average pipe (crack) length, average pipe radius (crack 
aperture), and average pipe (crack) spacing. The degree of  connection is one aspect of  percolation 
theory. Results show that use o f  the mathematical concept of  percolation and use of  the rock physics 
concept of  tortuosity are equivalent. Percolation is used to discuss k and a near the threshold 
where these parameters vanish. Relations between bulk parameters (permeabil#y, conductivity, 
porosity) are calculated and discussed in terms of  microvariables. 

KEY WORDS: permeability, electrical conductivity, porosity, microstructure. 

I N T R O D U C T I O N  

Although "i t  is obvious that no simple correlation between porosity and perme- 
ability can exist" (Scheidegger, 1974), the search for such correlations is per- 
vasive in rock physics. The reason is probably that tentative correlations are 
attractive to develop, and they are frequently successful. Success is guaranteed 
by the fact that undetermined constants are always introduced and adjusted from 
experimental data. As suggested by Scheidegger, if a correlation should exist, 
it is between structure and permeability. Structure is a term that needs to be 
defined accurately: it means here " the  microstructure of  the porosi ty."  Struc- 
ture cannot be defined quantitatively by a single parameter. It has to be de- 
scribed by a set of  statistical distributions o f  microstructural parameters, each 
of  them being specific of  pore geometry. 
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Transport properties, i.e., permeability and conductivity, are calculated 
using statistical methods and percolation theory (Broadbent and Hammersley, 
1957). The results are given for a rock in which the microstmcture of the po- 
rosity is described by a random distribution of pipes. A similar calculation was 
reported previously for cracks (Dienes, 1982) and has proved to be useful in 
some situations (Gueguen et al., 1986). The results show that concepts of tor- 
tuosity and percolation are equivalent. Both the pipe and the crack models are 
used to compute relationships between bulk parameters (permeability, porosity, 
conductivity) in terms of microvariables. 

P E R M E A B I L I T Y  F R O M  STATISTICS AND P E R C O L A T I O N  

Many theoretical models are available to describe fluid flow in rocks 
(Scheidegger, 1974; Brace, 1977; Dullien, 1979; Seeburger and Nur, 1984; 
Koplik et al., 1984; Wilke et al., 1985). Here, permeability k for two models, 
a pipe and a crack model, is calculated. 

Stat i s t ics  

The pipe model presented here is the following. A set of pipes of variable 
radii r and lengths X is isotropically distributed (Fig. 1). The model is similar 
to that of Hating and Greenkom (1970), but it could be modified to take into 
account anisotropy. The statistical calculation of permeability (Appendix A) is 

71" 

k = 3~noX r 4 

where r 4 is the fourth-order moment of the radius distribution and no the number 
of pipes per unit volume. 

A simplified version of the pipe model is sufficient for our purpose. An 
approximate expression for (r 4) is used. The radius distribution is assumed to 
be narrow so that (r 4) is close to (~)4. The average spacing between pipes e is 

t0 

Fig. 1. Pipe model. Unit section S intercepts pipes of various ori- 
entation ?'(0, 49), radius r, and length X; fi' is normal to S and e is 
average spacing between pipes. 
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introduced so that n o = 1/?3. With this approximation, 

7i- ~ 4  
k -  

32 73 

Only those pipes that are connected have to be retained in the statistical cal- 
culation of volume flow. Therefore, 

k = ~-~f ?3 (1) 

where f i s  the fraction of connected pipes: 0 < f _< 1. The meaning of "con- 
nected pipes" is that of percolation theory: it refers to pipes that are part of an 
"infinite path."  Calculation o f f  is possible with a percolation model. 

A second microstructural model corresponds to a distribution of 2D objects 
(cracks). Although this situation is certainly relevant to crystalline rocks, crack 
models are uncommon. Dienes (1982) has shown that an isotropic distribution 
of cracks with radius c, number density no, and aspect ratio A = w/c results 
in a permeability, 

47r A3 c5 
= "o o f  

where n o c 5 is the fifth moment of the crack number density. Factor 0 accounts 
for the hydrodynamics of flow through a system of cracks with varying thick- 
ness, but seems to differ little from unity in the cases examined. The factor f 
accounts for the fraction of cracks that belong to an infinite network and is to 
be determined from percolation theory. Three independent microstructural pa- 
rameters are introduced: ? (average crack radius), N (average half-crack aper- 
ture), and ? (average crack spacing) (Fig. 2). By restricting to the isotropic case 
and using approximations similar to the previous ones as far as statistical dis- 

Fig. 2. Crack model: isotropic distribution of 
cracks. Each crack is characterized by its ra- 
dius c and aperture 2w: h' is normal to a crack 
and ~' is average crack spacing. 

zl 

/ ¥ 
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tributions are concerned 

47r ~3 72 
k = 1~ f ~73 (2) 

Percolat ion 

Pipe or crack centers are assumed to be distributed on a random network. 
Le tp  be the probability that two pipes or two cracks intersect. From percolation 
theory (Stauffer, 1985), f is known to be a function of  p. Below a threshold 
probability Pc, f = 0. Above Pc, f increases  rapidly un t i l f  = 1. In the transition 
region where p # Pc, f c¢ (p - p J ,  where n = 2 (De Gennes and Guyon, 
1978; Englman et al. 1983). Unfortunately, f c a n  be calculated exactly from p 
only if simple lattices are assumed. A classical approximation is that of  the 
Bethe lattice where each pipe or crack has z neighbors. Then, Pc = 1/ (z  - 1) 
(Stauffer, 1985). Assuming z = 4 (as in Dienes, 1982), Pc = 1 /3 .  Near this 
threshold 

f - -  54 (p  - pc) 2 (3) 

This result is obtained from Eq. (27) (Dienes, 1982) where p is close to 1 /3  
(Fig. 3). 

The above result has yet to be c_ompleted, _however, in so far as p is a 
function of  three microvariables k,  ?, f or ~ ,  ~, f. Several ways are known to 
calculate p. 

One method (David, 1985) relies on calculation of  the number of  intersec- 
tions of  a given population of  objects (pipes or cracks) with a random line. 
[This calculation can be found in Dienes (1978)]. Another way is to use the 
concept of  excluded volume (De Gennes, 1976). The excluded volume V e is 
the average volume around one object (pipe or crack) within which a second 
object must have its center in order for the two objects to intersect. 

In the case of  two cylindrical pipes, Ve = 2 ~2 ?. Given that 1/i~ 3 is the 
pipe number density, the average number of  intersections per pipe is Ve / - f  3. 

k 

k mox 

Pc :1/3 1 p 

Fig. 3. Variation of the permeability k, as 
a function of the probability of intersection, 
p. Percolation threshold is noted p,.; km~x is 
obtained when p = f = 1. 
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Assuming as above z = 4, 

~2~ 
p -- 2? 3 (4)  

Together with Eqs. (1) and (3), Eq. (4) gives the solution for k in terms of 
microvariables r, X, g. Relation (4) gives moreover  the additional condition for 
having a nonzero permeability,  

~2 ? 1 

2 ?  3 -- 3 

As could be expected, the probability that any pipe intersects another pi_pe is 
small if the pipes are short (small X) or if they are spaced far apart (large e). 

Probability p for two cracks to intersect has been determined previously 
from different methods (David, 1985; Charlaix et al., 1984) (Appendix B). 
These last authors used the calculation of  De Gennes (1976) that gives the ex- 
cluded volume for two discs: V e = rr 2 ~3. Given that 1/?3 is the crack density, 
the probability p is, 

7i -2 5 3 

P -  4 ?3 (5)  

assuming z = 4. 
As previously, Eqs. (2), (3), and (5) allow k to be expressed in terms of 

three microvariables w, c, g. 
The value of  kma x is given by Eq. (2) w i t h f  = 1. Nonzero permeability is 

observed f o r p  > ½, i.e., 5 / ?  > 0.5 (Gueguen et al., 1986). 

and 

Tortuosity 

Porosity is derived easily for each model as 

~2~ 

~b =~r  73 (pipe model)  (6)  

q5 = 2re •-7- (crack model)  (7)  

From Eq. (1) and (6), a possible relation between k and 4~ is 

k = --f ?2 ~ for the pipe model 
32 

This equation is similar to Eq. (11) of  Walsh and Brace (1984), also derived 
for a pipe model, which is 
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1 1 m2 

where r is " tor tuosi ty ,"  m is hydraulic radius, and b is a constant. 
Comparison of  both equations leads to 

1 1 1 g -  

~ f  - b r 2 

This means that the tortuosity concept that is used frequently in rock physics 
and the percolation concept are related. This result is not really surprising and 
agrees with those from many other authors concerned with percolation and ran- 
dom media (e.g., Redner, 1983). If  f--+ 0, r ~ ~ ;  thus, connections no longer 
exist throughout the medium and k -+ 0. A large tortuosity corresponds to a 
situation where pore connection is poor. In terms of  percolation theory, "infi- 
nite paths" through the medium exist, but only a few. The opposite situation, 
a small tortuosity, corresponds to the existence of  many "infinite paths."  The 
value of  r in the case of  ideal connection and isotropy is r = 2. In terms of  
percolation, ideal connection means f = 1; thus, b = 8. 

R E L A T I O N S  B E T W E E N  B U L K  P A R A M E T E R S  IN T E R M S  OF 
M I C R O V A R I A B L E S  

The above equations concerned with permeability k and porosity ~b may be 
completed with similar results on electrical conductivity Cr. The bulk parameters 
(k, Cr, ~b) can be expressed in terms of  microvariables (Y, X, f) or C, w, e) 
previously used. 

Bulk parameters  

Formation factor F is used frequently in rock physics. By definition, F = 
Cry/Cr where Cry is the fluid conductivity and Cr is the rock conductivity. Calcu- 
lation of  Cr goes along the same lines as calculation of  k gives 

F = 4 f  - I  q5 - j  (8) 

Results for the three bulk parameters k, F, q5 (Table 1) are expressed as func- 
tions of  three microvariables so that theoretically the relations (Table 1) may 
be inverted to get ?, X, /? or N, ?, t?. Table 1 should be completed by Eqs. (3), 
(4), and (5) when the rock is close to the percolation threshold p,.. Below Pc, f 
= 0; well above Pc, f = 1. Depending on how the equations are combined, 
several permeability-porosity relations can be derived also. 

One of  them has been discussed above for the pipe model (k = f / 32  72 
qS). However, this is not the only possible k - ch relation because three variables 
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Table I. Permeability, Conductivity, and Porosity for Two Models 

Model k F = ar/a 0 

~k F 4 ~2 )k 
Pipe model ~ f  ?3 4 f  - t  0 -I  = ' - -73  

4~r w 3 c 2 ~2 w 
Crack model 7 ~ f  ?3 4 f - '  (o -I 2re ?rag- 

are involved in both k and 4~. Using this relation together with Eq. (8), 

~2 
kF - or ~ = 2 (2 kF) I/2 

8 

Therefore, ? is obtained simply from kF. Other microvariables can be obtained 
in a similar way by appropriate combinations of k, F, and ~b. Because F is 
proportional to 4~, however, only ? and ~/~3 can be obtained separately for the 
pipe model and expressed as functions of k and F when f = 1. This is not the 
case close to the percolation threshold where Eqs. (3) and (4) can be used and 

? = (8re kFX/4,)  '/3 

with X =  2~r4, 1 (2kF)I /2  {1/3  + [ 2 / ( 2 7 F 0 ) ' / 2 ] }  

so that the three microvariables are obtained in that situation. 
In the case of the crack model, a possible relation between k and 0 is, from 

Eqs. (2) and (8), 

thus 

2 2 
k = ~ f N  do 

8 N2  or N = 1 kF = 15 ~ (30 kF) '/2 

Then, N and ~2/{3 may be obtained separately as functions of k and F when f 
= 1. Again, close to the percolation threshold, Eqs. (3) and (5) can be used 
and ~ and ~ can be derived: 

= 2(rr4~)-' (30kF)  1/2 {1/3  + [2 / (27  F0) ' /2 ]}  

{ =  ~ {1 /3  + [2 / (27  Fga)l/2]} 1/3 
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Testing of  the Models  

The above models should be tested in both general and particular situa- 
tions. The average microvariables (X or c, r or ~ ,  5) can be measured from 
photomicrographs or stained thin sections. Bulk properties F, k, and ~b can be 
measured also. Therefore, to what extent the models are faithfully reproducing 

observations should be possible to determine. An important distinction should 
be made between situations where the rock is close to the percolation threshold 
and situations where it is well above it. Only in the first case does Eq. (3) apply. 
In the second case, a complete inversion is not possible unless additional as- 
sumptions are used. Preliminary testing has been done in a few cases, either on 
little-porosity Fontainebleau sandstones (Gueguen et al., 1986) or in large-po- 
rosity (North Sea) chalks (Jakubowski, 1986). In both cases, the crack model 
predicted permeabilities are in good agreement with those observed. 

Particular Situations 

Given that the three bulk parameters are calculated from three independent 
microvariables, complete inversion to get the microvariables from the three bulk 
parameters is possible as long as these variables enter k, q~, o in different com- 
binations. This is not the case, as seen, i f f  = 1. If  additional conditions on the 
microvariables exist, however, complete inversion may be possible even for the 
situation f = 1. In that case, particular specific relations also can be derived 
between k, F, and q~. 

An example of  such a particular situation is that corresponding to a variable 
pipe or crack density (f variable), the two other microvariables being held con- 
stant. Examining how F varies in such a case near the percolation threshold by 
using Eqs. (3)-(8) and choosing as the unique variable 4~ instead of  e, 

F • (q~ - c) 

where 

27r 
qSc - (pipe model) 

3 h 

o r  

4 
4~c - (crack model) 

37r 

This result is close to Archie 's  law F = (~-m.  

Another example of  a particular situation can be found if the pressure vari- 
ation of  k and o is considered. Assume that pipe radius and crack aperture are 
the two variables that are the most sensitive to pressure. Therefore, if only r 
(pipe model) or w (crack model) vary, with fcons tan t  ( f  = 1), 
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k oc r 4, (0 ex r 2, F oc 4~ - I  , k o: F - 2  (pipe model) 

k oc w 3, 4) oc w, F c~ ¢,-J, k oc F -3 (crack model) 

Walsh and Brace (1984) have argued previously that, in such a case, k <x F ~ 
and that n must fall in the range 1 _< n __< 3. Their data are presented here (n 
= - l o g  k / log  F): 

/-/ 

Westerly granite 1.97 
Westerly granite (300 ° ) 2.0 
Westerly granite (500 ° ) 2.2 
Chelmsford Granite 2.13 
Henderson augen gneiss 2.15 
Marysville granite 2.7 
Raft River siltstone 2.4 
Frederic diabase (700 °) 2.1 
Pottsville Sandstone 2.6 
Pigean Cove Granite 2.1 

When several measurements are available for a rock, an average n is calculated 
so that this list is slightly different from Table 1 in Walsh and Brace's paper. 
Experimental data show that 2 _< n _< 3, which is in agreement with the two 
limits set by the pipe model (n = 2) and the crack model (n = 3). The possi- 
bility n = 1 is excluded by our models, but not by Walsh and Brace. They 
noted, however, that, i fn = l, this would imply a good sensitivity in tortuosity- 
pore aperture (w or r) dependence. This means, in terms of percolation theory, 
that the rock is close to the percolation threshold. In this case, k changes rapidly 
near the percolation threshold becausefvar ies  ( f  4: 1). 

