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Elasticity Theory for Rock Mechanics 

 
Prof. Robert W. Zimmerman 

Department of Earth Science and Engineering  
Imperial College, London 

 
[These notes are from the former Engineering Rock Mechanics MS Course at Imperial 
College. These notes cover some of the same material as does Chapter 5 of the 4th edition of 
Fundamentals of Rock Mechanics, but pre-date that edition, and differ greatly in notation and 
other details.]  
 
Section 1 - Review of the Equations of Elasticity 

 The basic governing equations of elasticity were presented last term, in various bits and 
pieces, in the Engineering Rock Mechanics Course. We will now review these equations, and 
collect them together. These equations are the cornerstone of almost all analyses of the 
mechanical behaviour of rock masses. This is because each of the more sophisticated 
constitutive models used in rock mechanics, such as plasticity, viscoelasticity, 
thermoelasticity, and poroelasticity, take elasticity as their starting point. We will first present 
the equations using Cartesian (x,y,z) notation, and then rewrite them in the more concise 
Cartesian tensor notation. Occasionally, we will also make use of “direct” matrix/vector 
notation. 
 
1.1 Displacement  

 Each point in an elastic medium is labelled with a position vector, (x,y,z), that locates a 
particular “infinitesimally small” piece of rock with respect to some co-ordinate system, 
before any deformation occurs. After loads are applied, this piece of rock will move to a new 
location, (x',y',z'). It is therefore displaced by some vector (u,v,w), where u is the 
displacement in the x-direction, etc. The new location is therefore related to the old location 
by 

  

€ 

(x', y', z' ) = (x, y, z) − (u,v,w) .                (1.1) 

The peculiar presence of the minus sign in eq. (1.1), which does not appear in most books on 
elasticity or continuum mechanics, is needed in order to be consistent with the “compression 
= positive” convention that is commonly used in rock mechanics. According to this 
convention, each displacement component will be positive if the particle of rock moves in the 
negative direction. Another interpretation is that the displacement vector points from the new 
position to the old position. In general, each of the three displacement components will vary 
with all three co-ordinates, i.e., u = u(x,y,z), etc. 
 
1.2 Strain 

 As explained in the rock mechanics course, the stresses in a rock mass are not related to 
the displacements directly, but rather to the derivatives of the displacements, i.e., the strains. 
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There are many ways to quantify the strain, but most analytical and numerical studies of rock 
deformation utilise the infinitesimal strain tensor for this purpose. The nine components of 
the infinitesimal strain tensor are defined by 
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There are nine components of strain. However, they are defined in such a way that only six 
components are independent. The terms that have both suffixes the same are the normal 
strains, and measure the fractional shortening in the direction of the three co-ordinate axes. 
The other six strains are shear strains; they measure angular distortions. There are also three 
pairs of terms called the rotations that are defined by 
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and similarly for xzω , etc. These terms represent local rigid-body rotations that take place 
without any distortion or stretching of the rock. In general, they are not as important as the 
strains, since they are not directly related to the stresses.  

 If the strains are greater than a few percent, the infinitesimal strain tensor as defined 
above is not sufficient to quantify the deformation. In these cases, more complicated 
definitions are needed, which involve products of the derivatives of the displacement, i.e., 
terms such as (∂u /∂x) 2 , etc. However, in most rock mechanics problems, the strains are 
indeed small, and the infinitesimal strain tensor accurately quantifies the strain. In any event, 
analyses based on finite strain tensors (of which there are various different definitions) are 
exceedingly difficult to carry out, and so finite strain theory is rarely used in practice. 
 
1.3 Tractions  

 Consider a very small element of surface area of rock, which may be an actual rock 
surface (such as the surface of an excavation), or a hypothetical surface in the interior of a 
rock mass. The net force acting on this surface, divided by the area of the surface, is called 
the traction. The traction is therefore a vector, and has three components. It is usually 
denoted by t = (tx ,ty,tz ) . In other words, xt  is the force component in the x-direction, per 
unit area, acting on the surface. By convention, the components of the traction vector are 
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represented by positive numbers if they act in the negative co-ordinate directions, and vice 
versa. Tractions are important in rock mechanics, because the tractions that act on the 
exposed surfaces of rock serve as boundary conditions when a problem in rock mechanics is 
formulated mathematically. However, aside from appearing in the boundary conditions, the 
tractions are not used in formulating and solving the equations. This is because it is more 
convenient to use the stresses, which are defined below. 
 
1.4 Stresses  

 The traction vector, as defined above, depends on the surface of the rock to which one is 
referring. Any rock surface can always be identified uniquely by its outward unit normal 
vector, n = (nx ,ny ,nz) . This vector is normal to the surface, points away from the rock mass, 
and has unit length; from the Pythagorean theorem, this last condition means that 
nx 2 + ny2 + nz2 =1 . Hence, at any point in the rock mass, the vector t must be expressible as a 
function of the vector n. We proved in the engineering rock mechanics course that t and n are 
related through a 3×3 matrix, τ , that is known as the stress tensor. In matrix/vector notation, 
the relation is t = τn. In explicit notation the relation is 

xt = xxτ xn + xyτ yn xz+τ zn ,       (1.4a) 

yt = yxτ xn + yyτ yn yz+τ zn ,       (1.4b) 

zt = zxτ xn + zyτ yn zz+τ zn .       (1.4c) 

The nine components   

€ 

( xxτ , xyτ ,etc.) form the stress tensor. In the ERM course we showed 
that the reason the stresses form a “tensor” is that, when you change the co-ordinate system, 
the nine stress components transform in a certain manner. These transformations are very 
important to know and understand, but they will not be used very often in the remainder of 
these notes. 
 
1.5 Conservation of Angular Momentum  

  All of the equations defined thus far are mainly definitions, and in themselves do not 
actually embody any physical laws. Note that, thus far we have introduced twenty-one 
“unknowns” - three displacements, nine stresses, and nine strains. Hence, we eventually will 
need twenty-one equations. The strain-displacement equations, (1.2), are nine such equations; 
twelve more are needed. Six of these additional equations are found by invoking the three 
main laws of classical mechanics: conservation of linear momentum, conservation of angular 
momentum, and conservation of energy. These laws will have the same form for any type of 
rock behaviour - elastic, plastic, viscoelastic, etc. Finally, the last six equations are found by 
invoking a specific constitutive law to relate the stresses to the strains. 

 The law of conservation of angular momentum supplies three of the needed equations. As 
we showed in the ERM course, the law of conservation of angular momentum, when applied 
to a rock, tells us that the stress matrix is symmetric, i.e.,  
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xyτ = yx ,τ    xzτ = zx,τ    yzτ = zyτ .     (1.5) 

If eq. (1.5) is always assumed to be true, then the law of conservation of angular momentum 
will be satisfied. When solving a particular problem, we therefore always assume that eq. 
(1.5) holds. When formulating a problem and setting up the equations, however, it is often 
convenient to ignore relations (1.5), and use separate notations for xyτ  and yxτ , for example. 
Failure to adhere to this guideline can lead to mistakes, as will be seen when we discuss the 
stored strain energy. 
 
1.6 Conservation of Linear Momentum 

 Three more equations are found by appealing to the law of conservation of linear 
momentum. There are three such equations, because momentum is a vector that has three 
independent components. In a Cartesian co-ordinate system, these three equations are 
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where f = ( xf , yf , zf )  is the body-force vector. This vector represents a force, per unit 
volume of rock, that acts throughout the rock, and not only over its outer surface. In keeping 
with the “compression = positive” convention, the components of this vector are positive 
numbers if the force acts in the negative direction. The most common body force is gravity, 
which has magnitude ρg , and acts in the vertical direction. However, we will see later that 
temperature changes, as well as changes in the pore fluid pressure in the cracks and voids, 
also essentially function as body forces in rock mechanics. If we were analysing a dynamic 
problem, rather than a static problem, there would be inertia terms on the right hand sides of 
eq. (1.6), such as ρ˙ ̇ u  in eq. (1.6a), where the two dots denote time derivatives. In this course, 
we will usually deal with quasi-static problems, in which case the inertia terms can be 
ignored. The three equations (1.6) are often referred to as the “stress-equilibrium equations”. 
 
