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The basic law governing the flow of fluids through porous media is Darcy’s law, 
which was formulated by the French civil engineer Henry Darcy in 1856 on the 
basis of his experiments on vertical water filtration through sand beds. Darcy 
found that his data could be described by the following equation: 

 where:   Q = volumetric flowrate [m3/s] 
    P = pressure [Pa] 
    ρ = density [kg/m3] 
    g = gravitational acceleration [m/s2] 
    z = vertical coordinate (measured downwards) [m] 
    L = length of sample [m] 
    A = cross-sectional area of sample [m2] 
    C = constant of proportionality [m2/Pa s] 
    	  

Darcy’s Law and the Definition of Permeability 
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Darcy’s Experiments and Data 
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In the lab, permeability is usually measured using a horizontal version of 
Darcy’s experimental configuration: 

Note that the fluid flows from regions of high pressure to regions of low 
pressure  

Darcy’s Law and the Definition of Permeability 
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Why does the term “P – ρgz” govern the flowrate? 

Recall from elementary fluid mechanics that Bernoulli’s equation, which 
essentially embodies the principle of “conservation of energy”, contains the 
following terms        

         where   P/ρ = Pv is related to the enthalpy per unit mass, h = u + Pv  
    gz is the gravitational energy per unit mass   
    v2/2 is the kinetic energy per unit mass 

Fluid velocities in a reservoir are usually very small, and so the third term is 
usually negligible, in which case we see that the combination P – ρgz represents 
an energy-type term.  

It seems reasonable that fluid would flow from regions of higher energy to lower 
energy, and, therefore, the driving force for flow should be the gradient (i.e., the 
rate of spatial change) of P – ρgz. 

Darcy’s Law and the Definition of Permeability 
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Subsequent to Darcy’s initial discovery, it has been found that, all other factors 
being equal, Q is inversely proportional to the fluid viscosity, µ [Pa s].  

It is therefore convenient to factor out µ, and put C = k/µ, where k is known as 
the permeability, with dimensions [m2]. 

It is also usually more convenient to work with the volumetric flow per unit area, 
q = Q/A, rather than the total flowrate, Q: 

For transient processes in which the flux varies from point-to-point, we need a 
differential form of Darcy’s law. For flow in the “s”-direction, we can say 

The minus sign shows that the fluid flows from higher to lower values of P - ρgz. 

For horizontal flow, z is constant, and Darcy’s law takes the form 

Darcy’s Law and the Definition of Permeability 
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The permeability is a function of rock type, and also varies with stress, 
temperature, etc., but does not depend on the fluid; the effect of the fluid on the 
flowrate is accounted for by the viscosity term in Darcy’s law. 

Permeability has units of m2, but in the UK and US petroleum industries, it is 
conventional to use “Darcy” units, defined by  

    

The numerical value of k for a given rock depends on the diameter of the pores in 
the rock, d, as well as on the degree of interconnectivity of the void space. Very 
roughly speaking, k = d 

2/1000; see GEMS 1 for a derivation.  

For example, a rock with a typical pore size of 10×10-6 m, i.e., 10 microns, would 
be expected to have a permeability of about 10-13 m2, or 0.1 D. 

The permeabilities of petroleum reservoir rocks tend to be in the range of 
0.001-1.0 Darcies. It is therefore convenient to quantify the permeability of 
reservoir rocks in units of “milli-Darcies” (mD), i.e., 0.001 D.  

Darcy’s Law and the Definition of Permeability 
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Before we derive the general transient equation that governs fluid flow through 
porous media, we will examine a simple, but illustrative, problem that can be 
solved using only Darcy’s law: a circular reservoir that has a constant pressure at 
its outer boundary, and a constant flowrate into the wellbore. 

Consider a reservoir of thickness H and horizontal permeability k, fully 
penetrated by a vertical well of radius Rw. Assume that at some radius Ro, the 
pressure remains at its undisturbed value, Po.  

If we pump fluid out of this well at a rate Q, what will be the steady-state pressure 
distribution in the reservoir? 	  