CONCLUSIONS 

The main conclusions can be summarized as: 

(1) Simple models, using 1D objects (pipes) or 2D objects (cracks), can 
be useful to discuss correlations (pore microstructure)-(transport properties). 
Pore microstructure is described by statistical distributions of three microvari- 
ables that have been assumed to be isotropic. The anisotropic case could be 
investigated in a similar way. 

(2) Use of percolation theory and tortuosity are, in a certain sense, equiv- 
alent as found previously by others. In both cases, unfortunately, parameters 
( f  or 7) that cannot easily be measured from photomicrographs must be used. 
Potentially, an advantage lies in using percolation theory, because a large body 
of information exists describing the statistics of isolated objects as discussed 
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(for example, by Stauffer, 1985). Though percolation oversimplifies the phys- 
ical situation assuming either free flow or no flow in a narrow passage, it is far 
from being completely understood and is, in fact, the subject of active research. 
The subject of anisotropic percolation, for example, has received virtually no 
attention. 

(3) Pipe and crack models have been used to derive permeability-conduc- 
tivity-porosity relationships. Depending on the particular situations that are 
considered, various possible relations are predicted between bulk parameters. 

(4) Models should be tested by measuring microvariables from micro- 
graphs and measuring bulk properties in the laboratory. Preliminary testing has 
been done in a few cases successfully. 

Note Added in Proof 

Dr. Stauffer has drawn our attention to an important recent publication that 
was not known to us (Fragmentation, Form and Flow in Fractured Media, 
1986). This book contains several papers that are concerned with flow in frac- 
tured media. In particular, the paper by Charlaix et al. (1986) contains some 
results that are presented and discussed also in the present paper (critical be- 
havior of k, probability p in terms of disc radius). An important difference, 
however, is that Charlaix et al. did not use a statistical approach. They exam- 
ined a "crack model" corresponding to a broad distribution of crack apertures. 
Our approach is more appropriate for a distribution that is not broad. In fact, 
Charlaix et al. (1986) have applied the Ambegoakar et al. (1971) percolation 
model to the calculation of "crack model" permeability. A similar approach 
has been published simultaneously and independently in the case of a "pipe 
model" (Katz and Thompson, 1987). Katz and Thompson have considered a 
population of pipes with a broad distribution of pipe radii. They also applied 
the Ambegaokar percolation model to the calculation of "pipe model" perme- 
ability. The main differences between those models and ours are linked with 
the types of statistical distribution that have to be considered. Here statistics 
and percolation are combined whereas the quoted authors used only percolation 
and do not express the bulk parameters in terms of microvariables. 

APPENDIX A: STATISTICAL C A L C U L A T I O N  OF k FOR PIPE 
MODEL 

The volume flow through a capillaric pipe of radius r is given by the 
Poiseuille law: 

(2 - -~r  ~4 (Vp- r )  r 
8~ 
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where f is a unit vector along the pipe axis (Vp- ?" is the pressure gradient along 
the pipes), and ~ is fluid viscosity. The flow through a section (S) of  porous 
medium defined by a plane z = constant (Fig. 1) is considered. The area of  the 
section is unity and this unit section intercepts a number of  pipes that are in- 
dexed by 1, 2 . . . .  o., . . . .  N. The normal to the section is ft. Total volume 
flow through it is N (2 ~" if, where Q~ is the flow through pipe a .  By com- 
paring this result to Darcy ' s  law, 

N ~ ~ ~ r ~  4 

[p,i ] it  7 = p,, nj 
~= l 8r I 

Thus, the permeability is 

k/j ~] (?~) 4 a 
= t i t 7 

An isotropic distribution of  pipes is assumed and substitutes an integral expres- 
sion for the discrete summation. 

Let n(r, X, O, ~, z) be the number of  pipes per unit volume having a radius 
r, a length X, an orientation defined by 0 and ~, and a center at z (Fig. 1). Then, 
the number of  pipes N having a radius r and an orientation (0, ~) that intercepts 
the unit area is 

ice ix/2 cos 0 
N(r ,  O, ~)  = 2 d X n(r ,  X, O, ~, z) ck 

0 oO 

because a pipe with fixed values of  0 and X intercepts (S) only if its center is 
at z -< X / 2  cos 0 (Fig. 1). Assuming isotropy and statistical independence, 

i ~  f)',/2 COS 0 Y/'0 nO 
N(r ,  O, ~)  = 2 d X f ( r ) g ( X )  ~ dz = X f ( r )  cos 0 - -  

o ~o 27r 

The distribution of  centers of  pipes along z is assumed to be homogeneous and 
isotropic: 

X = Xg(X) 
0 

and 

1 
n(r ,  X, O, ~, z) = f ( r )  g()Q no 2re 

where n o is the number of  pipes per unit volume, f ( r )  is the fraction of  them 
having radius r, and g(X) is the fraction having length X. The factor l /2~r  
normalizes the angular distribution. 
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With these distributions, the expression for k becomes 

S f k = -~r2~r no X o r4f(r)  dr J0 (cos 30)2~r sinOdO 

32 no ~ r4 

where (r  4) is the fourth-order moment of the radius distribution. 

A P P E N D I X  B 

Dienes (1978) has shown that the mean free path for a random line in a 
field of thin, circular cracks is X = 2/7r  72 i73. Assuming that intersections are 
described by a Poisson process, the probability that a crack is isolated is q4 = 
e-"  where u = L/X and L is the circumference of the average crack, i.e., L = 
27r ?, a n d p  = (1 - q). 

Then, (1 - p)4 = e - ,  where u = 7r273/i! 3. This frequency u is exactly 

identical to that obtained from the excluded volume argument. The difference 

between the above calculated value o f p  and Eq. (5) stems from the fact that an 
approximation has been used to derive p from p in Eqs. (4) and (5). Using the 
assumption of the Bethe lattice with 4 neighbors leads to q4 = e - " ,  i.e., to the 

above equation. When u is small, however, e - " / 4  = 1 - u / 4  and p = v/4. 

A C K N O W L E D G M E N T S  

This work has been supported by the NATO Scientific Affairs Division. 

The authors thank I. Lerche for his constructive criticisms, which have helped 
to improve the original manuscript. 

R E F E R E N C E S  

Ambegaokar, V.; Halperin, B. I.; and Lauger, J. S., 1971, Hopping Conductivity in Disordered 
Systems: Phys. Rev., v. B4, p. 2612-2620. 

Brace, W. F., 1977, Permeability from Resistivity and Pore Shape: J. Geophys. Res., v. 82, p. 
23, 3343-3349. 

Broadbent, S. E. and Hammersley, J. M., 1957, Percolation Processes I, Crystals and Mazes: 
Proc. Cambridge Philos. Soc., v. 63, p. 629-641. 

Charlaix, E. ; Guyon, E.; and Rivier, N., 1984, A Criterion for Percolation Threshold in a Random 
Array of Plates: Solid State Commun., v. 50, p. 999-1002. 

Charlaix, E. ; Guyon, E. ; and Roux, S., 1986, Critical Effects in the Permeability of Heterogeneous 
Media: p. 316-324 in Fragmentation, Form and Flow in Fractured Media: Annals of Israrl 
Physical Society, v. 8. 

David, C., 1985, ModUle d'Evolution de la Permrabilit6 d'une Roche: Rapport de D.E.A., Institut 
de Phys. du Globe, Strasbourg, 78 p. 



Transport Properties of Rocks 13 

De Gennes, P. G., 1976, The Physics of Liquid Crystals: Oxford University Press, Oxford, p. 38. 
De Gennes, P. G. and Guyon, E., 1978, Lois G6ndrales pour l'Injection d 'un Fluide dans un Milieu 

Poreux Al6atoire: J. M6canique, v. 77, p. 403-432. 
Dienes, J. K., 1978, A Statistical Theory" of Fragmentation: p. 51-55 in Y. S. Kim (Ed.), Pro- 

ceedings of the 19th U. S. Symposium on Rock Mechanics. 
Dienes, J. K., 1982, Permeability, Percolation and Statistical Crack Mechanics: p. 86-94 in R. E. 

Goodman and F. E. Heuze (Eds.), Issues in Rock Mechanics: American Institute of Mining, 
Metallurgical and Petroleum Engineers, New York. 

Dullien, F. A. L., 1979, Porous Media: Fluid Transport and Pore Structure: Academic Press, New 
York, 396 p. 

Englman, R.; Gur, Y.; and Jaeger, Z., 1983, Fluid Flow Through a Crack Network in Rocks: J. 
Appl. Mech., v. 50, p. 707-711. 

Gueguen, Y.; David, C.; and Darot, M., 1986, Models and Time Constants for Permeability 
Evolution in Cracked Rocks: Geophys. Res. Lett., v. 13, p. 460-463. 

Hating, R. E. and Greenkom, R. A., 1970, A Statistical Model of a Porous Medimn with Non 
Uniform Pores: A. I. Chem. Eng., v. 16, p. 477-483. 

Jakubowski, M., 1986, Contribution ?a l 'Etude P6trographique et P6trophysique de la Craie des 
Rdservoirs Pdtroliers due Complexe d'Ekofisk: Thbse d'Etat Univ. de Toulouse, I89 p. 

Katz, A. J. and Thompson, A. H., 1987, Prediction of Rock Relecttical Conductivity from Mer- 
cury Injection Measurements: J. Geophys. Res., v. 92, p. 599-607. 

Koplik, J. ; Lin, C. ; and Vermette, M., 1984, Conductivity and Permeability from Microgeometry: 
J. Appl. Phys., v. 56, p. 3127-3131. 

Redner, S., 1983, Percolation and Conduction in Random Resistor-Diode Networks: p. 447-475 
in G. Deutscher, R. Zallen, and J. Adler (Eds.), Percolation, Structure and Processes: Annals 
of the Israel Physical Society, v. 5. 

Scheidegger, A. E., 1974, The Physics of Flow Through Porous Media: University of Toronto 
Press, Toronto, 353 p. 

Seeburger, D. A. and Nur, A., 1984, Pore Space Model for Rock Permeability and Bulk Modulus: 
J. Geophys. Res., v. 89, p. 527-536. 

Stauffer, D., 1985, Introduction to Percolation Theory: Taylor and Francis, London, 124 p. 
Walsh, J. B. and Brace, W. F., 1984, The Effect of Pressure on Porosity and the Transport Prop- 

erties of Rock: J. Geophys. Res., v. 89, p. 9425-9431. 
Wilke, S.; Guyon, E.; and de Marsily, G., 1985, Water Penetration Through Fractured Rocks: 

Test of a Tridimensional Percolation Description: Math. Geology, v. 17, p. 17-27. 



156 ELEMENTS OF PORO-ELASTICITY

5.7 Consider a Bethe Lattice with z = 4.

1. What is the percolation threshold pc for this network?

2. What is the average number of sites T to which the origin is connected through a
single branch A ? (T is the average size of the cluster for each branch).

3. Determine the form of the relationship that links S to p and pc.

4. Determine P , the fraction of sites that are part of the infinite cluster. Introduce Q, the
probability that a path starting from the origin is interrupted somewhere.

Solution: See the following five pages of notes.
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5.8 Consider a geomaterial in which the pores are penny-shaped, with the geometric
parameters explained in Figure 5.5.

Figure 5.5 Flow in a network of penny-shaped pores. Image taken from (Gueguen and Dienes,
1989).

1. Calculate the value of l (average distance between fractures) at the percolation thresh-
old. Assume that the fractures are disk shaped and of radius c = 200µm. Assume
that each fracture is a site that is part of a Bethe lattice.

2. Calculate the maximum value of permeability for a population of identical fractures
with radius c = 200µm and aperture w = 1µm. Given: The permeability of a
network of penny-shaped fractures is:

k =
4π

15
f
w3c2

l
3

In which f is the portion of fractures that form an infinite cluster, and xn is the n-th
moment of probability of the variable x.

Solution: See the solution of Problem 5.6 (paper by Gueguen and Dienes, 1989).

5.9 Prove the axis-symmetric consolidation equation shown in the course.

Solution: In the demonstration of the 1D consolidation equation, we show that:

∂pw
∂t

= cv∇2pw (5.5)

with:
∇2pw = (∇⊗∇(pw)) : δ
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in which δ is the second-order identitiy tensor. In axis-symmetric conditions, using cylin-
drical coordinates:

∇(pw) =
∂pw
∂r

er

∇⊗∇(pw) = ∇
(
∂pw
∂r

er

)

= ∇
(
∂pw
∂r

)
⊗ er +

∂pw
∂r

∇ (er)

=
∂2pw
∂r2

er ⊗ er +
1

r

∂pw
∂r

∂er
∂θ
⊗ eθ

=
∂2pw
∂r2

er ⊗ er +
1

r

∂pw
∂r

eθ ⊗ eθ

From there, we find that:

∇2pw =
∂2pw
∂r2

+
1

r

∂pw
∂r

(5.6)

The combination of Equations 5.5 and 5.6 provides the result sought:

∂pw
∂t

= cv

(
∂2pw
∂r2

+
1

r

∂pw
∂r

)

5.10 Consider a rock specimen filled with oil (mass density ρn, pressure pn, saturation
degree Sn) and water (mass density ρw, pressure pw, saturation degree Sw). The specimen
is cylindrical, with impermeable lateral boundaries. The specimen is subjected to a con-
stant water flow at the base. The initial saturation degree of oil is S0

n = 0.8. We assume
that fluid flow is purely 1D and occurs only in the direction of the axis of the specimen.
The capillary pressure is assumed to be negligible, i.e. ∀z, pn(z) = pw(z) = p(z). The
porosity of the specimen is assumed to remain constant.

1. Provide the governing equations of the water and oil phases.

2. Assume that the fluids are incompressible. Show that the sum of the fluid velocities
v(z) = vn(z) + vw(z) is uniform throughout the sample, i.e. that v(z) does not
depend on the position z in the sample.

3. Show that:
dp

dz
=
−v(z) + (Kwρw/µw +Knρn/µn) g

Kw/µw +Kn/µn

Explain why dp/dz only depends on Sw.

Solution: See the following two pages of notes.
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5.11 The capillary rise in a tube can be calculated by using Jurin’s equation:

γw h = pn − pw

and Laplace’s equation:

pn − pw =
2tn/w cos θw

r
in which h is the height of the capillary rise, γw is the specific weight of the wetting fluid
in the tube (e.g., water), pw is the pressure of the wetting fluid (water), pn is the pressure
of the non-wetting fluid (e.g., air), r is the radius of the tube, tn/w is the surface tension in
the meniscus (e.g., at the water/air interface) and θw is the wetting angle, i.e. the angle that
exists between the normal to the tube wall and the tangent to the meniscus. For a water/air
meniscus under ambient temperature, we have tn/w = 75 mN/m. The porous network
inside a soil specimen is often modeled as a distribution of capillary tubes that are parallel
to each other and that are not connected to one another, so that the equations of Jurin and
Laplace can be applied. With this assumption in mind, let us consider a cylindrical soil
specimen, 5 cm in diameter and 100 cm in height, made of solid grains, liquid water and
gaseous air. The soil porous network is modeled by the bundle of tubes described in Table
5.1. Furthermore, it is assumed that the tubes are perfectly wettable, i.e., θw = 0o.

1. Calculate the porosity of the specimen.

2. Express the capillary rise in a single tube of diameter D (in symbolic formula). Cal-
culate the capillary rise h in each type of tube listed in Table 5.1.

3. Express the relationship between the capillary pressure and the degree of saturation
in water of the specimen. Plot the Water Retention Curve of the specimen.