1.7 Conservation of Energy  

 We now need only six more equations in order to balance out the number of unknown 
functions. However, if we are trying to solve an isothermal problem, the principle of 
conservation of energy does not supply us with an additional equation. This principle will 
appear in thermoelasticity, but does not appear explicitly in elasticity. The additional six 
equations are found by invoking a set of constitutive equations, which is just another name 
for the stress-strain relations. 
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1.8 Stress-Strain Relations  

 The equations presented thus far would apply to the deformation of any solid material. As 
mentioned above, we need to supplement these equations with constitutive laws in order to 
have enough equations to allow us to solve for the displacements and stresses. There are 
numerous types of constitutive laws used in rock mechanics, such as linear elasticity, non-
linear elasticity, plasticity, viscoelasticity, etc. Although most rocks behave in a complex, 
non-linear, and often inelastic manner, most analyses of rock deformation utilise the 
assumption of isotropic, linear elasticity. This model is used in part because it is by far the 
easiest model to employ, in both analytical and numerical work, and in part because it often 
offers a very reasonable approximation to the actual rock behaviour. The stress-strain 
relations (i.e., Hooke's law) for an isotropic, linear elastic material are 

   xxτ = λ ( xxε + yyε + zzε ) + 2µ xxε ,      (1.7a) 

   yyτ = λ ( xxε + yyε + zzε ) + 2µ yyε ,       (1.7b) 

 zzτ = λ ( xxε + yyε + zzε ) + 2µ zzε ,       (1.7c) 

xyτ = 2µ xyε ,   xzτ = 2µ xzε ,     

€ 

yzτ = 2µ yzε .    (1.7d) 

The two parameters λ and µ are Lame's two elastic moduli. The parameter µ is equivalent to 
the shear modulus, which is often denoted by G. The parameter λ has no simple physical 
interpretation, but is mathematically convenient to use. These two parameters are related to 
the more commonly used parameters E, K and ν through the following equations: 

   K = λ +
2
3
µ ,           (1.8a) 

ν =
λ

2(λ + µ)
,           (1.8b) 

E = µ(3λ + 2µ)
(λ + µ)

.          (1.8c) 

•	  Homework problem: Invert eqs. (1.7) to find the strains as functions of the stresses. Hint: 
add up eqs. (1.7a,b,c) to eliminate the term   

€ 

(εxx + εyy + εzz ) . Compare the resulting equation 
for ε xx  with the equation we used in the ERM course, and thereby derive eq. (1.8c). 
 
1.9 Elastostatic Boundary-Value Problems  

 Equations (1.2,3,5,7) comprise twenty-one equations in twenty-one unknowns. Roughly 
speaking, this is enough information to allow us to solve for the displacements and stresses in 
a rock mass. In order to do this, we of course need to know the body force distribution, and 
the elastic moduli. However, we also need to know the boundary conditions on the outer 
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surfaces of the rock. In general, the boundary conditions consist of specifying either the 
tractions or the displacements along each portion of the outer boundary. As an example, a 
very common type of boundary condition is the “traction free” boundary, which occurs at an 
excavation surface that is in contact with the atmosphere. If all of this information is known, 
there will be a unique solution to the equations. We will prove this important “uniqueness 
theorem” in Section 3. This theorem is not just a mathematical conceit. The theorem is 
needed because it tells us exactly what type of boundary information is needed in order to 
solve a problem. Also, note that the other major classical continuum theory, that of flow of a 
viscous fluid, does not have a uniqueness theorem. For example, flow in a pipe at a given 
flowrate may be either laminar or turbulent - hence, in fluid mechanics there can be more 
than one solution for a given problem. Fortunately, this situation does not arise in linear 
elasticity. In order to prove the uniqueness theorem, along with other important and related 
theorems, it is convenient to rewrite the governing equations in terms of indicial notation. 
 
Section 2 - Cartesian Tensor “Indicial” Notation 

  If we examine equations such as (1.2) or (1.5), it becomes apparent that there is a certain 
pattern to them. This suggests that there may be some simpler way to write these equations. 
A system of notation known as Cartesian tensor “indicial” notation has been invented for this 
purpose. This system of notation takes a while to learn, but there are many advantages to 
using this notation. For one, all equations are simpler and shorter when written in indicial 
notation. Secondly, there are many proofs and manipulations that are easy to carry out using 
this notation that would be extremely tedious, if not nearly impossible, to do using the (x,y,z) 
notation. Thirdly, the notation is in many ways similar to the type of array indexing that is 
used when writing computer programs to solve the governing equations numerically. Finally, 
use of indicial notation is becoming very widespread in rock mechanics, so some knowledge 
of this notation is useful if only to facilitate your reading of the rock mechanics literature. 
 
2.1 Basic Definition 

 Consider a vector such as the position vector, which can be denoted by (x,y,z). Note that 
we could just as well denote this vector by   
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( 1x , 2x , 3x ) . The basic idea behind indicial 
notation is to represent this vector by the single symbol xi. The best way to interpret this 
symbol is to think of it as being a shorthand notation for the entire set of the three 
components   

€ 

( 1x , 2x , 3x ) . It is sometimes convenient, but often misleading, to think of xi as 
symbolising a particular component of the position vector. Similarly, the displacement vector 
can be written as   

€ 

( 1u , 2u , 3u ) instead of (u,v,w). In indicial notation, therefore, it would be 
written as iu . Using indicial notation, eq. (1.1) could be written as x'i = xi − ui ,  for example. 
The index i is referred to as a free index, because it is “free” to take on the values 1, 2 or 3. It 
is important to note that any index can be used for this purpose, although it is traditional to 
start with i, and then use j, k, etc., if more indices are needed. Hence, xi means exactly the 
same thing as xj, for example. 

 Following up on the idea that (x,y,z) can be replaced by   

€ 

( 1x , 2x , 3x ) , a strain component 
such as ε xx  can also be written as   

€ 

ε11, etc. The entire strain tensor can therefore be 
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represented by the symbol εi j , where the two free indices i and j are shorthand for all nine 
combinations that can be formed by taking i=1,2,3 and j=1,2,3. Likewise, the stress tensor 
can be represented by τi j . When using indicial notation, the “order” of a tensor is indicated 
by the number of free indices that it has. For example, τi j  has two free indices, so it is a 
second-order tensor with 32 = 9 components, where the "3" is related to the fact that we are in 
three-dimensional space. A vector such as xi is therefore also referred to as a first-order 
tensor, and has 31 = 3 components.   
 
2.2 Summation Convention   

 The summation convention is a rule that allows most equations written in indicial 
notation to be simplified. To motivate this rule, consider the bulk strain, which we showed in 
the ERM course to be expressible as 

€ 

εbulk = εxx +εyy +εzz . The bulk strain can also be 
written as 

  

€ 

εbulk = ε11 +ε22 +ε33 = εii
i=1

3
∑ .       (2.1) 

The famous physicist Albert Einstein noticed that whenever a term appears that contains 
two repeated indices, such as εi i , it almost always has a summation sign in front of it, as it 
does in eq. (2.1). Hence, the summation sign is actually redundant. He therefore invented 
what is now known as the Einstein summation convention, which is a rule that states 
whenever there are two indices repeated in a tensor equation, it is implied that the terms 
should actually be summed over the values i=1,2,3. Using this convention, εbulk = εi i . An 
index that appears twice in an expression is often called a “dummy index”. 

 The summation convention is useful when expressing the product of two vectors, or the 
product of a matrix and a vector. For example, note that the dot product of two vectors can be 
expressed as u •v =u1v1 + u2v2 +u3v3 = ui∑ vi = uivi . The product of a 3×3 matrix A and a 3×1 
vector b would be written as Aij bj . You should write out the three terms in this expression to 
convince yourself that it does in fact represent the product of a matrix and a vector. Note that 
the order in which the terms appear in an indicial expression is immaterial; this product could 
also be written as bj Aij . The important fact is that the index on the vector b matches up with 
the second index on A.  In this regard, note that Aij bi  would be the indicial representation of 
bTA , where the superscript “T” indicates transpose. 
 
2.3 Kronecker delta  

 One very important second-order tensor that is used frequently in elasticity is the 
Kronecker delta, which is denoted by δ i j , and defined by 

  δ11 = δ22 = δ33 =1,         (2.2a) 

  δ12 = δ21 = δ13 = δ31 = δ23 = δ32 = 0.     (2.2b) 
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The Kronecker delta is often defined by saying that “δij equals 1 when i=j, and equals 0 when 
i ≠ j ”. It is exactly equivalent to the 3×3 identity matrix that is denoted in matrix notation by 
I. The most important property of the Kronecker delta is the replacement rule, which states 
that whenever you see δ i j  in an equation, if there is another term that also has index i, you 
can replace that index by j, and delete the Kronecker delta. For example, δ i jx j = xi , since we 
can use the Kronecker delta to replace the subscript i with the subscript j. This rule can be 
proven as follows: 

    

€ 

δij x j = δij x j
j=1

3
∑ = δi1x1 +δi2x2 +δi3x3 

  

€ 

= (δ11x1 +δ12x2 +δ13x3,  δ21x1 +δ22x2 +δ23x3,  δ31x1 +δ32x2 +δ33x3)   

  

€ 

= (x1, x2, x3) = xi  .        (2.3) 

In direct matrix notation, this equation merely states that Ix = x. The replacement rule can 
be used with tensors of any order, i.e., in expressions that have any number of free indices, as 
long as there is one index that matches one of the indices of the Kronecker delta. 
 