Radial, Steady-State Flow to a Well  
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Darcy’s law for radial flow takes the form: 

The cross-sectional area normal to the flow, at a radial distance R from the centre 
of the well, is 2πRH (i.e., a cylindrical surface of height H, and perimeter 2πR), so  

Separate the variables, and integrate from the outer boundary, Ro, to some 
generic location R:   

This is the Dupuit-Thiem equation, derived in 1857 by the French hydrologist 
Jules Dupuit, and popularised by the German hydrologist Adolf Thiem. 	  

Radial, Steady-State Flow to a Well  
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Since the pressure varies logarithmically with distance from the wellbore, most 
of the drawdown occurs near the well, whereas far from the well, the pressure 
varies slowly. 

This same type of logarithmic variation of pressure with distance occurs in 
transient processes, as we will see in Lecture 2.  

Radial, Steady-State Flow to a Well  
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Radial, Steady-State Flow to a Well  

We can make the following comments about the Thiem equation: 

1. If fluid is pumped from the well, then (mathematically) Q is negative, because 
the fluid is flowing in the direction opposite to the direction of the radial co-
ordinate, R. Hence, P(R) will be less than Po for any R < Ro. 

2. The amount by which P(R) is less than Po is called the pressure drawdown. 

3. The pressure drawdown at the well is found by setting R = Rw: 

4. Since we are often interested in situations in which the fluid is flowing 
towards the well (i.e., “production”), it is common to re-define Q to be positive 
for production, in which case we write the Thiem equation as    

Regardless of the sign convention, it is imperative to understand, and to see 
from the equation, that if we are producing fluid from the reservoir, then the 
pressure at the well is less than the pressure in the reservoir!  
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Conservation of Mass Equation, 1 

Darcy’s law in itself does not contain sufficient information to allow us to solve 
transient (i.e., time-dependent) problems involving subsurface flow. To develop 
a complete governing equation that applies to transient problems, we must 
first derive a mathematical expression of the principle of conservation of mass. 

Consider flow through a one-dimensional tube of cross-sectional area A; in 
particular, let’s focus on the region between two locations x and x+Δx:   

The main idea behind the application of the principle of conservation of mass 
can be expressed in words as follows: 

                           Flux in – Flux out = Increase in amount stored 

Note that the quantity that is conserved is fluid mass, not volume. 
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Conservation of Mass Equation, 2 

Consider the period of time between time t and time t +Δt. During this time 
increment, the mass flux into this region of rock between will be 

Mass flux in = A(x)ρ(x)q(x)Δt    

The mass flux out of this region of rock will be 

Mass flux out = A(x+Δx)ρ(x+Δx)q(x+Δx)Δt 

The amount of fluid mass stored in the region is denoted by m, so the 
conservation of mass equation takes the form 

A(x)ρ(x)q(x)Δt - A(x+Δx)ρ(x+Δx)q(x+Δx)Δt = m(t+Δt) - m(t)  
          

For 1D flow, such as through a cylindrical core, A(x) = A = constant.  

So, we can factor out A, divide both sides by Δt, and let Δt go to zero: 

-A[ρq(x+Δx) – ρq(x)] = [m(t+Δt) - m(t)]/Δt  = dm/dt 
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Conservation of Mass Equation, 3 

But m = ρVp, where Vp is the pore volume of the rock contained in the slab 
between x and x+Δx. Therefore, 

m = ρVp = ρφV  = ρφAΔx    

Combining these last two equations gives 

- A[ρq(x+Δx) – ρq(x)] = dm/dt = d(ρφAΔx)/dt = AΔxd(ρφ)/dt  

Divide through by AΔx, and let Δx go to 0: 

d(ρφ)/dt = - [ρq(x+Δx) – ρq(x)]/Δx = - d(ρq)/dx  

i.e.,    d(ρφ)/dt = - d(ρq)/dx 

This is the basic equation of conservation of mass for 1-D flow in a porous 
medium. It relates the spatial rate of change of stored mass, to the temporal 
rate of change of stored mass.  

This equation is exact, and applies to gases, liquids, high or low flowrates, etc. 
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Pressure Diffusion Equation in Cartesian Coordinates  

Steady-state flow rarely occurs in a reservoir. The typical flow scenario is  
transient, in which pressure, density, flowrate, etc., vary in space and time. 

To derive the transient pressure diffusion equation, we combine Darcy’s law, the 
conservation of mass equation, and an equation that relates the fluid pressure 
to the amount of fluid that is stored inside the porous rock (“storativity”).   