Table 5.1 Porous network modeled as a bundle of tubes

Tube diameter (µm) Number of tubes

0.1 500

0.5 1,000

1 5,000

5 50,000

10 100,000

50 50,000

100 5,000

500 1,000

1000 500

Solution: See the following two pages of notes.
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5.12 Let us consider two non-deformable cylinders of radius R and of length 1 m in the
direction orthogonal to the sheet of paper (see Figure 5.6). At the contact between the two
cylinders, a water meniscus exists. We assume that the material that makes the cylinders is
perfectly wettable, i.e., θw = 0. The meniscus section is an arc of circle of radius r. The
width of the meniscus relative to the axis that links the two centers of the cylinders is noted
l.

1. Calculate l as a function of r and R. Derive the relation between the water capillary
pressure in the meniscus, R and α = R/r. From there, calculate the attraction force
fu between the two cylinders because of the presence of the meniscus (provide the
expression of fu as a function of α and R).

2. Generalize the result found in question 1 above to a regular cubic packing of cylinders.
Give the expression of the effective stress. What are the limitations of this model?

3. Calculate the porosity, void ratio and dry specific weight of the material (assuming a
regular cubic packing). Assume ρs = 27 kN/m3 (for the solid grains).

4. The capillary cohesion is defined as:

cs = σ′n tan Φ′

in which Φ′ is the friction angle and σ′n is the normal component of the effective stress
(where here, the normal direction is the direction of the segment that links the centers
of both cylinders). Calculate the capillary cohesion of the medium as a function of the
water capillary pressure, for a friction angle of 30o. Plot the variations of the cohesion
for R = 1µm.

5. Calculate the increase in material strength in the vertical direction as a function of the
capillary pressure. Assume hte following:

The stress path is triaxial (σH=cst);

The external forces are given as: fext = 2R×
(
0.75σ2

v + 0.25σ2
h

)
;

The orientation angle of the external forces compared to the vertical is given as:
δext = 60− arctan(0.577× (σH/σv)) (in degrees);

The material strength of the dry medium is 100 kPa, which corresponds to an
external force oriented by an angle of 30o compared to the vertical (normal).

To proceed with the calculation, assume a value of σv and calculate the capillary force
such that σv reaches the material strength.

Solution: See the following two pages of notes.
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Figure 5.6 The menisci between two solid cylinders and the corresponding inter-granular forces.
Image taken after Fleureau’s course notes.
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5.13 Homework 3 - Problem 3
A varved clay consists of successive layers of silt and clay each of which has isotropic flow
properties (see Figure 5.7).

1. Derive expressions for the average (gross) permeability of the varved clay system
parallel (kt) and perpendicular (kn) to the direction of deposition.

2. Show that for any system of this type, kt ≥ kn ≥ 0.

3. Noting that the values of kt and kn are principal values of the permeability tensor,
determine the components of the permeability tensor in a reference frame X’ (see
Figure 5.7).

Figure 5.7 Flow through an element of varved clay.

Solution:

1. We note ∆hs (respectively ∆hc) the difference of pressure head from the top to the
bottom of a silt layer (respectively, clay layer). The flow in the normal direction is the
same across all layers, thus:

qn = ks
∆hs
Ls

A = kc
∆hc
Lc

A

in which A = B × l, where B is the width of the domain (in the plane of the sheet
of paper) and l is the depth of the domain (in the direction orthogonal to the sheet of
paper). Additioanally, the average normal permeability of the soil domain is defined
as:

qn = kn
∆h

L
A

in which L = 5Ls + 4Lc (total height of the soil domain) and ∆h = 5∆hs + 4∆hc
(total difference of pressure head between the top and bottom of the soil domain). By
combining the two above equations, we get:

kn =
(5Ls + 4Lc)

5Ls

ks
+ 4Lc

kc



174 ELEMENTS OF PORO-ELASTICITY

The flow in the tangential direction is:

qt = 5ks
∆h

B
l × Ls + 4kc

∆h

B
l × Lc

in which ∆h is the difference of pressure head between the left and right hand sides of
the soil domain. Additionally, the average tangential permeability of the soil domain
is defined as:

qt = kt
∆h

B
l × (5Ls + 4Lc)

By combining the two equations above, we get:

kt =
(5ksLs + 4kcLc)

(5Ls + 4Lc)

2. Since the given permeabilities ks and kc are positive, and the given lengths are pos-
itive, the two permeability components kn and kt are positive. Now, let us compare
the two:

kt
kn

=
(5ksLs + 4kcLc)

(
5Ls

ks
+ 4Lc

kc

)
(5Ls + 4Lc)2

We have:

(5ksLs + 4kcLc)

(
5
Ls
ks

+ 4
Lc
kc

)
= 25L2

s + 16L2
c + 20LsLc

(
ks
kc

+
kc
ks

)
Suppose ks = αkc. Then:

(5ksLs + 4kcLc)

(
5
Ls
ks

+ 4
Lc
kc

)
= 25L2

s + 16L2
c + 20LsLc

(
α2 + 1

α

)
We have α2 + 1− 2α = (α− 1)2 ≥ 0 so α2 + 1 ≥ 2α and therefore, α

2+1
α ≥ 2. As

a result:

(5ksLs + 4kcLc)

(
5
Ls
ks

+ 4
Lc
kc

)
≥ 25L2

s + 16L2
c + 40LsLc = (5Ls + 4Lc)

2

We conclude that kt
kn
≥ 1 and therefore:

kt ≥ kn ≥ 0

3. To calculate the components of the permeability tensor in the reference frame shown,
we can apply the transformation equations that were established for stress transfor-
mation in 2D. Using Question 2 for the sign of kt − kn:

kxx =
kn + kt

2
+
kt − kn

2
cos(2θ)

kyy =
kn + kt

2
− kt − kn

2
cos(2θ)

kxy =
kt − kn

2
sin(2θ)
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5.14 Homework 3 - Problem 4
The combination of the water momentum balance equation, the solid mass conservation
equation and the water mass conservation equation provides:(

(α− φ)

Ks
+

φ

K∗w

)
Dspw
Dt

+ αdiv

(
∂u

∂t

)
=

Kw

µw
∇2pw

... which can be solved for the fields of displacements u and water pore pressure pw if
combined with the momentum balance equation:

De
...∇2u − α∇pw = 0

Starting from these two governing equtions above, show that the 1D consolidation equation
is expressed as:

∂pw
∂t

=
k

cv

∂2pw
∂z2

with Kw = kδ, cv = µw(S + α2mv), S =
(

(α−φ)
Ks

+ φ
K∗w

)
and mv = 1

K+ 4
3G

. Assume
that the solid skeleton has a linear isotropic elastic behavior.

Solution: We start with the governing equation:(
(α− φ)

Ks
+

φ

K∗w

)
Dspw
Dt

+ αdiv

(
∂u

∂t

)
=

Kw

µw
∇2pw

Using the notations introduced in the problem:

S
Dspw
Dt

+ α
∂εv
∂t

=
kδ

µw
∇2pw (5.7)

The time derivative relative to the solid skeleton is:

Dspw
Dt

=
∂pw
∂t

+∇pw · vs

with, according to the constitutive laws adopted in this course:

∇pw =
K∗w
ρw
∇ρw

We assume that the permeability of the porous medium is high enough that we can neglect
the gradient of water mass density. Therefore, in one dimension, equation 6.8 becomes:

S
∂pw
∂t

+ α
∂εzz
∂t

=
k

µw

∂2pw
∂z2

(5.8)

For a linear isotropic elastic solid skeleton, we have:

σ + αpwδ =

(
K − 2

3
G

)
εvδ + 2Gε
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For a 1D consolidation test:

σzz + αpw =

(
K − 2

3
G

)
εzz + 2Gεzz =

(
K +

4

3
G

)
εzz =

1

mv
εzz (5.9)

Now combining equations 5.8 and 5.9:

(
S + α2mv

) ∂pw
∂t

+ αmv
∂σzz
∂t

=
k

µw

∂2pw
∂z2

In a consolidation test, the imposed stress does not vary over time, therefore:

(
S + α2mv

) ∂pw
∂t

=
k

µw

∂2pw
∂z2

From which we deduce the required consolidation equation:

∂pw
∂t

=
k

(S + α2mv)µw

∂2pw
∂z2

=
k

cv

∂2pw
∂z2

5.15 Homework 3 - Problem 5
We subject a water-saturated solid specimen to a triaxial axisymmetric test. We assume
that the state of stress in the specimen is uniform and that the loading platens at the top and
bottom of the specimen are frictionless. Before applying any stress to the specimen, the
pore pressure is uniform, and equal to p0. The vertical stress applied on the top platen is
noted σ1, and the confining pressure applied on the lateral faces of the specimen is noted
σ3.

1. First consider that the test is undrained. Determine the stresses, pore pressures and
strains in the specimen, in terms of σ1, σ3 and p0.

2. Now consider that the test is drained. Repeat question 1, in the short-term and in the
long-term.

Solution:

1. The total stress is given (boundary conditions), so we are looking for the pore pressure
and the strains in the specimen (both are assumed to be uniform in the specimen). In
undrained conditions, the specimen does not change in volume, since the solid grains
and the water are both considered incompressible. There is no change of pore volume
during the test. Therefore, the pore pressure of the specimen increases by the same
amount as the mean stress applied at the boundary. Under the loading conditions, the
pore pressure is therefore:

pw = p0 −
1

3
(σ1 + 2σ3)
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in which compression counted negative. To find the strains, we can use Biot’s consti-
tutive relationships, which, in the absence of total volumetric deformation, boil down
to:

σ1 + αpw = 2Gε1

σ3 + αpw = 2Gε3

in which G is the shear modulus of the specimen. The two equations above can be
solved for ε1 and ε3.

2. Like for the undrained tests, the pore pressure in a drained test in the short term is:

pw = p0 −
1

3
(σ1 + 2σ3)

in which compression counted negative. The strains are obtained by solving the fol-
lowing system of equations, which comes form the constitutive relationships:

σ1 + αpw =

(
K − 2

3
G

)
(ε1 + 2ε3) + 2Gε1

σ3 + αpw =

(
K − 2

3
G

)
(ε1 + 2ε3) + 2Gε3

in which G is the shear modulus of the specimen and K is the drained bulk modulus
of the specimen (solid grains only). In the long term, the excess pore pressure is
dissipated and comes back to its initial value at equilibrium:

pw = p0

Then, the strain components can be obtained by solving the following system of equa-
tions, which comes from the constitutive relationships:

σ1 + αpw =

(
K − 2

3
G

)
(ε1 + 2ε3) + 2Gε1

σ3 + αpw =

(
K − 2

3
G

)
(ε1 + 2ε3) + 2Gε3

5.16 Homework 4 - Problem 1

1. Let us suppose that you are performing a triaxial compression test, in which σ11 = σI
and σ22 = σ33 = σII . Write the stress/strain relationship that governs the mechanical
behavior of the solid skeleton during the test.

2. Let us suppose that you are performing a drained isotropic compression test, in which
σ11 = σ22 = σ33 = σI , p = 0. We give the following constitutive relationship,
which stems from thermodynamic principles:

δΦ = αTr(ε) +
Ks

α− Φ0
pw
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in which Φ is the current porosity, Φ0 is the initial porosity, Ks is the bulk modulus
of the solid phase, and α is the Biot coefficient. Write the stress/strain and poros-
ity/pressure relationships for the drained isotropic compression test.

3. Now suppose that you are performing an undrained isotropic compression test, in
which σ11 = σ22 = σ33 = σI , ∆vf = 0 (where vf is the volume of the fluid in the
specimen, assumed to be incompressible). Derive the stress/strain relationship and
the stress/pore pressure relationship for the undrained isotropic compression test.

4. Discuss possible experimental plans to find the bulk and shear moduli of the solid
skeleton, as well as the poroelasticity coefficients α and N = Ks/(α− Φ0).

Solution:

1. Linear isotropic behavior of the solid skeleton:

σ + αpw =

(
K − 2

3
G

)
εvδ + 2Gε

The deviatoric part of the equation above is:

s = 2Ge (5.10)

where s is the deviatoric stress and e is the deviatoric strain. For the triaxial loading
described:

s = σIe1 ⊗ e1 + σIIe2 ⊗ e2 + σIIe3 ⊗ e3 −
1

3
(σI + 2σII)(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3)

s =
2

3
(σI − σII)e1 ⊗ e1 +

1

3
(σII − σI)e2 ⊗ e2 +

1

3
(σII − σI)e3 ⊗ e3

Similarly, for the strain:

e =
2

3
(εI − εII)e1 ⊗ e1 +

1

3
(εII − εI)e2 ⊗ e2 +

1

3
(εII − εI)e3 ⊗ e3

Taking the component 11 of equation 5.10:

σI − σII = 2G(εI − εII)

2. For the solid skeleton, with pw = 0:

σ =

(
K − 2

3
G

)
εvδ + 2Gε

Since the loading is isotropic:

σ = σ1δ =

(
K − 2

3
G

)
(3εI)δ + 2GεIδ

And finally:
σI = 3KεI
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For the fluid:
δΦ = αTr(ε) +

Ks

α− Φ0
pw

For a drained isotropic test, pw = 0 and:

δΦ = 3αεI

3. For the solid skeleton, in direction 1:

σI + αpw =

(
K − 2

3
G

)
× 3εI + 2G× εI = 3KεI (5.11)

For the fluid, in direction 1, we have δΦ = 0 since ∆vf = 0 and since the fluid is
incompressible. Therefore:

0 = 3αεI +
Ks

α− Φ0
pw

from which we get:

pw = −3α(α− Φ0)

Ks
εI (5.12)

Combining equations 5.11 and 5.12, we get:

σI =

[
K +

(α− Φ0)α2

Ks

]
× 3εI (5.13)

We note Ku the undrained bulk modulus:

Ku = K +
(α− Φ0)α2

Ks

Now combining equations 5.12 and 5.13, we get the sought stress/pore pressure rela-
tionship:

pw = −α (α− Φ0)

Ks

1

Ku
σI

4. In each of the three experiments above, we control stress and measure strain (or vice
versa), and we control the volume of the fluid (or porosity, in the case of an incom-
pressible fluid), and we measure the pore pressure (or vice versa). Hence, each of
the five equations established in the previous questions provides a relationship from
which poro-elasticity coefficients can be calculated. In particular, the triaxial com-
pression test provides:

σI − σII = 2G(εI − εII)
which allows calculating the shear modulus of the solid skeleton. The drained isotropic
compression test provides:

σI = 3KεI

δΦ = 3αεI

which allows one to calculate the bulk modulus of the solid skeleton and the Biot’s
coefficient. Lastly, the undrained isotropic compression test provides:

pw = −α (α− Φ0)

Ks

1

Ku
σI
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with:

Ku = K +
(α− Φ0)α2

Ks

which, after some intermediate calculations, allows one to find the coefficient N .

5.17 Homework 4 - Problem 2
Polluted water is to be flushed from a confined aquifer of height L and hydraulic cnductivity
k (see Figure 5.8). The method employed is to pump water out of well A. The water is then
treated (off-site) and successively pumped back (at the same rate) into the aquifer well B,
located at a distance 20d (where d is the diameter of the well bore). Assuming that the
initial head in the aquifer is h0, and that the adjacent layers are impervious:

1. Show that for a single well, the steady-state piezometric head can be related to the
rate of pumping through the following expression:

h = hw ±
Q

2π Lk
ln

(
2r

d

)
where hw is the water elevation and d is the diameter of the well.

2. On the basis of the above, sketch the equipotential lines and the flow net for the steady
flow between wells for the case of L = 20m, k = 10×10−6 cm/s and d = 0.4m.