•Homework problem:  Simplify the following expressions as far as possible:  (a) δ i i; (b) 
δ i jδ i j ; (c) 

€ 

δij xiu j .   

 
 Note that an index can either appear once in an equation, in which case it is a free index, 

or it can appear twice, in which case it is a dummy index. If an index appears more than twice 
when using indicial notation, this is a sure sign of a mistake! For example, τi ixi  has no 
meaning in indicial notation. Another way to check for possible errors in your equations is to 
note that the free indices must always match up on both sides of an equation. Hence, the 
equation δ i jx j = xi  makes sense, but the equation δ i jx j = x j  cannot possibly be correct. 
 
2.4 Partial Derivative Notation  

 Another type of space-saving shorthand that is part of indicial notation is to use the 
subscript “,i” to denote a partial derivative with respect to the co-ordinate xi . This rule 
applies to all subscripts that appear after the comma. For example, 

  f ,i =
∂ f
∂xi

;   f ,ij =
∂ 2 f
∂xi∂xj

;  etc.      (2.4) 

Recall from calculus that when you differentiate a function with respect to two different 
variables, the order in which you take the derivatives is immaterial.  In indicial notation, this 
rule is expressed as     

€ 

f,ij = f, ji. This law is frequently of use when manipulating the equations 
of elasticity. One important specific example of a partial derivative that arises frequently is 
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xi, j = δ i j . This equation is equivalent to the set of nine equations ∂x1 / ∂x1 =1,  ∂x1 / ∂x2 = 0,  
etc. 
 
2.5 Equations of Elasticity written in Indicial Notation 
 Using all of the rules we have just introduced, the equations of elasticity can be written as 
follows: 

  Displacement:      

€ 

ʹ′ x i = xi − ui         (2.5) 

  Strain:      
    

€ 

εij =
1
2

(ui, j + u j,i)        (2.6) 

  Traction:     ti = τi jnj           (2.7) 

Angular momentum:  τi j = τ j i          (2.8) 

Linear momentum:  τij, j + f i = 0          (2.9) 

Hooke's Law:    τi j = λε kkδ i j + 2µε i j        (2.10) 

If we combine eqs. (2.6,9,10), we can derive the governing equations of elasticity in terms of 
the displacements. These equations, which are sometimes referred to as the Navier equations, 
are 

(λ + µ)uj , ji + µui , jj + fi = 0 .       (2.11) 

It is important to understand that all of the equations presented thus far are appropriate 
only if you are using a Cartesian co-ordinate system. If you are using a cylindrical co-
ordinate system, for example, it would not be correct to replace (x,y,z) with (r,θ,z). For 
curvilinear co-ordinate systems such as cylindrical or spherical, indicial notation cannot be 
used. The form of the governing equations in cylindrical co-ordinates will be presented in 
Section 6.  

Equation (2.11) applies to an isotropic elastic material, in which “all directions are 
physically equivalent”. Rock masses that contain bedding planes, or aligned fractures, 
however, are usually anisotropic, which means “not isotropic”. Specific forms of Hooke’s 
law for the most common types of anisotropy found in rock masses, transverse isotropy and 
orthotropy, are given in the book Rock Mechanics for Underground Mining, by Brady and 
Brown.  For our purposes, it is better to use the most general form of Hooke’s law for an 
anisotropic medium, which would be written in indicial notation as 

  τi j = cijklεkl ,          (2.12) 

where cijkl  is the elastic moduli tensor. The elastic moduli tensor is a fourth-order tensor, as 
can be seen by the fact that it has four indices. [Note that in matrix notation, eq. (2.12) would 
be written as τ= Cε ; however, despite its compactness, matrix notation has a disadvantage in 



 10 

that it gives no simple way to indicate the order of a tensor.] Many of the important theorems 
of elasticity are true regardless of whether or not the material is isotropic. Furthermore, many 
of the mathematical manipulations are easier if we use the general anisotropic form of 
Hooke's law, which of course must contain eq. (2.10) as a special case. 
 
•Homework problem: It can be shown (see Cartesian Tensors by H. Jeffreys) that any 
isotropic elastic moduli tensor must have the form cijkl = λδi jδkl + µ(δ ikδ j l + δi lδ jk) . Using 
this elastic moduli tensor in the anisotropic version of Hooke's law, derive eq. (2.10). 
 
2.6 Generalised Divergence Theorem 

 The generalised divergence theorem, which is also known as Gauss's theorem and Green's 
theorem, is used very frequently in elasticity to transform volume integrals into surface 
integrals, or vice versa. In particular, it is crucial to the development of the family of 
numerical methods known as boundary integral methods, or boundary element methods. 
Special cases of this theorem are proven in most vector calculus textbooks. One advantage of 
using indicial notation is that a very general version of the divergence theorem can be written 
down in a simple form. Consider a region of three-dimensional space denoted by R, with its 
outer boundary denoted by ∂R. In this context, the symbol ∂  does not denote a partial 
derivative; it is a standard mathematical symbol used to denote the boundary of a region. The 
generalised divergence theorem can be expressed as 

 
    

€ 

(tensor),idV
R
∫∫∫ = (tensor )ni

∂R
∫∫ dA      (2.13) 

The expression denoted by “tensor” can be any tensor of any order, with any (legitimate) 
combination of free and dummy indices. The only restriction to remember is that the entire 
integrand inside the volume integral must be differentiated with respect to xi  in order to 
apply this theorem. For example, it could be applied to an integrand of the form (xi f ),i ; but 
not to an integrand of the form xi f ,i .  n this latter case, however, a version of integration-by-
parts could be used, as will be demonstrated in Section 3.3. 

 Although we will not prove the divergence theorem, the following example should 
convince you that it works. Recall that the local volumetric strain is given by εi i , which is 
seen from eq. (2.6) to equal ui,i . Hence, the total volume change of the rock in region R could 
be found by integrating ui,i  over the region R, i.e.,  

 
      

€ 

ΔV = ε iidV =
R
∫∫∫ ui,idV

R
∫∫∫ = uini

∂R
∫∫ dA = u • n

∂R
∫∫ dA.    (2.14) 

The term u • n  in the last integral represents the component of the displacement that is 
perpendicular to the outer boundary. Hence, it seems that the last integral is, in fact, equal to 
total volume change of the body. The fact that we derived this last equation using the 
divergence theorem is indirect evidence that the divergence theorem is correct. 
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Section 3 - Energy Principles and the Uniqueness Theorem  
 There are various theorems and principles in elasticity that involve the concept of the 

strain energy that is stored inside a stressed body. These principles have many important 
implications and uses. On a theoretical level, they provide constraints on the allowable values 
of the components of the elastic moduli tensor. They are also crucial in the proof of the 
uniqueness theorem of elasticity. Roughly speaking this theorem assures us that if we find a 
solution to an elasticity problem in rock mechanics, it will in fact be the solution, and 
therefore does represent the physical behaviour of the rock mass. Finally, the energy 
principles form the justification for many important approximate methods used in rock 
mechanics, such as finite element methods. 
 
3.1 Strain Energy 

 Imagine a small piece of rock of volume δV that is subjected to a uniaxial stress τ11. We 
showed in the ERM course that the work done by this stress as it deforms the rock will be 
τ11ε11δV / 2 . This is exactly analogous to the work kx/2 that is done when a spring with 
spring constant k is stretched by an amount x. Note that even though, in general, there will be 
strains induced in the 22 and 33 directions, due to the Poisson effect, these terms do not enter 
into the expression for the work. This is because the work is defined in terms of the dot 
product of the force and the displacement, and these other strains are perpendicular to the 
applied stress. In the most general case, there will be nine such work terms, one for each of 
the nine different stresses. Since the work done on the rock by the applied loads must equal 
the change in energy stored in the rock, the stored strain energy per unit volume of rock will 
be given by 

 
  
w =

1
2
τ11( ε11 + τ12ε12 +) =

1
2
τi j( εi j) .       (3.1) 

Note that there are nine different terms in eq. (3.1), not six. This equation illustrates why it is 
important to remember that although τ12 and τ21 are numerically equal, they represent two 
different stresses.   