Let’s examine the derivative term d(ρφ)/dt more closely, using the product rule: 

where cf is the compressibility of the fluid, and cφ  is the “pore compressibility” of 
the rock formation, also sometimes called the “formation compressibility”.  
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Pressure Diffusion Equation in Cartesian Coordinates  

Now let’s examine the space derivative term d(ρq)/dx in the conservation of 
mass equation, recalling that q is given by Darcy’s law:      

                 
                 
                 
                 
                 
   

Now equate the expressions for -d(ρq)/dx and d(ρφ)/dt:  	
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Pressure Diffusion Equation in Cartesian Coordinates  

For liquids, the second (nonlinear!) term on the left is negligible (see FFiPM 
textbook for a numerical example), in which case the one-dimensional, 
linearised form of the pressure diffusion equation is: 

in which the total compressibility, ct, is given by 

                 

Typical values of the compressibility of various rock types and reservoir fluids 
are as follows: 
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Pressure Diffusion Equation in Radial Coordinates  

In most areas of energy-related engineering in the subsurface, we are very 
often interested in fluid flowing towards, or away from, a vertical well. 

In these situations, it is more convenient to use cylindrical (“radial”) 
coordinates, rather than Cartesian coordinates.  

In radial coordinates, the pressure diffusion takes the form (see Section 1.7 
of the FFiPM textbook for the detailed derivation):       

This is the governing equation for transient, radial flow of a liquid through 
porous rock, to a vertical borehole.  

In the next five lectures of the GEMS 3 module, we will develop several 
methods to solve this equation, and derive solutions for a few important 
problems governed by this equation.  
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Deviations from Darcy’s Law 

Darcy’s law holds in most situations of subsurface flow, and it is the most 
important equation in areas such as oil and gas engineering, carbon 
sequestration, underground gas storage, and geothermal engineering. 

However, there are some situations in which Darcy’s law does not hold, and 
must be replaced by a different law. These situations are discussed in detail 
in Chapter 9 of the FFiPM textbook.  

One such situation occurs when the flowrate is not sufficiently low, in a sense 
that we will soon quantify. In these situations, we need to replace Darcy’s law 
with an extension thereof, known as the Forchheimer equation. 

Another situation when Darcy’s law does not hold occurs if the pore sizes in 
a rock (again, in a sense that we will quantify soon) are too small. In this 
case, we need to replace Darcy’s law with an equation called the 
Klinkenberg equation.      
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Recall that we earlier “justified” Darcy’s law by appealing to the Bernoulli 
equation, and noting that if the flow velocity was low, we would expect the 
flowrate to be controlled by the pressure gradient.  

Consequently, Darcy’s law actually holds only at low flowrates, which can be 
defined, roughly, as flows for which the Reynolds number is less than one.  

The Reynolds number is a dimensionless measure of the relative strengths of 
inertial forces and viscous forces. Using the definition of Reynolds number, this 
condition can be written as 

where ρ is the density of the fluid, µ is the viscosity, d is a mean pore diameter, 
and v is the mean (microscopic, i.e., pore-scale) velocity. 

If this criterion is violated, Darcy’s law must be replaced with a nonlinear law, 
such as Forchheimer’s equation: 

in which the coefficient β accounts for “non-Darcy” (inertial) effects.  

Non-Darcy (Forchheimer) Flow, 1 
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Dimensional analysis of the Forchheimer equation shows that the factor β has 
dimensions of L-1.  

Since k has dimensions of L2, it is (very) roughly the case that β = 1/√k.  

It follows that the magnitude of the nonlinear part of the pressure gradient in the 
Forchheimer equation, relative to the magnitude of the linear part (the Darcy 
pressure gradient), is 

You will have learned in the GEMS 1 module that k is proportional to d 2. So, 
aside from some additional dimensionless terms that we will ignore here, we see 
that the ratio of the non-Darcy pressure drop to the Darcy pressure drop is 
roughly proportional to the Reynolds number. 

Hence, if the Reynolds number is much less than one, the nonlinear terms in the 
Forchheimer equation are indeed negligible, and we recover Darcy’s law. 