Figure 5.8 Piezometric heads due to pumping and recharge from a confined aquifer.
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Solution:

1. Flow to a single well (in m3/s):

q = A× v = −k ×A×∇p

For a radial flow at a distance r from the center of a single well of length L, the area
through which the flow happens is A = 2π r L and therefore:

q(r) = −2π r Lk
dh

dr

In steady state, q(r) = ±Q, (+Q if water is injected at a flow rate of Q, -Q if water is
pumped at a flow rate of Q), and so:

±Q = 2π r Lk
dh

dr

We thus have:
dh = ± Q

2π Lk

dr

r

Integrating between r = d/2 at the circumference of the well, and r:

h(r)− hw = ± Q

2π Lk
ln

(
2r

d

)
which is the expected result.

2. For two wells (injection well B and extraction well A), the water head is obtained by
superposition:

h = hA+hB = 2h0−
Q

2π Lk
ln

(
2rB
d

)
+

Q

2π Lk
ln

(
2rA
d

)
= 2h0+

Q

2π Lk
ln

(
rA
rB

)
where rA is the radial distance to extraction well A, and rB is the radial distance to
injection well B. The equipotential lines can be drawn from the knowledge of h. The
flow lines are orthogonal to the equipotential lines, see Figure 5.9.

Figure 5.9 Flow net for the problem with two injection wells (Problem 5.17).
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5.18 Homework 4 - Problem 3
In the construction of a large excavation, the inflow of water to the excavation is prevented
by installing an impervious slurry wall which extends to the level of impervious rock (see
Figure 5.10). Outside the excavation, the heads in the soil are to be reduced by pumping
from a series of wells. Assuming a steady rate of pumping Qw = 600 m3/hr from a single
well, calculate the flow field in the soil assuming that the flow into the well is horizontal
and that the soil is homogeneous and isotropic. The piezometric head in the far-field is h0

= 100 m. What is the steady state head recorded at the observation well? Sketch the flow
field for the case when the horizontal transmissivity of the aquifer is T = 4,000 m2/day.
Treat the well as a line source in the last part of this problem.

Figure 5.10 Horizontal flow field for steady-state pumping.

Solution: The slurry wall acts like an axis of symmetry. The system is equivalent to two
puping wells that are 20 meters apart, wit no slurry wall. First consider a single well. In
steady state, we have:

Q = kiA = 2π k r h
dh

dr

After rearranging and integrating on both sides:

Q

2π k

∫ r

rw

dr

r
=

∫ h

hw

d dh
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h2 − h2
w =

Q

π k
ln

(
r

rw

)
where rw is the radius of the well, r is the distance to the well, hw is the water head in the
well and h is the water head at the observation point (x,y), given as:

h =

√
Q

π k
ln

(
r

rw

)
+ h2

w

For one well, the pressure head drop at point (x,y) is ∆h = h0 − h. For two well A and B
(20 meters apart): ∆h = ∆hA + ∆hB . Then:

∆h = 2h0 −

√
QA
π k

ln

(
rA
rw

)
+ h2

A −

√
QB
π k

ln

(
rB
rw

)
+ h2

B

with QA = QB , hA = hB , but rA 6= rB . If A is the well on the same side as the
observation well O, then r2

A = (xA − xO)2 + (yA − yO)2 = 25 + 100 = 125m2. If B is
the well on the other side as the observation well, then r2

B = (xB −xO)2 + (yB − yO)2 =
152 + 100 = 325m2. Assuming a certain value for hA = hB and for rw, one can then
calculate the pressure head drop at the observation well, and then the pressure head at the
observation well is h0 + ∆h. We plot the equipotential lines from the knowledge of h,
where h is calculated with an assumed value of hA = hB and an assumed value of rw.
The flow lines are orthogonal to the equipotential lines, see Figure 5.11.

Figure 5.11 Flow net for the problem with an injection well and a slurry wall (Problem 5.18).





CHAPTER 6

FINITE ELEMENT METHOD FOR
PORO-ELASTICITY

PROBLEMS

6.1 Consider plane wall of thickness L, initially at a uniform temperature T0, which has
both surfaces suddenly exposed to a fluid at temperature T∞. The governing differential
equation is:

k
∂2T

∂x2
= ρc0

∂T

∂t

The initial condition is T (x, 0) = T0 and we consider two sets of boundary conditions:

Set 1: T (0, t) = T∞, T (L, t) = T∞

Set 2: T (0, t) = T∞,

[
k
∂T

∂x
+ β(T − T∞

]
x=L

= 0

Approximate the solution with two linear Finite Elements. Solve for the unknown temper-
atures and heat fluxes.

Solution: See the solution in the next 4 pages of notes.
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6.2 Consider a uniform beam of rectangular cross section (B×H), fixed at x = 0 and
free at x = L. We use the Euler-Bernouilli beam theory. Neglecting the rotary inertia
term, the governing equation for beam deflection is:

ρA
∂2w

∂t2
+

∂2

∂x2

[
EI

∂2w

∂x2

]
= q(x, t)

The boundary conditions are:

W (0) = 0,
dW

dx
= 0,

[
EI

d2W

dx2

]
x=L

= 0,

[
EI

d3W

dx3

]
x=L

= 0

Determine the first two flexural frequencies of the beam by using the minimum number of
Euler-Bernouilli beam elements.

Solution: See the solution in the next 2 pages of notes.
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6.3 Consider a uniform bar of cross-sectional area A, modulus of elasticity E, mass den-
sity m, and length L. The axial displacement under the action of time-dependent axial
forces is governed by the wave equation:

∂2u

∂t2
= a2 ∂

2u

∂x2
, a =

(
E

m

)1/2

Determine the transient response [i.e., find u(x, t)] of the bar when the end x = 0 is fixed
and the end x = L is subjected to a force P0. Assume zero initial conditions. Use one
linear element to approximate the spatial variation of the solution, and solve the resulting
ordinary differential equation in time exactly to obtain:

u2(x, t) =
P0L

AE

x

L
(1− cosαt), α =

√
3
a

L

Solution: After writing the variational formulation and discretizing in space with Lagrange
linear polynomial, we obtain the following matrix equation:

EA

h

[
+1

−1

−1

+1

]{
U1

U2

}
+
mAh

6

[
2

1

1

2

]{
Ü1

Ü2

}
=

{
Q1

Q2

}
The boundary conditions are U1 = 0 (fixed end at x = 0) and Q2 = P0 (force imposed at
x = L). The condensed equation is:

Ü2(t) + α2U2(t) =
3P0

mAh

With the following initial conditions: U2(0) = 0, U̇2(0) = 0, in which α =
√

3E/(mh2).
The solution is of the form:

U2(t) = Acosαt +B sinαt + C

Using the initial conditions and the governing equation, we obtain A+C = 0, B = 0, and C
= P0h/EA. The final solution is:

u(x, t) =

2∑
i=1

Ui(t)ψi(x) = (Acosαt + C)ψ2(x) =
P0h

EA
(1− cosαt)x

h

6.4 Consider a simply supported beam (of Young’s modulus E, mass density ρ, area of
cross section A, second moment of area about the axis of bending I , and length L) with
an elastic support at the center of the beam (see Figure 6.1). Determine the fundamental
natural frequency using the minimum number of Euler-Bernoulli beam elements. It is
reminded that in Euler-Bernouilli beam theory, if the rotary inertia term is neglected, the
governing equation for beam deflection is:

ρA
∂2w

∂t2
+

∂2

∂x2

[
EI

∂2w

∂x2

]
= q(x, t)
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Figure 6.1 Beam vibration problem

Solution: Under the assumption of space and time separation, the solution of the hyper-
bolic equation of beam vibration can be written in the form: w(x, t) = W (x)eiωt. After
simplifying the equation by dividing by the time exponent, writing the variational formu-
lation and discretizing in space, we obtain the following elementary equations:(

[Ke]− ω2[Me]
)
{W e} = {F e} + {Qe}

In which:

Ke
ij =

∫ xe+1

xe

EI
d2Ψe

i

dx2

d2Ψe
j

dx2
dx

Me
ij =

∫ xe+1

xe

ρAΨe
i (x)Ψe

j(x)dx

F ei =

∫ xe+1

xe

Ψe
i (x)Q(x)dx

Qei = EI

[
dΨe

i

dx

d3w

dx3

]xe+1

xe

+ EI

[
Ψe
i (x)

d2w

dx2

]xe+1

xe

In which Ψi denotes a Hermite interpolation function (for an Euler-Bernouilli beam ele-
ment). In order to determine the natural frequencies of the beam, we actually seek to solve
the equation for ω, in the absence of external action applied (i.e., free vibrations):(

[K]− ω2[M ]
)
{W} = {0}

The problem is symmetric, so we model only half the beam with the FEM. For the left
half of the beam (between x = 0 and x = L/2), only one Euler-Bernouilli beam element
is needed. There are four degrees of freedom: the deflection at nodes 1 and 2 (W e

1 and
W e

3 respectively) and the angle of the deflection slope at nodes 1 and 2 (W e
2 and W e

4 re-
spectively). The corresponding secondary variables are the shear force at nodes 1 and 2
(Qe1 and Qe3 respectively) and the bending moment at nodes 1 and 2 (Qe2 and Qe4 respec-
tively). At node 1, the deflection is zero (W e

1 =W1=0) and the bending moment is zero
(Qe2=Q2=0). At node 2, the deflection depends on the elastic properties of the support
(W e

3 = W3 = −Q3Lc/(EcAc); with Q3 = Q
(e=1)
3 + Q

(e=2)
1 = 2Q

(e=1)
3 ), and the slope
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angle is zero (W e
4 =W4=0). The 4 × 4 system of elementary equations can be condensed

into a 2× 2 system of equations. After computing the integrals with Hermite interpolation
polynomials, we get:(

2EI

h3

[
2h2

3h

3h

6

]
− ω2 ρAh

420

[
4h2

−13h

−13h

156

]){
W2

W3

}
=

{
0

−cW3

}

In which: h = L/2, c = (EcAc)/(2Lc). After rearranging:([
2h2

3h

3h

6 + c

]
− λ

[
4h2

−13h

−13h

156

]){
W2

W3

}
=

{
0

0

}

In which λ = ω2 ρAh4

840EI . We find the natural frequencies (ω) by solving the following
equation for λ:

det

([
2h2

3h

3h

6 + c

]
− λ

[
4h2

−13h

−13h

156

])
= 0

The characteristic polynomial is:

455λ2 − 2(129 + c)λ+ (3 + 2c) = 0

The two roots are positive and define eigenfrequencies:

λ =
129 + c

910
± 1

910

√
(129 + c)2 − 455× (3 + 2c)

The fundamental frequency is the smallest root:

ω1 =
129 + c

910
− 1

910

√
(129 + c)2 − 455× (3 + 2c)

6.5 Consider the transient heat conduction problem governed by the following equation:

∂u

∂t
− ∂2u

∂x2
= 0, 0 < x < 1

with boundary conditions:

u(0, t) = 0,
∂u

∂x
(1, t) = 0

and initial condition:
u(x, 0) = 1

where u is the non-dimensionalized temperature. Discuss the stability of the FEM model
for one linear element and for two linear elements.

Solution: See the solution in the next 2 pages of notes.
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6.6 We wish to determine the transverse motion of a beam clamped at both ends and
subjected to an initial deflection, by using Euler-Bernouilli theory. The governing equation
is:

∂2w

∂t2
+
∂4w

∂x4
= 0, 0 < x < 1

with the following boundary conditions:

w(0, t) = 0,
∂w

∂x
(0, t) = 0, w(1, t) = 0,

∂w

∂x
(1, t) = 0

and the following initial conditions:

w(x, 0) = sinπx − πx(1− x),
∂w

∂t
(x, 0) = 0

Establish a stability criterion with the lowest number of Euler-Bernouilli beam elements
possible.

Solution: See the following 5 figures.
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6.7 Establish a stability criterion for the 1D consolidation problem. Assume that there is
drainage at the top and and that the bottom boundary is impermeable.

Solution:
The 1D consolidation equation is:

∂pw
∂t

= cv
∂2pw
∂z2

, cv =
kw

µw(S + α2mv)

For an element ]za, zb[, the weak formulation of the problem is as follows:

∀w(z) ∼ δzpw,

∫ zb

za

w(z)ṗwdz +

∫ zb

za

cv
dw(z)

dz

∂pw
∂z

dz =

w(z)
1

ρw(S + α2mv)
kw

ρw
µw

∂pw
∂z︸ ︷︷ ︸

−q̂(z)


zb

za

Using Ritz method, with linear element:

∀i = 1, 2,
2∑
j=1

(∫ zb

za

Ψi(z)Ψj(z)dz

)
ṗj +

2∑
j=1

(∫ zb

za

cv
dΨi

dz

dΨj

dz
dz

)
pj = −

[
Ψi(z)

q̂(z)

ρw(S + α2mv)
)

]zb
za

In a matrix form:
[He]{p}+ [Se]{ṗ} = {Qe}

with:

He
ij =

∫ zb

za

cv
dΨi

dz

dΨj

dz
dz

Seij =

∫ zb

za

Ψi(z)Ψj(z)dz

Qei = −
[
Ψi(z)

q̂(z)

ρw(S + α2mv)
)

]zb
za

The primary variable is equal to zero at the first node, at z = h. Therefore, the first row
and the first column of the assembled stiffness matrix will vanish after condensation. Ac-
cording to the boundary conditions, the seconday variable is zero at the last node, at z = 0.
According to the continuity conditions, the seconday variable is zero at the intermediate
nodes. So that after space discretization and condensation, the Finite Element matrix equa-
tion is:

[H]{p}+ [S]{ṗ} = {0}

The governing equation is parabolic, therefore we use an alpha-family of approximation:

(pw)n+θ = (1− θ)× (pw)n + θ × (pw)n+1

(ṗw)n+θ =
(pw)n+1 − (pw)n

∆t
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Therefore, at time tn+θ, we have:

∆t[H]{p}n+θ + ∆t[S]{ṗ}n+θ = {0}

(θ∆t[H] + [S]) {p}n+1 = ((θ − 1)∆t[H] + [S]) {p}n
[S] is invertible, therefore:(

[Id] + θ∆t[S]−1[H]
)
{p}n+1 =

(
[Id] + (θ − 1)∆t[S]−1[H]

)
{p}n (6.1)

We introduce λj and {Xj}, the eigenvalues and eigenvectors of the operator [S]−1[H],
respectively. We have:

∀j, [S]−1[H]{Xj} = λj{Xj}

Multiplying both sides of Equation 6.1 by {Xj}, we thus get:

({Xj}+ θ∆tλj{Xj}) {p}n+1 = ({Xj}+ (θ − 1)∆tλj{Xj}) {p}n (6.2)

Now multiplying both sides of Equation 6.2 by {Xj}T /||{Xj}||2, we get:

(1 + θ∆tλj) {p}n+1 = (1 + (θ − 1)∆tλj) {p}n (6.3)

From Equation 6.3, we see that the FEM model is stable if and only if:

|1 + (θ − 1)∆tµj
1 + θ∆tµj

| < 1 (6.4)

For linear elements:
Ψe

1(z) = 1− z

he
, Ψe

2(z) =
z

he

[He] =
cv
he

[
1

−1

−1

1

]

[Se] =
he
6

[
2

1

1

2

]
We find:

[Se]−1[He] =
6cv

(he)2

[
1

−1

−1

1

]
We solve the following characteristic equation to cal the eigenvalues of [Se]−1[He]:

det
(
[Id]− µj [Se]−1[He]

)
= 0(

6cv
(he)2

− µj
)2

−
(
−−6cv

(he)2

)2

= 0

The eigenvalues are:

µ1 =
12cv
(he)2

, µ2 = 0

µ2 = 0 leads to the trivial solution for {Xj}, so for the non trivial solution, the stability
criterion is:

| (he)
2 + 12cv(θ − 1)∆t

(he)2 + 12cvθ∆tµj
| < 1 (6.5)
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If (he)
2 + 12cv(θ−1)∆t > 0, then the FEM model is unconditionnally stable. Otherwise,

the stability criterion is:
(he)

2

6cv∆t
> 1− 2θ (6.6)

Equation 6.6 is lways satisfied if θ ≥ 0.5. The FEM model is conditionally stable oth-
erwise. One can see that the stability of the FEM depends on the time of the time step
relative to the element size.