 If the stresses and strains vary from point to point, the total strain energy stored in the 
rock in a region R would be found by integrating eq. (3.1) over the region R, as follows: 

W = wdV
R
∫∫∫ =

1
2

τi j
R
∫∫∫ εi jdV .        (3.2) 

An interesting relation can be derived by manipulating eq. (3.2). First, we use eq. (2.6) to 
express the strains in terms of the displacements: 

W =
1
2

τi j
R
∫∫∫ εi jdV =

1
4

τi j
R
∫∫∫ (ui, j + uj, i )dV =

1
2

τi j
R
∫∫∫ ui, jdV .   (3.3) 

The last step is valid only because   

€ 

τij = τ ji (verify this step yourself). We now use 
integration-by-parts to simplify the integral. First, note that, from the product rule of 
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differentiation, (τ i jui ), j = τi j, jui + τi jui, j . But τij, j = − f i  from eq. (2.9), so the strain energy 
can be written as 

W =
1
2

[(τi jui ),j
R
∫∫∫ + f iui ]dV =

1
2

(τ i jui ), j
R
∫∫∫ dV +

1
2

fiui
R
∫∫∫ dV .  (3.4) 

The first integral on the right is now in a form that allows the divergence theorem to be used: 

  W =
1
2

τi juinj
∂R
∫∫ dA + 1

2
f iui

R
∫∫∫ dV .       (3.5) 

Noting that as the order of terms is irrelevant in indicial notation (unlike matrix notation, for 
example), we can say that τi juinj = τi jnjui = tiui , and so 

       W =
1
2

ti
∂R
∫∫ uidA +

1
2

f iui
R
∫∫∫ dV .         (3.6) 

Recalling that the work done is defined in terms of a force acting through a displacement, we 
see that the first integral is the total force done on the rock by the tractions that are applied at 
its outer boundary, and the second integral is the total work done on the rock by the body 
forces. Eq. (3.6) is therefore a rigorous statement of the fact that the energy stored in the rock 
is equal to the total work done on the rock by external forces. 
 
3.2 Positive-Definiteness of the Elastic Moduli Tensor   

 If you deform a rock, it seems reasonable to expect that you would have to do work on 
the rock, in which case the strain energy stored in the rock would increase. This should be 
true whether you compress or expand the rock. If there were a way to deform a rock so that 
its internal strain energy decreased, then you could use this deformation to extract energy 
from the rock, and do work on the surroundings. It would be nice if this were possible, but it 
that doesn't seem to be the way rocks (or any other materials) actually behave. This idea that 
any deformation will cause energy to be stored in the rock is formalised by saying that the 
strain energy function w must be positive definite. This means that it is always ≥ 0, and that it 
is only = 0 if the strain is exactly equal to zero. If we combine eqs. (2.12) and (3.1), we find 
that 

w =
1
2
τi jεi j =

1
2
cijklεklεi j         (3.7) 

The expression for w in eq. (3.7) is known as a “quadratic form”, since, if you expand it out 
explicitly, it consists of a series of quadratic terms such as (1 / 2)c1111ε112 , etc. In order for w 
to be positive-definite, all of the eigenvalues of the elastic moduli tensor must be positive 
numbers; this is proven in any course on linear algebra. Note that this is not the same as 
saying that each component of cijkl  must be positive. 
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 The best way to examine the implications of positive-definiteness for an isotropic 
material is to decompose the stresses and strains into isotropic and deviatoric parts.  Recall 
from the ERM course that the isotropic and deviatoric parts of the stress tensor are  

τi j
I =

1
3
τkkδ i j ,           ( 3.8a) 

τi j
D = τi j −

1
3
τkkδ i j .         (3.8b) 

The isotropic and deviatoric parts of the strain are defined similarly: 

εi j
I =

1
3
εkkδ i j ,             (3.9a) 

εi j
D = εi j −

1
3
εkkδi j .         (3.9b) 

By combining eqs. (2.10) and (3.8,9), it can be shown that Hooke's law can be written as 

τi j
I = 3Kε i jI ;          (3.10a) 

τi j
D = 2µε i jD ,          (3.10b) 

where 3K = 3λ + 2µ . Equation (3.10) shows that if Hooke's law is written in terms of 
deviatoric and isotropic components, the two components are completely decoupled from 
each other, in the sense that the deviatoric stress depends only on the deviatoric strain, and 
the isotropic stress depends only on the isotropic strain. If you compare eqs. (2.12) and 
(3.10), it should become apparent that any isotropic strain is an eigenvector of the elastic 
moduli tensor, and its eigenvalue is 3K; similarly, any deviatoric strain is also an eigenvector, 
and its eigenvalue is 2µ. From the comment above that positive-definiteness implies that the 
eigenvalues are positive, it follows that the two elastic moduli, K and µ, must be positive.  
Eq. (1.8c) then shows that the Young's modulus, E, must be positive. Strangely enough, λ 
does not have to be positive; eq. (1.8a) shows that it must only satisfy the condition 
λ > −2µ / 3 . 
 
•Homework problem:  Fill in the missing steps needed to derive eq. (3.10). 
 
3.2 Uniqueness Theorem for Boundary-Value Problems 

 Imagine a rock mass that occupies a region in space denoted by R. The rock has a 
positive-definite elastic moduli tensor, cijkl . The body force, f i , that acts on the rock is 
assumed to be known. Now imagine that the displacements along the outer boundary of the 
rock mass are known; we can denote these known boundary displacements by uio . The 
complete elastostatic boundary-value problem can be formulated in precise mathematical 
terms as 
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τij, j + f i = 0   for   xi ∈R ,            (3.11a) 

ui = uio  for   xi ∈∂R ,         (3.11b) 

where xi ∈R  is just a fancy way of saying “for all points inside the region R”. 

 The uniqueness theorem was proven in 1859 by the physicist Gustav Kirchhoff, using the 
following argument. Imagine that there are actually two displacement fields that solve this 
problem, ui1 and ui2 . Consider the difference between these two displacements, 
ˆ u i = ui

1 − ui
2.  Because the stress-strain and strain-displacement equations are linear, the 

stresses associated with the displacement ˆ u i  will be ˆ τ i j = τi j
1 − τi j

2 . However, note that this 
displacement is not a solution to eq. (3.11), because    

       ˆ τ ij, j = τij, j
1 − τij, j

2 = − fi + fi = 0 .      (3.12) 

Hence, the displacement ˆ u i  is a solution to the stress equilibrium equations for the case 
where the body force is zero. Now consider the displacements on the outer boundary: 

      on   xi ∈∂R ,     ˆ u i = ui
1 − ui

2 = ui
o −ui

o = 0.      (3.13) 

There are therefore no body forces associated with ˆ u i , and no displacements on the outer 
boundary. Equation (3.6) then shows that the strain energy associated with this displacement 
is zero. But if the elastic moduli tensor is positive definite, zero strain energy implies zero 
strains, and consequently zero stresses. Hence, we see that ˆ τ i j = 0,  which implies τi j

1 = τi j
2 ; 

and ˆ ε i j = 0,  which implies εi j
1 = εi j

2.  But the two strain fields can be equal only if their 
associated displacements differ by, at most, a rigid-body displacement. But the two fields 
have the same displacement on the outer boundary, so this supposed rigid-body displacement 
must be zero. Hence, we have proven that the two different solutions are in fact exactly equal, 
since they have the same displacements, stresses, and strains.  QED!   

 The above proof of the uniqueness theorem was for the general case of an anisotropic 
material; it also holds in the special case where the rock is isotropic. The only requirement 
was that the elastic moduli tensor be positive-definite. Note that this proof would have 
worked just as well (essentially; see the HW problem below) if we specified the tractions on 
the outer boundary, rather than the displacements. In fact, one can have different boundary 
conditions on different parts of the boundary. We have therefore proven that if either the 
tractions or displacements are specified along the outer boundary, there will be at most one 
solution to the problem. However, the fact that one solution does exist (as opposed to having 
no solution) is much harder to prove, although it has been done, mainly by Eli Sternberg and 
his students. For our purposes, we can be assured that if we know the body forces, the elastic 
moduli tensor, and the appropriate boundary conditions, the problem at hand will have one 
and only one solution. The hard part is, of course, finding the solution! 
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•Homework problem:  Complete the proof of the uniqueness theorem for the case where the 
tractions are specified along the outer boundary of the rock mass. Is the solution actually 
unique in this case, or “almost” unique? 
 
3.3 Principle of Minimum Potential Energy, and Related Principles 

 The principle of minimum potential energy, and other related principles, form the 
theoretical basis of many of the numerical methods that are used to solve rock mechanics 
problems, such as finite element methods. The main idea behind this principle, and its use, 
can be roughly explained as follows. Consider an elastostatic boundary-value problem such 
as was formulated in section 3.2, with specified displacements on the outer boundary. Now 
imagine that we “guess” a displacement field for this problem, chosen so that is satisfies the 
boundary conditions. From this displacement field, we can calculate strains and stresses. 
However, unless we happened to be very lucky and guessed the correct answer, these stresses 
will probably not satisfy the stress-equilibrium equations, (2.9). We can nevertheless 
calculate the strain energy associated with this displacement, using eq. (3.2). According to the 
principle of minimum potential energy, the “potential energy” (which we will define 
precisely below) associated with this assumed displacement will be greater than the actual 
potential energy associated with the exact solution. Hence, if we somehow can tinker with the 
assumed displacement field in such a way as to continually lower its potential energy, we 
know that we are getting closer to the correct solution. We therefore have a way of 
approximating the correct solution, without every having to actually solve eq. (2.9). 