Non-Darcy inertial effects are more important for gas flow than for liquid flow (see 
textbook for details), and more important near a well than far from a well. 

Non-Darcy (Forchheimer) Flow, 2 
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The plot shown below, taken from an IC PhD thesis by Azzan Al-Yaarubi in 2004, 
shows the permeability of a fracture as a function of Reynolds number, as 
measured in the lab, and as computed using the Navier-Stokes equations, which 
are the fundamental equations of fluid flow. For both data sets, experimental and 
numerical, the values were fit by a Forchheimer-type equation. 

(For fractures, we often talk of the “transmissivity” instead of the “permeability”, 
but that distinction is not important for our purposes here.)  

Non-Darcy (Forchheimer) Flow, 3 
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When a liquid flows through a porous medium, the correct “boundary condition” 
for the flow is the so-called “no-slip” boundary condition, that specifies that the 
tangential velocity at the wall of the pore is zero.   

However, this no-slip boundary condition does not hold for a gas at very low 
densities, which is to say at very low pressures, and/or for a gas flowing through 
a rock that has very small pores. 

In order for the gas to behave like a continuum, and obey the no-slip boundary 
condition, a given gas molecule must collide much more frequently with other 
gas molecules, than with the pore walls. At low densities, however, each gas 
molecule will collide with a pore wall much more frequently than it collides with 
another gas molecule.  

In this situation, the gas travels through the pores not as a continuum fluid, but 
more like a bunch of billiard balls bouncing off the pore walls. 

To quantify whether or not this will be the case, we must consider the concept of 
the “mean free path”, which is the mean distance travelled by a molecule before 
it collides with another molecule.  

Klinkenberg Equation, 1 
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According to the kinetic theory of gases, the mean free path λ is given by 

where kB is the Boltzmann constant (i.e., the gas constant per molecule), and σ 
is the effective molecular diameter. Roughly, λ  can be thought of as the average 
distance between a molecule and its nearest neighbour. 

If the pore size d is smaller than the mean free path, collisions with the pore 
walls will be much more frequent than collisions with other molecules, and the 
gas will flow through the pores as a set of individual molecules, rather than as a 
fluid continuum. This type of flow is known as “Knudsen flow”, or “slip flow”. 

Klinkenberg Equation, 2 
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In 1941, Klinkenberg assumed that gas flow through a porous medium could be 
modelled as Knudsen flow through a capillary tube, and showed that the 
“apparent” permeability measured during gas flow will be related to the “true” (i.e., 
Darcy’s law) absolute permeability k by 

where λ is the mean free path, d is the pore diameter, and c is a dimensionless 
coefficient whose value is close to 1. 

If we combine this expression for kgas with our equation for λ, we find 

We now us the Kozeny-Carman equation (which you will have learned in GEMS 
1), which states that (approximately) k = φ d 

2/96 ≈ φ d 
2/100, to arrive at  

Klinkenberg Equation, 3 
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                         i.e., 

where P* is a characteristic pressure, usually written as b, that is given by 

We see from the equation at the top that, roughly, the Klinkenberg effect will be 
important if P < 10P*, and will be negligible if P > 10P*. 

The temperature, the molecular diameter, and √φ  will not vary by very much, so 
P* is mainly controlled by the permeability of the rock. 

Consider a rock having a porosity of φ = 0.10, at 300°K. Boltzmann’s constant is 
1.38×10-23 J/°K, and typical molecular diameters of a gas are about 4Å, so: 

     
. 

Klinkenberg Equation, 4 
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k (Darcy units) P* (MPa) P* (psi) 
1 Darcy 0.0015 0.22 

1 milli-Darcy 0.047 6.8 
1 micro-Darcy 1.5 220 
1 nano-Darcy 47.0 6,800 



There are two situations in which the Klinkenberg effect is important: 

1. In very low-permeability rocks such as shales, reservoir pressures will not be 
much larger than P*, so this effect must be accounted for when modelling flow 
through the rock. In this case, an accurate estimate of P* will be needed. 

2. For rocks with permeabilities in the usual range of mDarcies, we often 
measure the permeability in the lab using a gas at low pressures. In this case our 
measurements give us “kgas”,  but we want to know the actual permeability, k. To 
find k, we plot kgas  as a function of 1/P, and extrapolate back to 1/P = 0. 