6.8 Dual boundary conditions occur in flow problems in which a pressurized fluid reser-
voir is in contact with the domain under study:

If the pore pressure at the boundary is more tensile (i.e. lower) than a prescribed value
p∗, then one needs to apply a fluid flow qn at the boundary.

If the pore pressure at the boundary is more compressive (i.e. greater) than the pre-
scribed value p∗, then one needs to impose the pore pressure p∗ at all nodes of the
boundary.

Figure 6.2 on the left hand-side shows the example of ponding, for which such boundary
conditions are necessary. Explain how you would use the dual boundary condition for a
problem of rainfall (Figure 6.2 on the right hand-side) and for a problem of tunnel excava-
tion in a water saturated rock mass (Figure 6.3).

Figure 6.2 Problems in which a dual boundary condition is needed: ponding (left) and rainfall
(right).

Figure 6.3 Problem in which a dual boundary condition is needed: tunnel excavation.
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Solution:
For the rainfall problem:

If the soil is of sufficient permeability and/or the rainfall intensity is small, the soil can
adsorb the rainfall water so a flow boundary condition should be applied. Initially, a
water pressure is imposed at the boundary with pi < p∗, so it is necessary to impose
a rainfall flow qn.

If the soil is less permeable and/or the the rainfall intensity is high, the soil will not
be able to absorb the rainfall water so ponding happens at the surface and a water
pressure boundary condition needs to be applied. Pore pressure builds up in the soil;
when water pressure at the boundary exceeds the given limit (pi > p∗), then it is
necessary to impose a pore pressure p∗ at the boundary.

For the tunnel problem:

Just after excavation, p = 0 (permeable tunnel wall). Fluid pressure in the rock mass
is tensile (p < 0) therefore a water flow condition is the most appropriate in the short
term: p < p∗ = 0, impose qn = 0 (no flow from tunnel to rock mass).

In the long term, pore pressure in the rock mass becomes more compressive. When
p ≥ p∗ = 0 at the boundary, it is more appropriate to impose the pore water boundary
condition p∗ = 0 at the tunnel wall (water drainage).

At intermediate times between the short and long terms, some nodes are subjected to
a flow b.c. while others are subjected to a pressure b.c.

6.9 Consider a triaxial compression test performed on a water-saturated soil specimen,
as shown in Figure 6.4. The experiment is undrained, and axis-symmetry is assumed.The
soil is assumed to be linear elastic. Biot’s hydro-mechanical constitutive relationships hold.

Write the strong formulation of the problem (introduce as many constitutive parame-
ters as necessary).

Write the weak formulation of the problem (in cylindrical coordinates).

The specimen is modeled with three rectangular elements, as shown in Figure 6.4.
Calculate the elementary stiffness of each element, assuming that the displacement
field is interpolated with quadratic polynomials, and the pore pressure field is inter-
polated with linear polynomials.

Assemble the elementary equations established in question 2 above.

Discretize the assembled equations in time. Provide the conditions in which the time
marching scheme is stable.

Introduce the boundary conditions in the Finite Element equations, condense the sys-
tem of equations if possible, and solve it for the primary variables.

Post-process the secondary variables.
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Figure 6.4 Finite Element model of undrained triaxial compression test performed on water-
saturated soil

Solution:

6.10 Consider an oedometer test performed on a water-saturated soil specimen, as shown
in Figure 6.5. The specimen is drained at the bottom and it is studied in plane strain. The
soil is assumed to be linear elastic. Biot’s hydro-mechanical constitutive relationships hold.

Write the strong formulation of the problem (introduce as many constitutive parame-
ters as necessary).

Write the weak formulation of the problem.

The specimen is modeled with two triangular elements, as shown in Figure 6.5. Cal-
culate the elementary stiffness of each element, assuming that the displacement field
is interpolated with quadratic polynomials, and the pore pressure field is interpolated
with linear polynomials.

Assemble the elementary equations established in question 2 above.

Discretize the assembled equations in time. Provide the conditions in which the time
marching scheme is stable.

Introduce the boundary conditions in the Finite Element equations, condense the sys-
tem of equations if possible, and solve it for the primary variables.

Post-process the secondary variables.

Solution:
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Figure 6.5 Finite Element model of drained oedometric test performed on water-saturated soil

6.11 Consider an oedometer test performed on a partially saturated soil specimen, as
shown in Figure 6.6. The specimen is drained at the bottom and it is studied in plane
strain. The soil is assumed to be linear elastic.

Write the strong formulation of the problem (introduce as many constitutive parame-
ters as necessary).

Write the weak formulation of the problem.

The specimen is modeled with two triangular elements, as shown in Figure 6.6. Cal-
culate the elementary stiffness of each element, assuming that the displacement field
is interpolated with quadratic polynomials, and the pore pressure fields is interpolated
with linear polynomials.

Assemble the elementary equations established in question 2 above.

Discretize the assembled equations in time. Provide the conditions in which the time
marching scheme is stable.

Introduce the boundary conditions in the Finite Element equations, condense the sys-
tem of equations if possible, and solve it for the primary variables.

Post-process the secondary variables.

Solution:

6.12 We use the FEM to compare two one-dimensional consolidation experiments (see
the column of soil in Figure 6.7):

1. Sw0 = 0.92 (homogeneous initial partial saturation) with a capillary pressure - water
saturation curve independent of temperature;

2. Sw0 = 0.92 (homogeneous initial partial saturation), with a capillary pressure - water
saturation curve that depends on temperature.
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Figure 6.6 Finite Element model of drained oedometric test performed on partially saturated soil

A Brooks & Corey relationship is assumed between the capillary pressure, the saturation
degree and the relative permeability. The solid grains and the water are assumed to be
incompressible. The boundary conditions are the following: no lateral displacement or
heat flux on lateral boundaries; at the top: uniform stress, T=343.15 K, pg = patm and
pc chosen to ensure Sw = 0.92; no vertical displacement and no heat flux on the bottom
boundary. The same results were obtained with 9 and 18 8-noded isoparametric elements
with a 3x3 Gaussian integration scheme. The time step was 0.01 days for the first 100
steps, and then the time step was multiplied by 10 every 100 time steps, until 107 days
elapsed. Comment on the results obtained in Figures 6.8-6.11 (in particular, explain the
difference between the profiles obtained in the saturated and unsaturated cases).

Figure 6.7 Unsaturated soil consolidation under non isothermal conditions

Solution:
Figure 6.8: Resulting temperature profiles are similar in both cases and are similar to the
temperature profile obtained in saturated conditions. This is due to the identical averaged
thermal conductivity and relatively high thermal capacity assumed in the saturated case.
Figure 6.9: In saturated cases, samples exhibit an initial period of no-deformation, fol-
lowed by settlements, followed by heave. The latter phase is due to the thermal dilation
of the solid and liquid components of the soil sample. Unsaturated samples exhibit imme-
diate settlements due to gas expulsion, a first period of no settlement, followed by heave.
The absence of settlements between the no-deformation and heave phases suggests that the
remaining gas, subjected to a high temperature and confined in a finite volume, reached the
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Figure 6.8 Unsaturated consolidation: temperature profiles

Figure 6.9 Unsaturated consolidation: displacement profiles, comparison between saturated and
unsaturated cases
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Figure 6.10 Unsaturated consolidation: water retention curves

Figure 6.11 Unsaturated consolidation: displacement profiles, comparison between the two
unsaturated models (WRC that depends/does not depend on temperature)
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pressure of condensation (pV = nRT ). We note that if phase changes are not accounted
for (dash lines), immediate settlements are followed by a brief consolidation process before
stabilizing in the phase of no-deformation followed by heave. That means that if conden-
sation is not accounted for in the model, the increase of pore pressure induces a liquid
outflow.
Figure 6.10: These two last observations are confirmed by the curves that show the time
evolution of the degree of saturation and of the capillary pressure. In both models, the
degree of saturation increases during the no-deformation phase, i.e. at constant volume.
Thus the liquid contents increases, indicating condensation. Heave correlates with a de-
crease of the degree of saturation: fluids occupy more space and the gas fraction increases,
indicating evaporation. In the first model, the capillary pressure solely depends on the de-
gree of saturation, thus the capillary pressure decreases during the no-deformation phase
and increases during the heave phase. In the second model, the capillary pressure depends
also on temperature. As temperature increases, the vapor content of the air-vapor mixture
increases and the contact angle between the wetting phase (liquid) and the non-wetting
phase (gas mixture) decreases. According to Laplace Law, that corresponds to a decrease
of capillary pressure. As a result, in the second model, the capillary pressure decreases
during the no-deformation phase (condensation) and remains constant during the heave
phase (evaporation).
Figure 6.11: There are more pronounced phase changes in the capillary pressure- satura-
tion model that depends on temperature. The evolution of capillary pressure follows that
of temperature. In the first model, the capillary pressure is higher, thus the compressibility
of the sample is lower, and therefore the predicted final settlements are lower than with the
second model.

6.13 Homework 4 - Problem 4
Consider the problem of determining the temperature distribution of a solid cylinder, ini-
tially at a uniform temperature T0 and cooled in a medium of zero temperature (i.e., T∞ =
0). The governing equation of the problem is:

ρ c
∂T

∂t
− 1

r

∂

∂r

(
r k

∂T

∂r

)
= 0, 0 < r < R

The boundary conditions are:

∂T

∂r
(0, t) = 0,

(
r k

∂T

∂r
+ β T

)
r=R

= 0

The initial conditions are T (r, t) = T0. Determine the pressure distribution T (r, t) us-
ing one linear finite element. Take R = 2.5cm, T0 = 130oC, k = 215W/(moC), β =
525W/(moC), ρ = 2700kg/m2, and c = 0.9kJ/(kgoC). What is the heat loss at the surface?

Solution: The FE model is given by:

[Me]{u̇e} + [Ke]{ue} = {Qe}
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Where:

Ke
ij = 2π

∫ rB

rA

rk
dψi
dr

dψj
dr

dr

Me
ij = 2π

∫
rA

rBρcrψi(r)ψj(r)dr

The matrices [Ke] and [Me] for a linear element can be expressed by developping the
expressions of the linear interpolation polynomials ψi. For [Me] in particular:

[Me] =
2πρch

12

[
h+ 4rA

h+ 2rA

h+ 2rA

3h+ 4rA

]

The boundary conditions are: Q1
1 = 0 and Q1

2 = −2πβU2. The one element mesh (h = R)
gives the equations (rA = 0 since we have only one element):

πk

[
+1

−1

−1

1 + 2β

]{
U1

U2

}
+

2πρch

12

[
h

h

h

3h

]{
U̇1

U̇2

}
=

{
0

0

}

From there, use the α-family of approximation to establish the time marching scheme. The
degrees of freedom can be found by recurrence, knowing the initial temperature state of
the rod. The heat loss at the surface is Q2 = −βT2, in which T2 was calculated previously
as part of the degrees of freedom.

6.14 Homework 4 - Problem 5
We consider a cylindrical soil sample, of radius a, enclosed between two stiff horizontal
plates. The soil sample is supposed to be surrounded by a drainage layer around it, and
an impermeable membrane surrounding the drainage layer, so that the radial pressure can
be transmitted to the sample, and drainage occurs to the outer boundary. The sample is
subjected to a uniform radial pressure of magnitude q at the drained outer boundary. The
problem is axis-symmetric. The momentum balance equation in the radial direction is:

∂σrr
∂r

+
σrr − σθθ

r
= 0

The fluid mass conservation equation is:

α
∂ε

∂t
+ S

∂p

∂t
=

k

γf

(
∂2p

∂r2
+

1

r

∂p

∂r

)
in which ε is the volumetric strain, p is the fluid pore pressure, α is Biot’s coefficient, k is
the coefficient of permeability, γf is the volumetric weight of the pore fluid and S is the
storativity, defined as:

S =
n

Kf
+
α− n
Ks
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in which n is the porosity, Kf is the bulk modulus of the fluid, and Ks is the bulk modulus
of the solid phase. We assume the following stress-strain constitutive relationship:

σrr − αp = −
(
K − 2

3
G

)
ε− 2G

∂u

∂r

σθθ − αp = −
(
K − 2

3
G

)
ε− 2G

u

r

in which u is the radial displacement field in the solid phase, K is the bulk modulus of the
porous medium, and G is the shear modulus of the porous medium. Moreover we assume
that fluid flow is governed by Darcy’s law:

qf = − k

µf
∇p

in which qf is the flux per unit area (m/s), and µf is the fluid dynamic viscosity (Pa.s).

1. Show that the equation of equilibrium can be expressed in terms of the volume strain
as: (

K +
4

3
G

)
∂ε

∂r
= α

∂p

∂r

2. Write the weak formulation of the problem.

3. Discretize the weak form in space, and provide the expression of the matrix and vector
coefficients of the following Finite Element equation:[

Ke

0

−Q
H

]{
u

p

}
+

[
0

QT
0

S

]{
u̇

ṗ

}
=

{
fu

fp

}

4. Discretize the equation above in time and explain how to ensure the stability of the
numerical scheme (do not solve the associated eigenvalue problems).

Solution:

1. We combine the momentum balance equation:

∂σrr
∂r

+
σrr − σθθ

r
= 0

and the stress/strain constitutive relationship:

σrr − αp = −
(
K − 2

3
G

)
ε− 2G

∂u

∂r

σθθ − αp = −
(
K − 2

3
G

)
ε− 2G

u

r
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We obtain:

α
∂p

∂r
−
(
K − 2

3
G

)
∂ε

∂r
− 2G

∂2u

∂r2
− 2G

1

r

∂u

∂r
+ 2G

u

r2
= 0 (6.7)

Moreover the volumetric strain in cylindrical coordinates is:

ε =
∂u

∂r
+
u

r

which yields:
∂ε

∂r
=

∂2u

∂r2
+

1

r

∂u

∂r
− 1

r2

u

r2
(6.8)

The combination of equations 6.7 and 6.8 provides:

α
∂p

∂r
=

(
K − 2

3
G

)
∂ε

∂r
+ 2G

∂ε

∂r

And we conclude that the equation of equilibrium can be rewritten as:

α
∂p

∂r
=

(
K +

4

3
G

)
∂ε

∂r

2. We consider a weight function w ∼ ∆u (vector) and a weight function w∗ ∼ ∆p
(scalar). The mechanical equation of equilibrium, combined with the stress-strain
relationship, provides the following equation:

div (De : ε) + αdiv (pδ) = 0

in which De is the fourth-order elasticity tensor, ε is the second-order deformation
tensor and δ second-order identity tensor. The first equation of the weak formulation
is obtained by multiplying equation 2 by w, integrating over the domain of study
Ωt and performing an integration by parts to balance the orders of the differential
operators between w and u. We obtain:

∀w ∼ ∆u,

∫
Ωt

∇w : (De : ∇u) dV +

∫
Ωt

α∇w : δpdV =

∫
Γf

w · t̂dS

in which it is assumed that an essential boundary condition is imposed over the entire
boundary of the domain except on the portion Γf . To obtain the second equation of
the weak formulation, we multiply the fluid mass balance equation by w∗, integrate
over the domain of study Ωt and perform integration by parts as needed. We obtain:

∀w∗ ∼ ∆p,
∫

Ωt

k
γf
∇(w∗) · ∇p dV −

∫
Ωt
α (w∗)δ : ∇(u̇)dV

−
∫

Ωt

(
α−n
Ks

+ n
Kf

)
(w∗)ṗ dV = −

∫
Γq

(w∗)µf

γf
qf dS

in which it is assumed that an essential boundary condition is imposed over the entire
boundary of the domain except on the portion Γq .