To prove this principle, consider the boundary-value problem (3.11). Let ui(x)  denote the 
solution to this problem. To simplify the notation, we will write the displacement as ui , but 
we should remember that the displacement varies from point to point. Now let ˜ u i  be any 
displacement field that is continuous, and satisfies the boundary conditions ˜ u i = ui

o on ∂R. 
Such a displacement is called a “kinematically admissible displacement field”. This 
displacement can always (symbolically) be expressed as ˜ u i = ui + ui

* , where ui  is the exact 
solution, and ui

*  is the “error”. We now define the “potential energy” associated with the 
displacement ˜ u i  as follows: 

Φ (˜ u i ) =
1
2

cijkl
R
∫∫∫ ˜ ε ij ˜ ε kldV − fi

R
∫∫∫ ˜ u idV .       (3.14) 

The first integral on the right represents the strain energy associated with the displacement ˜ u i
. The second integral represents the work that would be done by the body forces if they acted 
through these displacements. This term represents a loss of energy for the agency that 
supplies the body force (i.e., the Earth’s gravitational field), and therefore represents a loss of 
total potential energy of the system that is composed of the rock plus its external 
surroundings. As defined in eq. (3.14), the potential energy is a property that is in some sense 
shared by the rock and its “surroundings”. We now use ˜ u i = ui + ui

*  and ˜ ε i j = εi j + εi j
*  in eq. 

(3.14) to arrive at 
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Φ (˜ u i ) =
1
2

cijkl
R
∫∫∫ εi jεkldV + cijkl

R
∫∫∫ εklεi j

*dV +
1
2

cijklεi j
*

R
∫∫∫ εkl

* dV − fi
R
∫∫∫ uidA − fi

R
∫∫∫ ui

*dA . (3.15) 

We now use  integration-by-parts to transform the second integral on the right side: 

 cijkl
R
∫∫∫ εi jεkl

* dV = τkl
R
∫∫∫ εkl

* dV = τkl
R
∫∫∫ uk ,l

* dV = (τkl
R
∫∫∫ uk

*),l dV − τkl,luk
*

R
∫∫∫ dV .  (3.16) 

The first step in eq. (3.16) utilised the fact that cijkl = cklij , which can be proven by examining 
the mixed partial derivatives of w with respect to the strains (see Mathematical Theory of 
Elasticity, by I. S. Sokolnikoff). We now apply the divergence theorem to the first integral on 
the right; in the second integral, we note from eq. (2.9) that τkl, l = − fk .  This leads to 

      cijkl
R
∫∫∫ εi jεkl

* dV = τkluk
*

∂R
∫∫ nldA + f kuk

*

R
∫∫∫ dV .     (3.17) 

On the outer boundary, however, ui
* = ˜ u i − ui = ui

o − ui
o = 0 , because the kinematically 

admissible displacement field has, by definition, no error on the boundary. Hence, the first 
integral is zero. Combining eqs. (3.17) and (3.15) leads to 

Φ (˜ u i ) =
1
2

cijkl
R
∫∫∫ εi jεkldV +

1
2

cijklεi j
*

R
∫∫∫ εkl

* dV − fi
R
∫∫∫ uidA  

= W(ui ) + W(ui∗) − fi
R
∫∫∫ uidA,  

i.e.,  Φ (˜ u i ) =Φ(ui ) + W(ui
∗).        (3.19) 

But the strain energy function W is positive-definite, which implies that W(ui∗) ≥ 0 . 
Furthermore, W(ui∗) = 0  only when ui∗ = 0 , i.e., when the error is zero, in which case ˜ u i = ui .  
We have therefore proven that, for any kinematically-admissible displacement field ˜ u i , 

   PMPE:     Φ (˜ u i ) ≥ Φ (ui ) .         (3.20) 

In other words, the potential energy of the trial displacement field is always greater than or 
equal to the actual potential energy. Another way of interpreting eq. (3.20) is that the correct 
displacement is the one that minimises the potential energy. 

 There are many other minimum principles that are related to the PMPE. The book 
Variational Methods in Elasticity and Plasticity by K. Washizu describes them in detail. The 
important point about them for our purposes is that they allow us to find approximate 
solutions to elasticity problems, by choosing trial displacement functions that contain 
adjustable parameters, and then choosing these parameters so as to minimise the potential 
energy. These energy principles form part of the theoretical justification for finite element 
methods. They also form the basis of many other areas of mechanics, such as, for example, 
the various methods that attempt to estimate the effect that cracks and fractures have on the 
elastic moduli of a rock mass. The role that the minimum principles play in this problem is 
described in the book Micromechanics: Overall Properties of Heterogeneous Materials, by 
S. Nemat-Nasser and M. Hori. 
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Section 4 - Two-Dimensional Elasticity 
 Elasticity problems are generally very hard to solve, and so it is advantageous to try to 

simplify them as far as possible before trying to solve them. One way to simplify any 
mathematical problem is to reduce it from three dimensions to two dimensions. Fortunately, 
there are many rock mechanics problems for which this type of simplification is acceptable. 
For example, consider a very long borehole drilled into a rock mass. If the in situ stress state 
that existed before the hole was drilled was nearly uniform, it is reasonable to assume that all 
deformation will take place perpendicular to the axis of the hole. Moreover, the deformation 
in all planes perpendicular to the borehole axis is probably the same. In such situations, the 
equations of elasticity can be reduced from 3-D to 2-D. With most physical theories, you can 
reduce the 3-D equations to 2-D by merely ignoring all terms that depend on the third co-
ordinate. The situation is no so simple in elasticity, because of the existence of the Poisson 
effect, which introduces “coupling” between the stresses in, say the x1 direction, and the 
strains in the x2  and x3  directions. There are two physically distinct types of problems in 
which the equations of elasticity can be reduced to two dimensions, as shown below. 
 
4.1 Plane Strain 

 Consider a situation in which there is no deformation in the x3  direction, and in which the 
deformation in the x1 and x2  directions depend are independent of x3 . This is the type of 
deformation that we postulated above would exist around a long borehole. The deformation 
field can in this situation be expressed as 

u = [u1(x1, x2), u2(x1, x2 ), 0].       (4.1) 

Equation (1.2) then shows that all five strain components that contain at least one subscript 
"3" will be zero. Equation (1.7) shows that the following shear stresses will be zero: 

 τ13 = τ31 = τ23 = τ32 = 0 .        (4.2) 

However, the normal stress in the x3  direction will not, in general, be zero. In order to 
maintain zero strain in this direction, a nonzero stress τ33  will be needed to balance out the 
strain in that direction caused by the other two normal stresses. Equation (1.7) shows that in 
order for ε33 to be zero, τ33  must be exactly given by 

 τ33 = ν(τ11 + τ22) .        (4.3) 

If we now insert eq. (4.3) into the stress equilibrium equations, we find that the third equation 
is automatically satisfied, whereas the first two reduce to 

 
  

€ 

∂τ11
∂x1

+
∂τ12
∂x2

+ f1 = 0,         (4.4a) 

  

€ 

∂τ21
∂x1

+
∂τ22
∂x2

+ f2 = 0.        (4.4b) 
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 These equations can also be written in an indicial form, if we use Greek indices instead of 
Roman indices, along with the conventions that Greek indices such as α and β can take on 
values of 1 or 2, and that a repeated Greek index implies a summation from 1 to 2. Using this 
notation, the strain-displacement equations can be written as 

εαβ =
1
2
(uα ,β + uβ ,α ),        (4.5) 

which has the same form as in three dimensions. The stress-equilibrium equations (4.4) can 
be written in indicial notation as 

 ταβ ,β + αf = 0,     for α,β = 1,2;    (4.6a) 

 τ33 = ν(τ11 + τ22) .        (4.6b) 

The governing equations for the displacements can be written as 

      (λ + µ)uβ,βα + µuα ,ββ + fα = 0 ,     for ϖ = 1,2;   (4.7a) 

          u3 = 0.            (4.7b) 

We therefore see that, when written in terms of the displacements, the equations of two-
dimensional “plain strain” elasticity are essentially the same as those of three-dimensional 
elasticity. 
 
4.2 Plane Stress 

 There is another type of situation that allows the equations of elasticity to be reduced to 
two dimensions. This is the so-called “plane stress” situation. Although this situation is not as 
relevant to rock mechanics as is plane strain, it arises frequently in most books on elasticity. 
The plane stress approximation applies to thin plates that are subjected to loads within the 
plane of the plate, but not perpendicular to that plane. If we take the x3  direction to be 
normal to the plane of the plate, then the traction on the plane whose outward unit normal 
vector is in the x3  direction will be zero. Hence, eq. (2.7) shows that τ31 = τ32 = τ33 = 0.  
From the symmetry of the stress tensor, we then see that τ13 = τ23 = 0.  Under these 
conditions, the governing equations can be reduced to a two-dimensional form. The 
procedure is described in most elasticity texts; for example, Theory of Elasticity by Y. A. 
Amenzade. The final result of this laborious procedure is a set of equations identical to eqs. 
(4.5,6a,7a) except that 
 (a) The displacement functions u1  and u2  must be interpreted as the mean values of the 
displacements, averaged over the thickness of the plate; 
 (b) The parameter λ must be replaced by λ∗ = 2λµ / (λ + 2µ ).  
 