   

Klinkenberg Equation, 5 
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If we fit a straight line through the k 
vs. 1/P data, and extrapolate back to 
1/P = 0, we find k. Note that 1/P = 0 
corresponds to high pressures, at 
which the gas behaves like a 
continuum. Note that this procedure 
does not require knowledge of the 
Klinkenberg parameter, P*! 



Problems for Lecture 1 

Problem 1.1. A well located in a 100 ft. thick reservoir having a permeability 
of 100 mD produces 100 barrels/day of oil from a 10 in. diameter wellbore. 
The viscosity of the oil is 0.4 cP. The pressure at a distance of 1000 feet from 
the wellbore is 3000 psi. What is the pressure at the wellbore?  

Conversion factors are as follows: 

     1 barrel = 0.1589 m3 
     1 Poise = 0.1 Newton-seconds/m2 
     1 foot = 0.3048 m 
     1 psi = 6895 N/m2 = 6895 Pa  

Problem 1.2. Carry out a derivation of the diffusion equation for spherically-
symmetric flow, in analogy to the derivation given in the textbook for radial 
flow. (The spherical flow equation can be used to model flow to a well in 
situations when only a small length of the well has been perforated, in which 
case the flow field will, at early times, be roughly spherical.) 

The result of your derivation should be an equation similar to the one for 2D 
radial flow, but with a slightly different term on the right-hand side. 
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A basic problem in subsurface energy engineering is to calculate the 
pressures in the reservoir, and at the well, when fluid is being produced from, 
or injected into, a vertical well at a constant rate, from an homogeneous, 
laterally infinite reservoir. This problem can be formulated as follows: 

Geometry: A vertical well that fully penetrates a reservoir which is of uniform 
thickness, H, and which extends infinitely far in all horizontal directions.   

Reservoir Properties: The reservoir is assumed to be isotropic and 
homogeneous, with uniform properties (i.e., permeability, porosity, etc.) that 
do not vary with pressure. 

Initial and Boundary Conditions: The reservoir is initially at a uniform pressure. 
Starting at t = 0, fluid is extracted from the wellbore at a constant rate, Q. 

Wellbore diameter: The diameter of the wellbore is assumed to be infinitely 
small; this leads to a much simpler problem than the more realistic finite-
diameter problem, but with very little loss of practical applicability. 

Problem: To determine the pressure at all points in the reservoir, including at 
the wellbore, as a function of the elapsed time since the start of production. 

Line Source Solution for a Vertical Well in an Infinite Reservoir 

29 



Derivation of the Line-Source Solution 

30 

The governing equation for this problem is the linearised pressure diffusion 
equation, in radial coordinates, that we derived in Lecture 1: 

This partial differential equation is second-order in R, and first-order in t.  
So, in order to solve it, we need two boundary conditions, and one initial 
condition. These conditions can be stated in words, as follows: 

Initial Condition: At the start of production, the pressure in the reservoir is 
assumed to be at some uniform value, Pi.  

Boundary condition at infinity: Infinitely far from the well, the pressure will 
always remain at its initial value, Pi. 

Boundary condition at the wellbore: At the wellbore, which is assumed to be 
infinitely small, the flux must be equal to Q at all times t > 0, defined here so 
that Q > 0 for the case in which we produce fluid from the reservoir. 

We can therefore formulate the problem in precise mathematical terms as 
follows, where for notational simplicity we replace ct with c:  



Derivation of the Line-Source Solution, 1 
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Governing PDE:              (1)   

Initial condition:              (2)   

BC at wellbore:              (3)   

BC at infinity:              (4)  

Strictly speaking, we can’t impose a boundary condition at R = 0, since when 
R = 0, the term R inside the parenthesis in eq. (3) goes to zero, and the term 
dP/dR goes to infinity. So, we need to first multiply these two terms together, 
and then take the “limit” as R goes to 0.  



Derivation of the Line-Source Solution, 2 
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There are many ways to solve this equation, but we will solve it using a method 
that does not require advanced techniques such as Laplace transforms or Green’s 
functions. 