3. After space discretization, the elementary FE equation is noted:[
Ke

0

−Q
H

]{
u

p

}
+

[
0

QT
0

S

]{
u̇

ṗ

}
=

{
fu

fp

}
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According to the weak formulation obtained in question 2, with the standard notations
of the course, the coefficients of the matrices and vectors are the following:

[Ke] =

∫
Ωe

[B]T [De][B]dV, [B] = [L][Nu]

in which [De] is the elasticity matrix, [L] is the differential operator (relating displace-
ments to strains) and [Nu] is the matrix of displacement interpolation functions.

[Q] = −
∫

Ωe

[B]Tα{m}T {Np}dV, {m}T = {1 1 1 0 0 0}

in which {Np} is the vector of pore pressure interpolation functions.

[H] =

∫
Ωe

[∇{Np}]T
k

γf
[Id][∇{Np}]dV

[S] = −
∫

Ωe

{Np}T
(
α− n
Ks

+
n

Kf

)
{Np}dV

{fu} =

∫
Γe

[Nu]T {t̂}dS

{fp} = −µf
γf

∫
Γe

{Np}T {qf}dS

4. For the parabolic equation of interest, we use a Finite Difference scheme for time
discretization. The time marching scheme is given by:(

θ∆t

[
Ke

0

−Q
H

]
+

[
0

QT
0

S

]){
u

p

}
n+1

=

(
−(1− θ)∆t

[
Ke

0

−Q
H

]
+

[
0

QT
0

S

]){
u

p

}
n

+ ∆t

{
fu

fp

}
n+θ

which we note:

(θ∆t [C] + [B])

{
u

p

}
n+1

= (−(1− θ)∆t [C] + [B])

{
u

p

}
n

+∆t

{
fu

fp

}
n+θ

Noting µj the complex eigenvalues of the matrix [B]−1[C], the stability condition is
expressed as:

∀j, |1− (1− θ)∆tµj
1 + θ∆tµj

| < 1

Noting µRj = Re(µj) and µIj = Im(µj), the inequality 4 is rewritten as:

∀j, −2µRj < (2θ − 1)
[
(µRj )2 + (µIj )

2
]

∆t

The stability criteria are the following:
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If θ > 1/2, the numerical scheme is unconditionnally stable if µRj > 0, and
conditionnally stable if µRj ≤ 0. In the latter case, the time step needs to satisfy:

∆t > − 2

2θ − 1

µRj
(µRj )2 + (µIj )

2

If θ ≤ 1/2, the time step needs to satisfy:

∆t <
2

1− 2θ

µRj
(µRj )2 + (µIj )

2





CHAPTER 7

FUNDAMENTAL PRINCIPLES OF
PLASTICITY

PROBLEMS

7.1 Derive the stress-strain relationship for the Drucker-Prager elastic-perfectly plastic
model, described by the following equations:

ε̇ij = ε̇eij + ε̇pij

σ̇ij = De
ijklε̇

e
kl

f(σij) =
√
J2 − α I1 − k

g(σij) =
√
J2 − β I1

in which k, α and β are material constants, with α 6= β.

Solution:
σ̇ij = De

ijklε̇
e
kl

σ̇ij = De
ijkl (ε̇kl − ε̇

p
kl)

σ̇ij = De
ijkl

(
ε̇kl − λ

∂g

∂σkl

)
(7.1)
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To find the plastic multiplier, use the consistency condition:

df = 0 ⇒ ∂f

∂σij
σ̇ij = 0

∂f

∂σij

(
De
ijklε̇kl −De

ijklε̇
p
kl

)
= 0

∂f

∂σij

(
De
ijklε̇kl − λDe

ijkl

∂g

∂σkl

)
= 0

We get:

λ =

∂f
∂σij

De
ijklε̇kl

∂f
∂σij

De
ijkl

∂g
∂σkl

Introducing the plastic mulitplier in equation 7.1:

σ̇ij =

[
De
ijkl −De

ijkl

∂g

∂σkl

∂f
∂σij

De
ijkl

∂f
∂σij

De
ijkl

∂g
∂σkl

]
ε̇kl (7.2)

To express the incremental stress/strain relationship explicitly, we need to calculate ∂f
∂σkl

and ∂g
∂σkl

. From the expressions given in the problem:

∂f

∂σkl
=

1

2
√
J2

∂J2

∂σkl
− α ∂I1

∂σkl

∂g

∂σkl
=

1

2
√
J2

∂J2

∂σkl
− β ∂I1

∂σkl

To express equation 7.2 explicitly, we need to calculate ∂I1
∂σij

and ∂J2
∂σij

. The details are
provided below.

∂I1
∂σij

=
∂σkl
∂σij

δkl

= δij

In tensor notation:

∂I1
∂σ

= δ
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To calculate ∂J2
∂σij

, we start by evaluating ∂I2
∂σij

. We switch to tensor notation:

∂I2
∂σ

=
1

2

∂

∂σ

[
(I1)2 − Tr(σ2)

]
=

∂I1
∂σ
− 1

2

∂σ2

∂σ
: δ

= I1δ − σT ·
∂σ

∂σ
: δ

= I1δ − σT ·∆ : δ

= I1δ − σT · δ

= I1δ − σT

= I1δ − σ

in which ∆ is the fourth-order identity tensor. Then, we can calculate ∂J2
∂σij

:

∂J2

∂σ
=

∂J2

∂s
:
∂s

∂σ

=

(
−∂J1

∂σ
+ s

)
:
∂s

∂σ

= s :

(
∂σ

∂σ
− 1

3

∂I1
∂σ
⊗ δ
)

= s :

(
∆− 1

3
δ ⊗ δ

)
= s : ∆

= s

where s is the deviatoric stress, for which the first invariant J1 is zero.

7.2 Derive the stress-strain relationship for the mixed hardening elastic-plastic model,
described by the following equations:

ε̇ij = ε̇eij + ε̇pij

σ̇ij = De
ijklε̇

e
kl

f(σij , αij , β) = f1(σij − αij)−R(β) = 0

β =

∫ [
σij ε̇

p
ij

]
α̇ij = dµ (σij − αij)

g(σij , αij , β) = f(σij , αij , β)
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Solution: The procedure is similar to the previous problem. To start, replace the elastic
strain increment by its decomposition into total and plastic strain increments. Then, use
the consistency condition to get the expression of the plastic multiplier. Details follow:

σ̇ij = De
ijkl

(
ε̇kl − λ

∂g

∂σkl

)
Consistency equation:

df = 0⇒ ∂f

∂σ
σ̇ +

∂f

∂α
α̇+

∂f

∂β
β̇ = 0

∂f

∂σ
De : ε̇− ∂f

∂σ
De : ε̇p + dµ

∂f

∂α
(σ −α) +

∂f

∂β
σ : ε̇p = 0

∂f

∂σ
De : ε̇− λ ∂f

∂σ
De :

∂g

∂σ
+ dµ

∂f

∂α
(σ −α) + λ

∂f

∂β
σ :

∂g

∂σ
= 0

From there, we get the expression of λ:

λ =
∂f
∂σDe : ε̇

∂f
∂σDe : ∂g

∂σ −
∂f
∂βσ : ∂g

∂σ

+
dµ ∂f∂α (σ −α)

∂f
∂σDe : ∂g

∂σ −
∂f
∂βσ : ∂g

∂σ

The incremental stress-strain relationship becomes:

σ̇ = De : ε̇−De :
∂g

∂σ

∂f
∂σ : De(

∂f
∂σ : De : ∂g

∂σ −
∂f
∂βσ : ∂g

∂σ

) : ε̇−De :
∂g

∂σ

dµ ∂f∂α : (σ −α)(
∂f
∂σ : De : ∂g

∂σ −
∂f
∂βσ : ∂g

∂σ

)



CHAPTER 8

PERFECT PLASTICITY IN
GEOMECHANICS

PROBLEMS

8.1 A material element is subjected to proportional loading. The principal stresses are
given by (2σ, σ, 0) where σ is an increasing stress value.

1. Find the magnitude of σ where the material begins to yield, according to Tresca’s
criterion.

2. Adopting the associated flow rule, find also the plastic strain rate ε̇pij at onset of yield-
ing expressed in terms of the plastic multiplier λ̇.

3. If the effective plastic strain rate ε̇peff is defined as:

ε̇peff =

√
2

3
ε̇pij ε̇

p
ij ,

how is ε̇peff related to λ̇?

4. Now suppose that the principal stresses are given by (σ, σ, 0). What problem is
encountered is you should determine ε̇pij?

Theoretical Geomechanics.
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Solution:

1. According to Tresca’s criterion, when the material begins to yield when:

σ1 − σ3 − 2Su = 0

In the test described in the problem:

2σ − 0− 2Su = 0

In other words:
σ = Su

2. Adopting an associate flow rule:

ε̇p = λ̇
∂f

∂σ
= λ̇

∂(σ1 − σ3 − 2Su)

∂σ

In the principal stress base:

ε̇p =

λ̇0
0

0

0

0

0

0

−λ̇


(e1,e2,e3)

3. We have:
ε̇p : ε̇p = 2λ̇2

So the effective plastic strain is calculated as:

ε̇peff =
2√
3
λ̇

4. The problem if σ1 = σ2 = σ, the problem is that the state of stress is at a corner
point of the yield surface in the deviatoric plane. Therefore, there is no unique orien-
tation for the plastic strain flow at this point. The plastic strain increment cannot be
determined by an associate flow rule.

8.2 The stress at a point is given by:

[σij ] =

30

45

60

45

20

50

60

50

10

 MPa

Determine the stress invariants I1, J2, J3 and the Lode angle θ.
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Solution:

We use MATLAB to calculate the three invariants. The code is the following:

A=[30,45,60;45,20,50;60,50,10]
B=[10,45,60;45,0,50;60,50,-10]
J2=0.5*trace(B*B)
J3=trace(B*B*B)/3
alpha=(3(3/2))*J3/(2*J2(3/2))
theta=asin(alpha)/3
thetadeg=theta*180/pi()

The results are the following:

I1 = Tr(σ) = 60 MPa

J2 =
1

2
Tr(s2) = 8, 225 MPa

J3 =
1

3
Tr(s3) = 265, 250 MPa

The Lode angle is calculated by using the following relationship:

sin(3θl) =
3
√

3J3

2J
3/2
2

We get:
θl ' 22.5o

8.3 A material is to be loaded to a stress state

[σij ] =

 50

−30

0

−30

90

0

0

0

0

 MPa

What should be the minimum uniaxial yield stress of the material so that it does not fail,
according to (a) Tresca criterion; (b) von Mises criterion? What do the theories predict
when the yield stress of the material is 80MPa?

Solution:

We first calculate the principal stresses in the specimen:

σI,II =
σ11 + σ22

2
±

√(
σ11 − σ22

2

)2

+ (σ12)2, σIII = 0
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We find:
σI = 106 MPa, σII = 34 MPa, σIII = 0

Tresca’s criterion is:
σI − σIII = 2Su

In uniaxial tension:
σI = 2Su

So the uniaxial yield strenght is σY = 2Su. For the present loading case, the material will
not fail according to Tresca’s criterion if:

σI − σIII ≤ 2Su = σY

with σIII = 0 and σ1 = 106 MPa. So according to Tresca’s criterion, there is no failure if:

σY ≥ σI = 106 MPa

Von Mises criterion is:

(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2 − 6k2 = 0

In uniaxial tension:
2(σI)

2 − 6k2 = 0

In other words, the uniaxial tension stress according to von Mises criterion is:

σY =
√

3k

For the present loading case, von Mises criterion is:

2(σI)
2 + 2(σII)

2 − 2σIσII − 2(σY )2 = 0

So the material fails in tension if:

(σY )2 = (σI)
2 + (σII)

2 − σIσII

With the values of the principal stresses calculated above, we find that the material will not
fail according to the von Mises criterion if:

σY ≥ 94 MPa

So if σY = 80 MPa, we conclude that both theories predict that the material will fail be-
cause both theories predict that the uniaxial yield stress of the material should be more than
80 MPa for the material not to fail.

8.4 A material element is subjected to proportional loading. The principal stresses are
given by (2σ, σ, 0) where σ is an increasing stress value.

1. Find the magnitude of σ where the material begins to yield, according to von Mises’s
criterion.
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2. Adopting the associated flow rule, find also the plastic strain rate ε̇pij at onset of yield-
ing expressed in terms of the plastic multiplier λ̇.

3. If the effective plastic strain rate ε̇peff is defined as:

ε̇peff =

√
2

3
ε̇pij ε̇

p
ij ,

how is ε̇peff related to λ̇?

4. Repeat the three questions above when the principal stresses are given by (σ, σ, 0).

Solution:

1. According to von Mises criterion, first yield happens when:

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 − 6k2 = 0

With the loading conidtions described in the problem:

(2σ − σ)2 + (σ)2 + (2σ)2 − 6k2 = 0

So that we get:
σ = k

2. With an associate flow rule:

ε̇p = λ̇
∂f

∂σ
= λ̇

∂

∂σ

(
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 − 6k2

)
In the principal stress base:

ε̇p = λ̇

4σ1 − 2σ2 − 2σ3

0

0

0

4σ2 − 2σ1 − 2σ3

0

0

0

4σ3 − 2σ1 − 2σ2


(e1,e2,e3)

With the loading conditions described in the problem:

ε̇p = 6λ̇σ

1

0

0

0

0

0

0

0

−1


(e1,e2,e3)

At yield, σ = k so that:

ε̇p = 6λ̇k

1

0

0

0

0

0

0

0

−1


(e1,e2,e3)
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3. From the previous question, we have:

ε̇p : ε̇p = 72λ̇2k2

So that the effective plastic strain is:

ε̇peff = 4
√

3λ̇k

4. For the loading (σ, σ, 0), the yield according to von Mises criterion happens when:

(σ − σ)2 + (σ)2 + (σ)2 − 6k2 = 0

So that:
σ =
√

3k

Then, the plastic strain becomes:

ε̇p = 2λ̇σ

1

0

0

0

1

0

0

0

−2


(e1,e2,e3)

At yield, σ =
√

3k so that:

ε̇p = 2
√

3λ̇k

1

0

0

0

1

0

0

0

−2


(e1,e2,e3)

The effective plastic strain rate is:

ε̇peff = 4
√

3λ̇k

8.5 Prandtl-Reuss equations are obtained by combining Hooke’s law with a flow rule
that assumes that the plastic strain increments are proportional to the principal deviatoric
stresses si:

ε̇p1
s1

=
ε̇p2
s2

=
ε̇p3
s3

= λ̇ ≥ 0

In Cartesian coordinates, it is common to express the flow rule above in the following
alternate form:

ε̇pxx − ε̇pyy
sxx − syy

=
ε̇pxx − ε̇pyy
σxx − σyy

=
ε̇pyy − ε̇pzz
syy − szz

= ... = λ̇ ≥ 0

In terms of actual stresses, one can show that:

ε̇pxx =
2

3
λ̇

[
σxx −

1

2
(σyy + σzz)

]
, ε̇pyy =

2

3
λ̇

[
σyy −

1

2
(σzz + σxx)

]

ε̇pzz =
2

3
λ̇

[
σzz −

1

2
(σxx + σyy)

]
, ε̇pxy = λ̇σxy, ε̇pyz = λ̇σyz, ε̇pzx = λ̇σzx
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The Prandtl-Reuss equations are the full elastic-plastic stress-strain relations that are ob-
tained by combining the previous equations with Hooke’s law:

ε̇xx =
1

E
[σ̇xx − ν (σ̇yy + σ̇zz)] +

2

3
λ̇

[
σxx −

1

2
(σyy + σzz)

]

ε̇yy =
1

E
[σ̇yy − ν (σ̇zz + σ̇xx)] +

2

3
λ̇

[
σyy −

1

2
(σzz + σxx)

]

ε̇zz =
1

E
[σ̇zz − ν (σ̇xx + σ̇yy)] +

2

3
λ̇

[
σzz −

1

2
(σxx + σyy)

]
ε̇xy =

1 + ν

E
σ̇xy + λ̇σxy, ε̇yz =

1 + ν

E
σ̇yz + λ̇σyz, ε̇zx =

1 + ν

E
σ̇zx + λ̇σzx

ε̇ij =
1 + ν

E
σ̇ij −

ν

E
δij σ̇kk + λ̇sij

Consider the uniaxial straining of a perfectly plastic isotropic von Mises material specimen.
There is only one non-zero strain, εxx. One only need to consider two stresses, σxx, σyy ,
since σzz = σyy by isotropy.