•Homework problem: The equations of plane stress are derived from those of plane strain by 
replacing λ with λ∗ = 2λµ / (λ + 2µ ),  but keeping µ as is, i.e., µ∗ = µ .  If you start with the 
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plane strain equations in terms of E and ν, what would the appropriate expressions for E∗  
and ν∗ be for the plane stress equations? 
 

 Once the equations of elasticity have been simplified from three to two dimensions, many 
powerful mathematical methods that involve complex variables can be used to solve these 
equations. The methods were developed by Kolosov and Muskhelishvili in the Soviet Union, 
and by Green and Stevenson in the UK. The most accessible book on these methods is 
Complex Variable Methods in Elasticity, by A. H. England. The book Fundamentals of Rock 
Mechanics by Jaeger et al. utilises these methods to solve many problems of stresses and 
displacements around tunnels and boreholes. There are also numerical methods that are based 
on the complex variable approach, such as described in the monograph The Complex 
Variable Boundary Element Method, by T. V. Hromodka. 
 
Section 5 - Displacement Potentials and Fundamental (Singular) Solutions 

 There are certain types of solutions to the elasticity equations that correspond to forces 
applied to a body over a very localised region. These solutions are extremely useful, because 
they can be used as building blocks to solve problems in which loads are applied over 
extended regions of the rock mass. In particular, these so-called “singular” solutions are the 
basis of the class of numerical methods known as boundary element methods. We will 
discuss one of the more important of these solutions, the Kelvin solution for a point load 
applied to an infinite rock mass. In order to derive this solution, we will introduce the idea of 
displacement potentials, which are very useful in their own right as a means of generating 
analytical solutions to the Navier equations. 
 
5.1 Papkovich-Neuber Displacement Potentials 

 The governing Navier equations of elasticity, eqs. (2.11), are a set of three coupled linear 
partial differential equations. One of the standard ways to develop analytical solutions to a 
linear PDE is to use the method of separation of variables to first find an infinite family of 
functions that satisfy the PDE, and then use the boundary conditions to find the appropriate 
“arbitrary constants” in the solution. This approach is widely used in elasticity, with one 
difference. Instead of attempting to find displacement functions that satisfy the governing 
equations (2.11), which, are somewhat different and more difficult than most PDEs that are 
encountered in applied mathematics, it is traditional instead to work with displacement 
potentials; the displacements are given by certain derivatives of the displacement potentials. 
The difficulty in solving the elasticity equations directly is due mainly to the fact that they are 
coupled, which is to say that each of the three displacement components appears in each of 
the three Navier equations; this can be seen by writing out eqs. (2.11) in component form. 
Whereas the displacements themselves are governed by eq. (2.11), the displacement 
potentials are governed by Laplace’s equation. Laplace's equation arises in many areas of 
applied mathematics, because it governs many steady-state “equilibrium” processes, such as 
heat conduction, electrical current flux, fluid flow in porous media, etc. Hence, it is relatively 
easy to find functions that satisfy Laplace's equation, because this has already been done in 
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other fields of applied mathematics. One disadvantage of this approach is that the expressions 
for the displacements and stresses are complicated when written in terms of the displacement 
potentials. However, this added complication is compensated for by the fact that it is much 
easier to find solutions to Laplace's equation than to the Navier equations of elasticity. 

 There are many different types of displacement potentials, usually named after the 
scientist who originated their use. The most commonly-used potentials are those of Love, 
Galerkin, Westergaard, Boussinesq, and Papkovich-Neuber; most texts on elasticity discuss 
these potentials to one extent or another. We will discuss only the Papkovich-Neuber 
potentials, which are perhaps the most widely used. It is difficult to give a concise and self-
contained “derivation” of these potentials, because they were developed slowly over a period 
of many years, and because the motivation behind their use cannot be fully appreciated 
without knowledge of velocity potentials that are used in fluid mechanics. Rather than 
attempt a derivation, it is best just to jump right in and present the Papkovich-Neuber 
potential functions, and then verify that they work. 

 Imagine that we have four functions, three of which are considered to be components of a 
vector field, and the other considered to be a scalar field. (A “field” is just the mathematical 
term for a function that depends on the co-ordinates (x,y,z)). These functions can be denoted 
by ψ i  and ϕ , and are referred to as displacement potentials. Now assume that a 
displacement field can be constructed from these potentials in the following manner: 

2µui = −4(1− ν)ψ i + (xkψ k + ϕ),i .      (5.1a) 

i.e.,  2µu = −4(1 −ν)ψ +∇(x •ψ + ϕ) .      (5.1b) 

The latter form is in direct vector notation, which some people find easier to interpret. 
However, when carrying out the differentiations that are needed in the following 
development, indicial notation is easier to use, because its use does not require memorisation 
of the various rules for manipulating gradient symbols, etc.  

 At this point, of course, we have no reason to think that if we pick any functions to play 
the roles of ψ i  and ϕ , the displacements generated from them through eq. (5.1) will satisfy 
the governing eqs. (2.11). It seems reasonable to expect that only certain functions will be 
acceptable as displacement potentials. To see what conditions the potentials should satisfy, 
we simply insert eq. (5.1) into eqs. (2.11). In order to simplify the calculations, we will 
assume that the body forces are zero. First, we expand out and simplify eq. (5.1): 

2µui = −4(1− ν)ψ i +ψ i + xkψk ,i + ϕ,i  

= −(3 − 4ν)ψ i + xkψ k, i + ϕ ,i .               (5.2) 

The first derivatives of the displacement are given by 

2µui, j = −(3 − 4ν)ψ i, j + ψ j, i + xkψ k, i j + ϕ,i j.     (5.3) 

The two types of second derivatives required in eq. (2.11) are given by 
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2µui, j j = −(3 − 4ν)ψ i, j j + 2ψ j,ij + xkψ k, ijj + ϕ ,ijj;    (5.4) 

2µui, j i = −(2 − 4ν)ψ i,ij + ψ j, i i + xkψk ,iji + ϕ,iij.        (5.5a) 

In deriving eqs. (5.4,5), we have made use of the fact that the order of taking partial 
derivatives is irrelevant, so we can freely switch the order of any indices that appear after a 
comma. Although the expression in eq. (5.5a) may not look as if it is relevant to eq. (2.11), 
we can switch the indices i and j in eq. (5.5a) to arrive at 

2µuj, ij = −(2 − 4ν)ψ j , ji +ψ i, jj + xkψ k, jij + ϕ, jji .     (5.5b) 

This ability to switch indices is another useful trick that can be used when working in indicial 
notation. It is valid as long as you switch indices in a consistent manner, on both sides of the 
equation.  

 We now insert eqs. (5.4,5b) into eq. (2.11), with the body-force term set to zero, use the 
relation λ = 2µν / (1 − 2ν) , and divide through by 4µ(1−ν), to arrive at 

xkψ k, jji − (1− 4ν )ψ i , jj +ϕ , jji = 0 .       (5.6) 

The situation now looks more complicated than when we began, since eq. (5.6) represents 
three coupled equations in the four unknown functions. However, note that one way to satisfy 
eq. (5.6) is if all four potential functions satisfy Laplace's equation, i.e., 

∇2ψ i =ψ i, jj = 0,          (5.7a) 

∇2ϕ = ϕ, jj = 0.          (5.7b) 

To see more clearly that eqs. (5.7) imply eq. (5.6), we note, for example, that 
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ϕ, jji = (ϕ, jj ),i = ∂ϕ, jj /∂xi = ∂0 /∂xi = 0. We therefore see that any function that satisfies 
Laplace's equation can play the role of either the Papkovich-Neuber scalar displacement 
potential, φ, or the role of one of the components of the P-N vector displacement potential, 
ψi.  Functions that satisfy Laplace's equation are known as harmonic functions, and the study 
of these functions is known as potential theory. There are numerous applied mathematics 
books that discuss these functions in great detail; perhaps the most famous is Methods of 
Mathematical Physics by Courant and Hilbert. 