First, we define a new variable η that combines, in clever way, the spatial variable 
R and the time variable t. This “trick” to simplifying a diffusion equation was 
discovered by the German physicist Ludwig Boltzmann in 1894, and is now 
referred to as the Boltzmann transformation:   

Next, we rewrite eq. (1) in terms of this new variable, η. The right-hand side 
transforms as follows: 

The derivatives with respect to R transform as follows: 



Derivation of the Line-Source Solution, 3 
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Proceeding in this way, we eventually find that, when written in terms of the 
Boltzmann variable η, the governing PDE gets transformed into the following 
ODE: 

We must now also transform the boundary/initial conditions, so that they apply to 
the function P(η). First, note that both limits,             and           , correspond to the 
same limit in the Boltzmann domain,           .   

So, conditions (2) and (4) coalesce to the following condition,  

We saw on the previous slide that R(dP/dR) transforms to 2η(dP/dη), and so the 
BC at the wellbore takes the following form: 

The three equations shown above constitute a “two-point ODE boundary-value 
problem”, which we must now solve.  



Derivation of the Line-Source Solution, 4 
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The next step in solving this equation is to note that although it is a 2nd-order 
equation for P, it is actually a 1st-order equation for η(dP/dη). If we define  
y = η(dP/dη) as our new variable, the ODE takes the form: 

Now separate the variables, and integrate from η = 0 out to some arbitrary value 
of η: 

At the well, the boundary condition on the function y is seen from the the 
previous slide to be given by y(0) = µQ/4πKH. So: 

Recalling that y = η(dP/dη), we can say that 



Derivation of the Line-Source Solution, 5 
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This equation can now be integrated to find P(η), which will give us the pressure 
in the reservoir as a function of η, and therefore as a function of R and t. 

We can’t start the integral at η = 0, because we don’t know the pressure at the 
the point R = 0. We do, however, know that the pressure at η = ∞ must be equal 
to the initial reservoir pressure, Pi. Therefore, we start the integral at η = ∞: 

Recalling that η = φµcR2/kt, we replace η with φµcR2/kt on the left-hand side, and 
also at the lower limit of integration on the right, but not inside the integral, 
because inside the integral, η is merely a dummy integration variable:   

Lastly, to further simplify the integral, we make another change of variables,  
u = η/4, which leads us to: 



Derivation of the Line-Source Solution, 6 
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The integral that appears in this equation is called the “exponential integral 
function”, which is defined as: 

This function was defined by mathematicians long before it was used to solve the 
problem of a well in an infinite reservoir, and so it contains two awkward minus 
signs on the left, which are now traditional. However, note that Python removes 
the two – signs, and calls the result the E1(x) function. We will use the Ei notation. 

The above solution was first published by the American hydrologist Charles Theis 
in 1935, and is referred to as the Theis solution. We can summarise it as follows: 

If we want to know the pressure at distance R from the centre of the well, at time 
t, we first use eq. (iii) to compute x. We then compute the value of -Ei(-x) from eq. 
(ii), or look it up from a table or graph (see next slide). The pressure at distance R 
and time t is then given by eq. (i).   



Exponential Integral Function 
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Dimensionless Form of the Line-Source Solution 

38 

Although the pressure seems to depend on many variables and parameters, 
there are actually only two independent, dimensionless mathematical variables 
in the line-source solution.  

Traditionally, these variables are defined as the dimensionless time, 

and the dimensionless pressure drawdown, 

In terms of these dimensionless parameters, the line-source solution takes the 
form 

By definition, the dimensionless time is different at each location R in the 
reservoir. Most often, however, we are interested in the pressure at the well, in 
which case R = Rw, and the dimensionless time at the well is given by  

    

€ 

ΔPD =
2πkH(Pi −P )

µQ

    

€ 

ΔPD = −
1
2

Ei (−1/ 4tD )
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ΔPD = −
1
2

Ei (−1/ 4tD )
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Recall that the dimensionless time is defined as tD = kt /φµcR2, and the line 
source solution depends on the variable 4tD. 

Can we give a physical interpretation to this parameter, or is it just a 
convenient mathematical tool? 

It follows that values of 4tD << 1 correspond to times at which the pressure 
pulse emanating from the wellbore has not yet arrived at location R, whereas 
times such that 4tD >> 1 correspond to times at which the pressure pulse has 
penetrated much farther than a distance R into the reservoir.  