1. Write down the two relevant Prandtl-Reuss equations.

2. Evaluate the stresses and strains at first yield.

3. For plastic flow, show that σ̇xx = σ̇yy and that:

σ̇xx
ε̇xx

=
E

3(1− 2ν)

Solution:

1. The two relevant Prandtl-Reuss equations are the following:

ε̇xx =
1

E
(σ̇xx − 2νσ̇yy) +

2

3
λ̇ (σxx − σyy)

0 =
1

E
[σ̇yy − ν (σ̇yy + σ̇xx)] +

2

3
λ̇

[
σyy −

1

2
(σyy + σxx)

]

2. According to von Mises criterion, at first yield, we have:

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 − 6k2 = 0

(σxx − σyy)2 − 3k2 = 0

And therefore:
σxx − σyy =

√
3k (8.1)
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At first yield, the stress/strain relationships are still elastic so that the Prandtl-Reuss
equations become:

ε̇xx =
1

E
(σ̇xx − 2νσ̇yy)

0 =
1

E
[σ̇yy − ν (σ̇yy + σ̇xx)]

Noting that the experiment starts at zero strain and zero stress, integrating the above
two equations between the initial time and the time when yield first occcurs provides:

εxx =
1

E
(σxx − 2νσyy) (8.2)

0 =
1

E
[σyy − ν (σyy + σxx)]

Using the second of equations 8.2 along with equation 8.1:

σxx −
ν

1− ν
σxx =

√
3k

We conclude that, at yield:

σxx =
1− ν
1− 2ν

√
3k

Then, using the second of the Prandtl-Reuss equations 8.2, we get:

σyy =
ν

1− 2ν

√
3k

We have σzz by isotropy, and the other three stress components are zero (no shear).
Accoring to the loading conditions imposed in the problem, the only non-zero strain
is εxx. We use the first of Equations 8.2 to get:

εxx =
1

E
(σxx − 2νσyy)

in which we used the fact that the experiment starts at zero strain. Introducing the
expressions of the stress components found above:

εxx =
(1 + ν)

√
3k

E

3. At yield, the consistency conditions impose f = ḟ = 0, therefore:

σxx − σyy =
√

3k (8.3)

σ̇xx = σ̇yy (8.4)

Using the first of Prandtl-Reuss equations:

ε̇xx =
1

E
(σ̇xx − 2νσ̇yy) +

2

3
λ̇ (σxx − σyy)
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Since σ̇xx = σ̇yy and σxx − σyy =
√

3k:

ε̇xx =
1− 2ν

E
σ̇xx +

2√
3
λ̇k (8.5)

Now using the second of Prandtl-Reuss equations, using σ̇xx = σ̇yy and σxx−σyy =√
3k:

0 =
1− 2ν

E
σ̇xx −

k√
3
λ̇ (8.6)

Now combning equations 8.5 and 8.6:

ε̇xx =
1− 2ν

E
σ̇xx +

2(1− 2ν)

E
σ̇xx

And we finally get:
σ̇xx
ε̇xx

=
E

3(1− 2ν)

8.6 Mohr-Coulomb’s yield criterion:

1. Show that the magnitude of the hydrostatic stress vector is ρ =
√

3c cot Φ for the
Mohr-Coulomb yield criterion when the deviatoric stress is zero.

2. Show that, for a Mohr-Coulomb material, sin Φ = (r−1)/(r+1) where r = fY c/fY t
is the compressive to tensile strength ratio.

3. A sample of concrete is subjected to a stress σ11 = σ22 = −p, σ33 = −Ap where
the constant A > 1. Using the Mohr-Coulomb criterion and the result of the previous
question, show that the material will not fail provided A < 1

r

(
1 + fY c

p

)
.

Solution:

1. The Moh-Coulomb criterion is:

σ1 − σ3 − (σ1 + σ3) sin Φ− 2c cos Φ = 0

In the absence of deviatoric stress, σ1 − σ3 = 0 and:

(σ1 + σ3) sin Φ = −2c cos Φ

For hydrostatic stress: σ1 = σ2 = σ3 = p (where p is typically a compression,
otherwise yield cannot happen) So we have:

p = −c atanΦ

The norm of the hydrostatic vector is:

ρ =
|I1|√

3
=
√

3|p|
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So we have:

ρ =
c
√

3

tan Φ

2. Mohr’s circles for the uniaxial tension test and the uniaxial compression test are rep-
resented in Figure 8.1.

Figure 8.1 Mohr-Coulomb failure envelope.

We have:

sin Φ =
BB′

AB
=
DD′

AD

BB’ is the radius of the left-hand side circle, which is fY t/2. DD’ is the radisu of the
right-hand side circle, which is fY c/2. BD is the sum of the two radii. So we have:

sin Φ =
fY t

2AB
=

fY c
2AB + fY t + fY c

Re-arranging:

AB =
fY c + fY t
fY c − fY t

fY t
2

So we have:
sin Φ =

fY c − fY t
fY c + fY t

=
r − 1

r + 1

3. Using Mohr-Coulomb criterion, the material will not fail if:

σ1 − σ3 − (σ1 + σ3) sin Φ− 2c cos Φ ≤ 0

−p(1−A) + p(1 +A) sin Φ− 2c cos Φ ≤ 0

Ap(1 + sin Φ)− p(1− sin Φ)− 2c cos Φ ≤ 0

A ≤ 1− sin Φ

1 + sin Φ
+ 2

c

p

cos Φ

1 + sin Φ
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From the previous question:

1 + sin Φ =
2r

r + 1
, 1− sin Φ =

2

r + 1
,

1− sin Φ

1 + sin Φ
=

1

r

So we have:
A ≤ 1

r
+
c

p

r + 1

r
cos Φ

From the geometry shown in Figure 8.1, we have:

cos Φ =
AO

AC
, sin Φ =

c

AC

So that:
c cos Φ = sin Φ (AB + fY t/2)

Using the expression of AB from the previous question and re-arranging:

c cos Φ = sin Φ
fY tfY c
fY c − fY t

And finally, the criterion becomes:

A ≤ 1

r
+

1

p

r + 1

r
sin Φ

fY tfY c
fY c − fY t

A ≤ 1

r
+

1

p

r + 1

r

r − 1

r + 1

fY c
r − 1

A ≤ 1

r
+

1

p

1

r
fY c

Finally:

A ≤ 1

r

(
1 +

fY c
p

)

8.7 A material element is subjected to proportional loading. The principal stresses are
given by (2σ, σ, 0) where σ is an increasing stress value.

1. Find the magnitude of σ where the material begins to yield, according to Mohr-
Coulomb’s criterion.

2. Adopting the associated flow rule, find also the plastic strain rate ε̇pij at onset of yield-
ing expressed in terms of the plastic multiplier λ̇.

3. If the effective plastic strain rate ε̇peff is defined as:

ε̇peff =

√
2

3
ε̇pij ε̇

p
ij ,

how is ε̇peff related to λ̇?
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4. Now suppose that the principal stresses are given by (σ, σ, 0). What problem is
encountered is you should determine ε̇pij?

Solution:

1. The Mohr-Coulomb criterion is:

σ1 − σ3 − (σ1 + σ3) sin Φ− 2c cos Φ = 0

With the loading conditions described in the problem:

σ(1− sin Φ) = c cos Φ

σ =
c cos Φ

1− sin Φ

2. With an associate flow rule, the plastic strain rate is:

ε̇p = λ̇
∂f

∂σ
= λ̇

∂(σ1 − σ3 − (σ1 + σ3) sin Φ− 2c cos Φ)

∂σ

In the principal stress base:

ε̇p = λ̇

1− sin Φ

0

0

0

0

0

0

0

−(1 + sin Φ)


(e1,e2,e3)

3. From the previous question:

ε̇p : ε̇p = λ̇2
[
(1− sin Φ)2 + (1 + sin Φ)2

]
From the previous problem:

1 + sin Φ =
2r

r + 1
, 1− sin Φ =

2

r + 1

So the increment of effective plastic strain is:

ε̇peff = λ̇

√√√√2

3

[(
2r

r + 1

)2

+

(
2

r + 1

)2
]

ε̇peff =
2

r + 1
λ̇

√
2

3
(r2 + 1)

4. If the loading is σ1 = σ2 = σ, then the state of stress lies at a corner of the yield
surface in the deviatoric plane, and so there is no unique plastic flow direction. The
plastic strain tensor cannot be calculated with an associate flow rule.
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8.8 Drucker-Prager’s yield criterion:

1. Show that the magnitude of the hydrostatic stress vector is ρ = |ρ| = k/
√

3α for the
Drucker-Prager yield criterion when the deviatoric stress is zero.

2. Given the yield stresses σt and σc in uniaxial tension and compression, respectively,
find the yield stress in shear resulting from the following yield criteria: (a) Tresca; (b)
von Mises; (c) Mohr-Coulomb; (d) Drucker-Prager.

Solution:

1. Drucker-Prager criterion is: √
J2 − α I1 − k = 0

If the deviatoric stress is zero, then J2 = 0 and the criterion reduces to:

I1 = − k
α

The magnitude of the hydrostatic stress vector is:

ρ =
|I1|√

3

So, we have:

ρ =
k√
3α

2. Shear yield stress

(a) Tresca’s criterion is:
σ1 − σ3 − 2Su = 0

In uniaxial compression, the material fails when σ1 = σc and σ3 = 0; we then
have: σc−0−2Su = 0. In uniaxial tension, the material fails when σ3 = σt < 0
(soil mechanics sign convention) and σ1 = 0; we then have: 0 − σt − 2Su = 0.
So we have:

Su =
σc
2

= −σt
2

Using Mohr’s circles, one can wee that the maximum shear stress is τmax =
(σ1 − σ3)/2. The material fails when:

τmax = Su = τY

We conclude that for Tresca’s criterion:

τY =
σc
2

= −σt
2

(b) Von Mises criterion is:

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 − 6k2 = 0
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In uniaxial compression, the material fails when σ1 = σc and σ2 = σ3 = 0; we
then have:

2(σc)
2 − 6k2 = 0

so we have:
σc =

√
3k

In uniaxial tension, the material fails when σ3 = σt and σ1 = σ2 = 0; we then
have:

2(σt)
2 − 6k2 = 0

so we have:
σt =

√
3k

In pure shear, σ2 = 0, σ1 = −σ3 = σ and τmax = σ.

(σ − 0)2 + (0− σ)2 + (σ + σ)2 − 6k2 = 0

In other words:
τmax = k = τY

So we have:
τY =

σc√
3k

=
σt√
3k

(c) The Mohr-Coulomb criterion is:

σ1 − σ3 − (σ1 + σ3) sin Φ− 2c cos Φ = 0

In uniaxial compression, σ1 = σc, σ2 = σ3 = 0 and the material fails when:

(1− sin Φ)σc − 2c cos Φ = 0

In uniaxial tension, σ3 = σt, σ1 = σ2 = 0 and the material fails when:

−(1 + sin Φ)σt − 2c cos Φ = 0

In pure shear: σ1 = −σ3, σ2 = 0 and τ = σ1, and the material fails when:

2τ − 2c cos Φ = 0

So we have:
τY = c cos Φ = (1− sin Φ)

σc
2

From Problem 9.6, we have:

sin Φ =
r − 1

r + 1
, r =

σc
σt

As a result:
τY = (1− r − 1

r + 1
)
σc
2

=
1

r + 1
σc

And finally:
τY =

σc σt
σc + σt
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(d) Drucker-Prager’s criterion is: √
J2 − α I1 − k = 0

When using principal stresses:√
1

6
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]− α I1 − k = 0

In pure shear, σ1 = −σ3, σ2 = 0, and τ = σ1. The material thus fails in pure
shear when:

|τ | − k = 0

Thus:
τY = k (8.7)

In uniaxial compression: σ1 = σc, σ2 = σ3 = 0, and the material fails when:

σc√
3
− ασc − k = 0 (8.8)

In uniaxial tension: σ3 = σt < 0, σ1 = σ2 = 0, and the material fails when:

− σt√
3
− ασt − k = 0 (8.9)

We subtract Equation 8.9 from Equation 8.8 to find α:

α =
σt + σc√
3(σc − σt)

(8.10)

From Equations 8.7, 8.8 and ??, we have:

τY =

(
1− σt + σc

σc − σt

)
σc√

3

τY =
2σtσc√

3(σt − σc)

8.9 A material element is subjected to proportional loading. The principal stresses are
given by (2σ, σ, 0) where σ is an increasing stress value.

1. Find the magnitude of σ where the material begins to yield, according to Drucker-
Prager’s criterion.

2. Adopting the associated flow rule, find also the plastic strain rate ε̇pij at onset of yield-
ing expressed in terms of the plastic multiplier λ̇.

3. If the effective plastic strain rate ε̇peff is defined as:

ε̇peff =

√
2

3
ε̇pij ε̇

p
ij ,
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how is ε̇peff related to λ̇?

4. Repeat the three questions above when the principal stresses are given by (σ, σ, 0).

Solution:

1. Drucker-prager criterion is: √
J2 − α I1 − k = 0

With the loading conditions described in the problem:

√
J2 =

√
1

2
sijsij = σ, I1 = 3σ

So the material yields when:

σ =
k

1− 3α

2. Using an associated flow rule:

ε̇p = λ̇
∂f

∂σ
= λ̇

∂

∂σ

(√
J2 − α I1 − k

)
= λ̇

(
s

2
√
J2

− αδ
)

in which δ is the second-order identity tensor. With the loading conditions given in
the problem:

ε̇p = λ̇

1/2− α
0

0

0

−α
0

0

0

−1/2− α


3. From the previous question, we have:

ε̇p : ε̇p = λ̇2
[
(1/2− α)

2
+ α2 + (1/2 + α)

2
]

= λ̇2
(
3α2 + 1/2

)
From there, we get the effective plastic strain:

ε̇peff = λ̇

√(
2α2 +

1

3

)

4. For σ1 = σ2 = σ, σ3 = 0, we have J2 = σ2/3 and so the material fails when:

σ√
3
− 2ασ − k = 0

σ =
k

1√
3
− 2α

Using an associated flow rule, the plastic strain rate is:

ε̇p = λ̇
∂

∂σ
= λ̇

(
s

2
√
J2

− αδ
)
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and with the given loading conditions:

ε̇p = λ̇


1

2
√

3
− α

0

0

0
1

2
√

3
− α

0

0

0

− 1√
3
− α


After some calculations, one finds:

ε̇peff = λ̇

√(
2α2 +

1

3

)
Note: we find the same effective plastic strain as in the previous loading case.