 There are two important points to be made concerning our replacement of eqs. (2.11) with 
eqs. (5.7). The first is that we have replaced a system of three coupled PDEs by a set of four 
uncoupled PDEs; it is always easier to solve uncoupled equations than to solve coupled 
equations. The second point is that each of the four displacement functions satisfies Laplace’s 
equation, which is the most well-understood partial differential equation in all of applied 
mathematics. In particular, the general solution to Laplace’s equation is known in a variety of 
co-ordinate systems, such as Cartesian, cylindrical, spherical, spheroidal, etc. Hence, we have 
a ready-made storehouse of functions that can serve as displacement potentials, and thereby 
generate solutions to the Navier equations.   
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An interesting aspect to this procedure is that although there are only three components to 
the displacement vector, we are representing that vector in terms of four potential functions. 
There would therefore seem to be some redundancy in the Papkovich-Neuber representation. 
For many years it was thought that one could ignore any one of the four P-N potentials, and 
set it equal to zero. However, it turns out that one cannot arbitrarily set one of the four P-N 
potentials equal to zero; the choice of which three to use depends on the shape of the body, 
among other things. This very complicated and arcane issue is discussed in Elasticity by J. R. 
Barber, and The Mathematical Theory of Elasticity by I. S. Sokolnikoff. The important point, 
for most practical purposes, is that by finding the most general solution to eqs. (5.7), which 
has already been done in many co-ordinate systems, the solution to an elastostatic boundary 
value problem is reduced to merely choosing the constants in the general solution so as to 
satisfy the boundary conditions. 
 
5.2 Kelvin Solution 

 The Papkovich-Neuber potentials offer one route to the Kelvin solution, which is one of 
the most important of the fundamental, or singular, solutions to the elasticity equations. The 
Kelvin solution represents the displacements, stresses, etc., that are caused by a concentrated 
force that acts at a “point” in an infinite elastic medium. We will follow the development of 
the Kelvin solution that is given in Elasticity by J. R. Barber, although our discussion will be 
greatly simplified by the use of indicial notation. Another derivation, using the Galerkin 
displacement potential, is given in Boundary Element Analysis by J. H. Kane. This latter 
book contains a detailed discussion of the relationship between the Kelvin solution and 
boundary element methods. 

 As a first step to presenting the Kelvin solution, consider the special case of a Papkovich-
Neuber potential in which the first two components of ψ  are zero, and the scalar potential φ is 
also zero. In order to adhere to Barber’s notation, we will denote the third component of the 
vector potential by ω instead of ψ3. In order to make use of indicial notation, which Barber 
does not utilise, we can say that  

ψ i =ωδ3i ,        φ = 0.         (5.8) 

Insertion of this expression for the P-N potentials into eq. (5.2) yields 
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2µui = −(3 − 4ν )ωδ3i + x3ω ,i.        (5.9) 

 We now choose ω to be one of the simplest of all harmonic functions, c/R, where c is a 
constant, and R is the magnitude of the position vector, xi. From the Pythagorean theorem, we 
know that     

€ 

R = (x1
2 + x2

2 + x3
2 )1/ 2 , which can be written in indicial notation as R = (xixi )

1/ 2 . 
In order to discuss the displacements and stresses that are associated with this potential, we 
need the following derivatives: 

(1/ R), i =
−xi
R3

;          (5.10a) 
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(1/ R), ij =
−δij
R3

+
3xi xj
R5

.        (5.10b) 

 
●  Homework problem: Derive eqs. (5.10). Verify that 1/R is an harmonic function, i.e., verify 
that (1/ R),kk = 0 . 
 

With this choice of ω, the displacements given by eq. (5.9) can be written as 

2µui = −(3 − 4ν )c
δ3 i
R
−
cx3xi
R3

.       (5.11) 

The displacement gradient, which is needed in order to find the strains (and hence, the 
stresses), is found by differentiating eq. (5.11): 

2µui , j = (3 − 4ν )c
δ3i xj
R3

− c
δ3 jxi
R3

+3c
x3xix j
R5

− c
x3δ ij
R3

.    (5.12) 

The stresses are found from Hooke’s law, eq. (2.10): 

τ ij =
(1 − 2ν)c

R3
δ3i xj[ + δ3 jxi −δ ij x3] +

3cx3xi xj
R5

.     (5.13) 

 We now have a set of displacements and stresses that satisfy the equations of elasticity in 
an infinite rock mass, under the conditions of zero body force. However, we do not yet know 
what problem this displacement field corresponds to! In order to find out, we have to 
examine the solution presented in eqs. (5.11,13) more closely. First, we note that as R→∞ , 
both the displacements and the stresses decay to zero. This is seen from eqs. (5.11,13) by 
noting that the denominators of each term are of higher order than the numerators, for large 
R. Hence, this displacement field corresponds to zero tractions and zero displacements at 
infinity. However, now that we are thinking about the relative magnitudes of the numerators 
and denominators, we see that as R→ 0 , the displacements and stresses blow up, and 
become infinite! Therefore, the displacement field (5.9) cannot be a solution to the Navier 
equations (with zero body force) at the point R = 0. We now guess, ala Kelvin, that this 
displacement field corresponds to the one caused by a concentrated body force that acts at the 
origin of the co-ordinate system. Actually, this is not a very risky guess, since any 
displacement field will be a solution to the Navier equations, for the proper choice of a body 
force field. (If you don’t believe this, just note that you can always solve eq. (2.11) for fi, if ui 
is given!) In the present problem, we know that fi = 0 when R ≠ 0 , so the only place at which 
a body force can be acting is as it R = 0; it remains only to find the magnitude and direction 
of this force. 

 One rigorous (but somewhat complicated) way to do this would be to (1) transform the 
stresses into spherical co-ordinates; (2) find the tractions that act on an “infinitesimally 
small” small sphere that is centred at the origin, and then (3) integrate the tractions over this 
sphere to find the resultant force. This calculation is done in the book Boundary Element 
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Analysis by Kane. This calculation would show that although the body force at the origin is 
“infinite”, it has a finite resultant when integrated over a small region surrounding the origin. 
In order to find this resultant by a calculation that does not require transformation of the 
stresses into a curvilinear co-ordinate system, we will give a modified version of the 
calculation done in Elasticity by Barber. 

 Consider a cylindrical-shaped region surrounding the origin, bounded by the two parallel 
planes x3 = +h  and x3 = −h , and by the cylindrical surface ρ = a, where ρ = (x12 + x22)

1 /2  is 
the distance from the x3 axis. The rock within this region must be in equilibrium, so the 
resultant force acting on it must be zero. This resultant force is equal to the integral of the 
surface tractions over the outer boundary of this cylinder, plus the resultant body force acting 
at the origin. Due to the symmetry of the stress state, the resultant surface forces in the x1 and 
x2 directions will be zero. If we eventually let the radius of this cylinder be very large, it can 
be shown that the net force in the x3 direction acting over the sides of the cylinder will go to 
zero. The only nonzero contribution to the net surface force is the integral of τ33 taken over the 
top and bottom faces of the cylinder. By letting both indices in eq. (5.13) take on the value 
“3”, we find 

τ33 =
(1 − 2ν)cx3

R3
+
3cx33

R5
.        (5.14) 

Now consider the top surface of the cylinder, x3 = +h. On this surface, the outward unit 
normal vector is (0,0,1), so the traction component in the x3 direction is given by 

t3(x3 = h) =
(1− 2ν)ch

R3
+
3ch3

R5
       (5.15) 

The total force acting on this upper surface of the cylinder, in the x3 direction, is found by 
integrating the traction t3 over the entire surface. Even though we are expressing the stresses 
in a Cartesian co-ordinate system, it is convenient to make use of the cylindrical (ρ,θ,z) co-
ordinates for this integration. Noting that R2 = ρ2 + x32 = ρ

2 + h2  on this surface, and that 
the differential of surface area in polar co-ordinates is 2πρdρ (note that there is no 
dependence on θ in this problem), the total force acting on the top face is given by 

F3(x3 = h) =
(1− 2ν)ch
(ρ2 + h2)3 / 2
⎡ 

⎣ ⎢ 
+

3ch3

(ρ2 + h2)5 / 2
⎤ 

⎦ ⎥ ρ=0

ρ=a
∫ 2πρdρ  

= −2πc (1 − 2ν )h
(ρ 2 + h2)1 /2
⎡ 

⎣ ⎢ 
+

h3

(ρ 2 + h2)3 /2
⎤ 

⎦ ⎥ ρ=0

ρ= a

.      (5.16) 

As any arbitrary region of the rock mass must be in equilibrium, we are allowed to pick the 
region however we please, so as to facilitate the evaluation of the integral. We noted above 
that as a→ ∞ , the net force due to tractions along the curved sides of the cylinder becomes 
negligible. Hence, we let a→ ∞  in eq. (5.16) and arrive at 
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F3(x3 = h) = 4π (1 −ν )c .        (5.17) 

The resultant force acting on the bottom face, x3 = −h , is exactly the same as on x3 = +h; 
this is because the “-” sign introduced in τ33 is cancelled out by the “-” sign in the outward 
unit normal vector to the bottom surface. Hence, the total surface force acting on this region 
of rock is 8π(1−ν)c. For equilibrium to obtain, this force must be balanced by the 
concentrated body force that acts at the origin. We therefore see that this body force must act 
in the x3 direction, and have magnitude -8π(1−ν)c. Alternatively, if we denote the magnitude 
of the concentrated body force by F3, we can solve for c = −F3/8π(1−ν). We can now 
summarise the Kelvin solution as follows. 