8.10 Conventional triaxial compression tests (σ1, σ2 = σ3) were conducted on cylindri-
cal rock specimens. The test results are reported in the following table.

σ1 (MPa) σ2 = σ3 (MPa)

48.3 1.7

53.7 2.8

56.7 3.4

70.8 6.9

70.9 6.9

94.8 13.8

94.7 13.8

94.9 13.8

115.8 20.7

115.9 20.7

Direct tension tests gace a tensile strength of σt = 3.4 MPa. We want to model the rock
strength. Use plots to estimate the failure criterion parameters and discuss the
applicability of the (a) Linear Mohr-Coulomb criterion; (b) Non-linear Hoek-Brown
criterion.

Solution:

We recall the Mohr-Coulomb criterion:

σ1 − σ3 − (σ1 + σ3) sin Φ− 2c cos Φ = 0

and the Hoek-Brown criterion:

σ1 − σ3 −
√
mY σ3 + s Y 2 = 0
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The problem is solved by plotting the states of stress measured experimentally in the (σ1,
σ3) plane, and by fitting each of the two criteria above to the data. The material parameters
requested are obtained when the best fit is found between the experimental datapoints and
the curves predicted by the models.

8.11 Homework 5 - Problem 1
In order to test whether the Von Mises or Tresca criteria best modelled the real behaviour of
metals, Taylor & Quinney (1931), in a series of classic experiments, subjected a number of
thin-walled cylinders made of copper and steel to combined tension and torsion, as shown
in Figure 8.2. The cylinder wall is in a state of plane stress, with σ11 = σ, σ12 = τ and all

Figure 8.2 Taylor and Quinney’s experimental set-up.

other stress components zero.

1. Show that the principal stress corresponding to the stress-state described above are
zero and:

1

2
σ ±

√
1

4
σ2 + τ2

2. Show that the Mises condition reduces to:

σ2 + 3τ2 = 3k2 or
( σ
Y

)2

+

(
τ

Y/
√

3

)2

= 1

in which Y is the yield stress in tension.

3. Suppose that, in the Taylor and Quinney tension-torsion tests, one has σ = Y/2 and
τ =

√
3Y/4. Plot this stress state in the 2D principal stress state (Use Question 1

to evaluate the principal stresses.) Keeping now the normal stress at σ = Y/2, what
value can the shear stress be increased to before the material yields, according to the
von Mises criterion?

Solution:

1. In plane stress:

σI,III =
σ11 + σ22

2
±

√(
σ11 − σ22

2

)2

+ (σ12)2
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We have σ11 = σ, σ22 = 0 and σ12 = τ so that:

σI,III =
σ

2
±
√
σ2

4
+ τ2

Because the material element is in plane stress, the median principal stress σII is the
out of plane normal stress σ33, which is 0.

2. The Von Mises criterion is: √
J2 − k = 0

With the expressions of the principal stresses found in the previous question:(
σ

2
+

√
σ2

4
+ τ2

)2

+

(
σ

2
−
√
σ2

4
+ τ2

)2

+

(
2

√
σ2

4
+ τ2

)2

= 6k2

After re-arranging:
σ2 + 3τ2 = 3k2

Dividing each side by the yield stress in tension Y =
√

3k:( σ
Y

)2

+

(
τ

Y/
√

3

)2

= 1

3. We first calculate the non-zero principal stresses for the given loading conditions σ =
Y/2 and τ =

√
3Y/4:

σI =
Y

4
+

√
Y 2

16
+

3Y 2

16
=
Y

4
+
Y

2
=

3Y

4

σIII =
Y

4
−
√
Y 2

16
+

3Y 2

16
=
Y

4
− Y

2
= −Y

4

We thus have σI = −3σIII . From there, it is possible to plot σIII as a function of σI .
If the normal stress is kept at Y/2, then the maximum shear stress that can be reached
before failure is such that the von Mises criterion is reached under that shear stress:

σ2 + 3τ2
max = 3k2 = Y 2

Therefore:

3τ2
max = 3k2 = Y 2 − Y 2

4
=

3Y 2

4

So that:
τmax =

Y

2

We check that τmax >
√

3Y
4 .

8.12 Homework 5 - Problem 2
Consider the combined tension-torsion of a thin-walled cylindrical tube. The tube is made
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of a perfectly plastic Von Mises metal and Y is the uniaxial yield strength in tension. The
only stresses are σ = σxx and σxy = τ and the Prandtl-Reuss equations reduce to:

ε̇xx =
1

E
σ̇xx +

2

3
λ̇σxx

ε̇yy = ε̇zz = − ν
E
σ̇xx −

1

3
λ̇σxx

ε̇xy =
1 + ν

E
σ̇xy + λ̇σxy

The axial strain is increased from zero until yielding occurs (with εxy = 0). From first
yield, the axial strain is held constant and the shear strain is increased up to its final value
of (1 + ν)Y/

√
3E.

1. Write down the yield criterion in terms of σ and τ only and sketch the yield locus in
σ-τ space.

2. Evaluate the stresses and strains at first yield.

3. Evaluate λ̇ in terms of σ, σ̇.

4. Relate σ, σ̇ to τ , τ̇ and hence derive a differential equation for shear strain in terms of
τ only.

5. Solve the differential equation and evaluate any constant of integration.

6. Evaluate the shear stress when εxy reaches its final value of (1 + ν)Y/
√

3E. Taking
ν = 1/2, put in the form τ = αY .

Solution:

1. The problem is in plane stress so the answer to this question is the same as that of
questions 1 and 2 in the previous problem:

σ2 + 3τ2 = 3k2

Or, dividing each side by the yield stress in tension Y =
√

3k:( σ
Y

)2

+

(
τ

Y/
√

3

)2

= 1

The equation above is that of an ellipse of long axis Y in the σ direction and of short
axis Y/

√
3 in the τ direction.

2. At first yield, there is no plastic flow yet, so λ̇ = 0, so the Prandtl-Reuss equations
reduce to:

ε̇xx =
1

E
σ̇xx

ε̇yy = ε̇zz = − ν
E
σ̇xx

ε̇xy =
1 + ν

E
σ̇xy
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Before yield, the axial strain is increased while maintaining εxy = 0. At the same
time, the specimen is free of stress on the lateral faces. The axial strain is increased
until the yield is reached. Therefore, at first yield, remembering that Y =

√
3k in

tension from previous problems:

σxx = E εYxx =
√

3 k

εxx = εYxx =

√
3 k

E

εyy = εzz = −ν εYxx = −ν
√

3 k

E
σyy = σzz = 0

εxy = 0

σxy = 0

in which εYxx is the axial yield strain. Since the specimen is in plane stress, σzz =
σxz = σyz = 0 and in the absence of shear stress in the z-direction, εxz = εyz = 0.

3. We now use the first of the three Prandtl-Reuss equations given in the problem to find
an expression for the plastic multiplier:

ε̇xx =
1

E
σ̇xx +

2

3
λ̇σxx

After the first yield, εxx is maintained constant while torsion is applied. As a result,
after first yield:

0 =
1

E
σ̇xx +

2

3
λ̇σxx

in which we are given σxx = σ. Therefore:

λ̇ = − 3

2E

σ̇

σ

4. In order to find the expression of the incremental shear strain, we use the third of the
given Prandtl-Reuss equations:

ε̇xy =
1 + ν

E
τ̇ + λ̇τ

Introducing the expression of the plastic multiplier found at the previous question:

ε̇xy =
1 + ν

E
τ̇ − 3

2E

σ̇

σ
τ (8.11)

During yield, the consistency conditions impose f = ḟ = 0, so that:

σ2 + 3τ2 = Y 2 (8.12)
σσ̇ + 3τ τ̇ = 0

in which we used the result of question 1. Now using the second of Equations 8.12:

σ̇

σ
τ +

3τ2τ̇

σ2
= 0
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Using the above expression in Equation 8.11:

ε̇xy =
1 + ν

E
τ̇ +

9

2E

τ2τ̇

σ2

combining the above equation with the first of Equations 8.12:

ε̇xy =
1 + ν

E
τ̇ +

9

2E

τ2τ̇

Y 2 − 3τ2

which is the requested differential equation for the shear strain, in terms of τ only.

5. To solve the differential equation found in the previous question, we integrate between
the time at first yield and the current time, and that at first yield, εxy = 0 and τ = 0.
We use MATLAB to integrate the second term in the expression of εxy . The code is
the following:

syms x c
fun=x*x/(c*c-3*x*x)
ff=int(fun,x)

The result is:

εxy =

(
2(1 + ν)− 3

2E

)
τ +

1

2E

(
√

3Y atanh

(√
3τ

Y

))

in which the inverse of the hyperbolic tangent is defined as:

atanh(x) =
1

2
ln

(
1 + x

1− x

)
6. Using the response to the previous question, when the shear strain reaches its final

value, we have:

(1 + ν)Y√
3E

=

(
2(1 + ν)− 3

2E

)
τ +

1

2E

(
√

3Y atanh

(√
3τ

Y

))

Now using ν = 1/2:

1 = atanh

(√
3τ

Y

)
Using MATLAB for the calculation of the hyperbolic tangent:

0.7616 =

√
3τ

Y

And finally:

τ =
0.7616Y√

3
' 0.4397Y
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8.13 Homework 5 - Problem 3
The shear strength of a soil is most frequently characterized by a frictional failure criterion.
Two commonly used failure criteria are:
Mohr-Coulomb:

f =

(
σ1 − σ3

2

)
−
(
σ1 + σ3

2

)
sin Φ = 0

Extended Von Mises:
f = J2 − h2σ2 = 0

where σ1 and σ3 are the major and minor principal stresses, Φ is the friction angle, J2 =
sijsij/2 is the second invariant of the deviatoric stress tensor, σ = σkk/3 is the mean
(octahedral) stress and h is a constant. In conventional practice, the friction angle Φ =
ΦTC is reported from measurements of the shear strength in triaxial compression type
tests (in which σxx = σzz < σyy).

1. Derive an expression of the frictional parameter h in terms of this friction angle ΦTC .

2. Assuming that failure of the soil is best described by the extended Von Mises criterion,
what is the frictional angle mobilized in a triaxial extension test? Here, calculate ΦTE
for the case when σxx = σzz > σyy .

3. Plot values of ΦTE as a function of the measured friction angle ΦTC for the extended
Von Mises criterion.

Solution:

1. During a triaxial compression test, the yield is reached when:(
σyy − σxx

2

)
−
(
σyy + σxx

2

)
sin ΦTC = 0 (8.13)

with the Mohr-Coulomb criterion, and when:

1

6

[
2 (σyy − σxx)

2
]
− h2 (σyy + 2σxx) = 0 (8.14)

with the extended Von Mises criterion. From Equation 8.13:

sin ΦTC =
σyy − σxx
σyy + σxx

(8.15)

From Equation 8.14:

h2 =
(σyy − σxx)

2

3 (σyy + 2σxx)
2 (8.16)

From Equation 8.15:
σxx
σyy

=
1− sin ΦTC
1 + sin ΦTC

(8.17)

Combining equations 8.15 and 8.16:

h2 =
(sin ΦTC)2

3

(σyy + σxx)
2

(σyy + 2σxx)
2 =

(sin Φ)2

3

(1 + σxx/σyy)
2

(1 + 2σxx/σyy)
2 (8.18)



246 PERFECT PLASTICITY IN GEOMECHANICS

Combining equations 8.17 and 8.19 and re-arranging:

h =
2 sin ΦTC√

3(3− sin ΦTC)
(8.19)

2. During a triaxial extension test, the yield is reached when:(
σxx − σyy

2

)
−
(
σxx + σyy

2

)
sin ΦTE = 0 (8.20)

with the Mohr-Coulomb criterion, and when:

1

6

[
2 (σxx − σyy)

2
]
− h2 (σyy + 2σxx) = 0 (8.21)

with the extended Von Mises criterion. From Equation 8.20:

sin ΦTE =
σxx − σyy
σyy + σxx

(8.22)

From Equation 8.21:

h2 =
(σyy − σxx)

2

3 (σyy + 2σxx)
2 (8.23)

From Equation 8.22:
σxx
σyy

=
1 + sin ΦTE
1− sin ΦTE

(8.24)

Combining equations 8.22 and 8.23:

h2 =
(sin ΦTE)2

3

(σyy + σxx)
2

(σyy + 2σxx)
2 =

(sin Φ)2

3

(1 + σxx/σyy)
2

(1 + 2σxx/σyy)
2 (8.25)

Combining equations 8.24 and 8.26 and re-arranging:

h =
2 sin ΦTE√

3(3 + sin ΦTE)
(8.26)

3. Here, we combine equations 8.19 and 8.26 to relate ΦTC to ΦTE :

sin ΦTC
sin ΦTE

× 3 + sin ΦTE
3− sin ΦTC

= 1

After re-arranging:

sin ΦTE =
3 sin ΦTC

3− 2 sin ΦTC

From there, it is possible to plot ΦTE as a function of ΦTC .

8.14 Homework 5 - Problem 4
The objective of this problem is to derive the incremental constitutive equations of an
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elasto-plastic rock, for a plastic potential similar to Drucker-Prager’s. Assume that in
the elastic domain, the rock has a linear isotropic behavior. The following notations are
adopted:

sij = 2Geeij
p = K εekk

In which: eij stands for deviatoric strain, sij and p are the deviatoric and mean stress,
respectively, and G and K are the shear and bulk modulus, respectively. Drucker-Prager
plastic criterion writes:

F =

√
1

2
sijsji − f(q − p)

In which q is a constant and f is a friction parameter, assumed to depend on deviatoric
plastic deformation gp. Drucker-Prager plastic potential writes:

Q =

√
1

2
sijsji + dp

In which d is a dilatancy parameter, assumed to depend on deviatoric plastic deformation
gp.

1. Recall the decomposition of stress in volumetric and deviatoric parts. Apply this
decomposition to the elastic and plastic parts of the strain tensor.

2. Determine the derivatives of the yield function and plastic potential. Write the con-
sistency condition to derive an equation relating the increment of stress to the rate of
deviatoric plastic deformation ġp =

√
2ėpij ė

p
ji.

3. Write the plastic flow rule and show that the plastic multiplier writes λ̇p = ġp. De-
rive an equation relating the rate of volumetric plastic deformation ε̇pv to the rate of
deviatoric plastic deformation ġp.

4. Use elastic constitutive equations and the consistency condition to show that:

ġp =
< 1 >

G+ fdK + (q − p)ht

G sij√
1
2sijsji

+Kfδij

 ε̇ij

In which ht = df
dgp , and δij is the second-order identity tensor.

Explain the meaning of the notation: < 1 > (in terms of loading and unloading
phases).

5. Derive an explicit relationship between the increment of stress and the rate of total
deformation, i.e. provide the expression of Leijkl and Lpijkl in the equation σ̇ij =(
Leijkl − L

p
ijkl

)
ε̇kl.

Solution: See the following pages.