The Kelvin solution corresponds to a concentrated load that acts at the origin of an 
infinite elastic medium. The load acts in the x3 direction, and has magnitude F3. The 
displacement vector caused by this load is 

ui =
(3 − 4ν )F3δ3i
16πµ(1− ν)R

+
F3x3xi

16πµ(1− ν)R3
,       (5.18) 

where R is the distance to the origin. The stresses caused by this force are  

τ ij =
−(1− 2ν)F3
8π(1− ν)R3

δ3ix j[ + δ3 j xi − δij x3]−
3F3x3xix j
8π (1− ν)R5

.    (5.19) 

If the force were in the x1 direction rather than the x3 direction, we would merely replace the 
subscript “3” with “1” in eqs. (5.18) and (5.19), wherever it appears; similarly for a force in 
the x2 direction.  
 
● Homework: Write out all terms of eqs. (5.18) and (5.19). 

 

 Finally, consider the case where the force acts at a point whose co-ordinates are 
(x1 = ξ1, x2 = ξ2, x3 = ξ3) . The displacements at an arbitrary point x can be found from eq. 
(5.18) by replacing xi with xi − ξi  on the right side of the equation, and similarly for x3. Note 
that the resulting expressions give the displacements and stresses at the point x, not at the 
point ξ , which is the location of the applied load. The displacements at point x due to a load 
applied at point ξ  are often denoted by ui(x;ξ) . 

 The Kelvin “point-load” solution is often used as the basic building block for boundary 
element analysis, which is a powerful numerical method that allows elasticity problems to be 
solved in regions having complex geometries (see Boundary Element Analysis by J. H. 
Kane). Another important singular solution is the Boussinesq solution, which corresponds to 
a point load applied at the surface of a “semi-infinite half-space”. If this solution is integrated 
over a finite area, we can develop solutions for foundations of various planforms. This 
procedure is described in Engineering Rock Mechanics by Harrison and Hudson. 
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Section 6 - Betti’s Reciprocal Theorem 
 One of the key ingredients in setting up the “boundary element method” (BEM) for 

solving elasticity problems is the reciprocal theorem, which was originally proven by E. Betti 
in 1872. The role of the reciprocal theorem is demonstrated in the paper “A direct 
formulation of the boundary element method of stress analysis for complete plane strain” by 
B. H. G. Brady (Int. J. Rock Mech., 1979, pp. 235-244). In light of the importance of this 
theorem in setting up the boundary element equations, a statement and derivation of the 
theorem are given below. 

 The reciprocal theorem can be stated in words very simply. Recall that a rock mass can be 
subjected to two types of loads - body forces and surface tractions. Let us denote some 
combination of these loads as a “set of forces”. Each set of forces will create a certain 
displacement field. Note that one can use eq. (3.6) to calculate the work that would be done 
by a set of forces as they acted through a certain displacement, regardless of whether or not 
those displacements are the ones caused by that particular set of forces. If the forces and 
displacements used in the integrals in eq. (3.6) are unrelated, then the “work” calculated 
would be hypothetical; nevertheless, such hypothetical work terms are useful in various of 
the mathematical manipulations that are needed to set up the BEM equations. The reciprocal 
theorem states that “if an elastic body is subjected to two different sets of forces, then the 
work that would be done by the first set when acting through the displacements caused by the 
second set is equal to the work that would be done by the second set when acting through the 
displacements caused by the first set” (Sokolnikoff, Mathematical Theory of Elasticity, 1956, 
p. 391). 

To prove this theorem, first imagine two sets of forces, distinguished by superscripts 1 
and 2. Denote the first set of forces by { fi

1,ti
1} , and let the displacement field caused by these 

forces be denoted by ui
1; similarly for the second set of forces. Now let the work that would 

be done by { fi
1,ti

1} , acting through displacementsui
2 , be denoted by W12 . From eq. (3.6), 

 2W12 = ti1ui2
∂R
∫∫ dA + fi1ui2

R
∫∫∫ dV.        (6.1) 

We now essentially repeat the steps carried out in section 3.1, but in reverse order. First recall 
that ti1 = τ ij

1 nj , so that (A1) can be written as 

2W12 = τ ij
1njui

2

∂R
∫∫ dA+ fi1ui2

R
∫∫∫ dV  

= τ ij
1ui2nj

∂R
∫∫ dA + fi1ui2

R
∫∫∫ dV .           (6.2) 

We now use the divergence theorem “in reverse” on the first integral in eq. (6.2), to arrive at 

2W12 = (τ ij
1ui2), j

R
∫∫∫ dV + fi1ui2

R
∫∫∫ dV .      (6.3) 

Now expand out the derivative in the first integral, using the product rule for derivatives: 
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2W12 = (τ ij, j
1 ui2 +τ ij

1ui , j
2 )

R
∫∫∫ dV + fi1ui2

R
∫∫∫ dV ,     (6.4) 

which can be rearranged as 

 2W12 = (τ ij, j
1 + fi

1)ui2
R
∫∫∫ dV + τ ij

1ui , j
2

R
∫∫∫ dV .      (6.5) 

The term enclosed in parentheses in the first integral is zero, because the stress state with 
superscript 1 must satisfy the stress-equilibrium equations, (2.9). Hence, the first integral 
vanishes, regardless of whether or not the displacement field ui

2  is in any way related to the 
stresses and displacements associated with the first set of forces! 

 For the remaining integral in eq. (A5), we use the following “trick”. First recall that it is 
permissible to replace the dummy indices in any indicial expression with a different dummy 
index, i.e., ε ii = εkk , etc. Hence, we see that τ ijui, j = τ jiuj,i , which can be verified by 
expanding out both sides of this equation. We can therefore write eq. (6.5) as 

2W12 =
1
2

(τ ij
1ui, j
2 +τ ji

1 uj,i
2

R
∫∫∫ )dV .       (6.6) 

Now we use the fact that the stresses are symmetric, i.e., τ ij = τ ji , to rewrite eq. (6.6) as 

2W12 =
1
2

(τ ij
1ui, j
2 +τ ij

1uj,i
2

R
∫∫∫ )dV  

=
1
2

τ ij
1 (ui, j

2 + uj, i
2

R
∫∫∫ )dV  

  = τ ij
1

R
∫∫∫ ε ij

2dV .          (6.7) 

We now recall from eq. (2.12) that τ ij = cijklεkl , in which case eq. (6.7) can be written as 

W12 =
1
2

cijklε kl
1

R
∫∫∫ ε ij

2dV .        (6.8) 

If we switch the roles of the two superscripts, we can also say that 

        W21 =
1
2

cijkl
R
∫∫∫ ε kl

2 ε ij
1dV .        (6.9) 

Although the two systems of forces, 1 and 2, are not necessarily related to each other in any 
way, they both act on the same rock mass, as so the same elastic moduli tensor cijkl  appears 
in eqs. (6.8) and (6.9).   

 Now let us focus our attention on eq. (6.9). We again make use of the ability to switch 
dummy indices: we switch i and k, and switch j and l, and thereby rewrite eq. (6.9) as  

W21 =
1
2

cklijε ij
2

R
∫∫∫ εkl

1 dV .        (6.10) 
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Finally, we recall that the elastic moduli tensor always has the following symmetry: 
cijkl = cklij . For example, c1231 = c3112 , etc. This is true regardless of the degree of anisotropy 
of rock mass; it is merely a consequence of the equality of mixed partial derivatives of the 
strain energy density w with respect to the strains. Using this symmetry, we can rewrite eq. 
(6.10) as 

W21 =
1
2

cijkl
R
∫∫∫ ε kl

1 ε ij
2dV .        (6.11) 

Comparison of eqs. (6.8) and (6.11) show that W12 =W 21, which proves the reciprocal 
theorem! Two useful forms of the theorem for computational purposes are (see eqs. 6.1 and 
6.8) 

     ti1ui2
∂R
∫∫ dA+ fi1ui2

R
∫∫∫ dV = ti2ui1

∂R
∫∫ dA + fi2ui1

R
∫∫∫ dV ;     (6.12) 

       
1
2

cijkl
R
∫∫∫ ε ij

2εkl
1 dV =

1
2

cijkl
R
∫∫∫ ε ij

1εkl
2 dV .      (6.13) 

Equation (6.12) is the form used by Brady, with the body forces fi
1  and fi

2  taken to be zero. 

 
●  Homework problem: Starting from eq. (6.7), use the isotropic version of Hooke’s law, as 
given by eq. (2.10), and directly verify that W12 =W 21 . 
 