In Section 2.5 of the textbook, 
it is shown that if we inject a 
small amount of fluid, Q*, into 
the wellbore, the pressure 
pulse that is created will reach 
the location R when the 
dimensionless time equals 
about 0.25 (see right): 
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It is easy to show that, for large values of x, the Ei function becomes 
exponentially small, i.e., –Ei(–x) < e-x. This corresponds to the fact that, very 
far from the well, the drawdown is always, for practical purposes, zero!  

The more interesting and important case is that of small values of x, which are 
relevant for small values of R, i.e., at the wellbore, and/or for large values of 
time (recall that x = φµcR2/4kt). Fortunately, for small values of x, the 
exponential integral essentially becomes a logarithm function, which makes it 
very easy to use.  

To derive this “late-time” approximation, known as Jacob’s approximation, we 
proceed as follows. For large times, x will be small, and we can break up the 
integral into two parts: 

    

Use the Taylor series for exp(-u) in the first integrand on the right: 
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Break up the integral on the right side into a series of integrals, and 
evaluate these integrals term-by-term: 
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Substituting this result this back into the full equation for Ei, allows us to say 

where 
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It follows that, for x < 0.01, the Ei function can be approximated very well by 
the following simple logarithmic function, 

where                                       , and γ  is known as Euler’s number. 

If we use this approximation in the equation for the pressure, we arrive at: 
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In dimensionless form, the logarithmic approximation takes the following form: 

Since x = φµcR2/4kt = 1/4tD, and the logarithmic approximation is valid for x < 
0.01, we see that this approximation is highly accurate for tD > 25, as seen in 
the graph below: 
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A common use of the line-source solution, and the other solutions that we will 
derive in this module, is to solve the “inverse” problem: we measure the 
flowrate and drawdown in the well, and fit the data to our analytical solution, so 
as to estimate reservoir properties such as permeability, etc. 

This process is called well-test analysis. We will now do one simple example, 
to get a feeling for how this process works. 

Using the line-source solution, the pressure at the well can be written as  
   

The second logarithmic term, although its numerical value is a priori unknown, 
is a constant. Hence, if we plot Pw(t) vs. lnt, the data will eventually, at large 
enough values of t, fall on a straight line! The late-time slope of this semi-log 
straight line, which we call m, will have the following value:  

If we find the slope m graphically, and if we measure the flowrate Q, and the 
fluid viscosity µ, and if we know the reservoir thickness H, we can estimate the 
permeability k. 
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Example: A well with 4 in. radius produces oil with viscosity 0.3 cP, at a constant 
rate of 200 barrels/day, from a reservoir that is 15 ft. thick. The wellbore pressure 
as a function of time is measured as follows: 

Use the “semi-log straight line” method to estimate the permeability, k. 

(1) We plot the wellbore pressure against the logarithm of time, and fit the late-
time data to a straight line: 
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(2) Calculate the slope of the late-time straight line: 

(Note that Δlnt will have the same value, regardless of the units we use for t!) 

(3) Calculate k from k = µQ/4πHm, after converting all data to SI units: 

    

€ 

m =
ΔP
Δ lnt

=
4760psi− 4510psi

2× 2.303
= 54.3psi× 6895 Pa

psi
= 374,400 Pa
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Problem 2.1. A well with 3 in. radius is located in a 40 ft. thick reservoir that has 
a permeability of 30 mD and a porosity of 0.20. The total compressibility of the 
oil/rock system is 3×10-5/psi. The initial pressure in the reservoir is 2800 psi. 
The well produces 448 barrels/day of oil that has a viscosity of 0.4 cP. 
Conversion factors can be found in Problem 1.1. 

(a)  What is the pressure at the wellbore after six days of production, according 
to the line-source solution? 

(b)  How long will it take in order for Jacob’s logarithmic approximation to be 
valid at the wellbore? 

(c)  What is the pressure at the wellbore after six days of production, according 
to the logarithmic approximation? 

(d)  Answer questions (a)-(c) for a location that is 800 ft. (horizontally) away 
from the wellbore. 
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Problem 2.2. A well with a radius of 0.3 ft. produces 200 barrels/day of 
oil, with viscosity 0.6 cP, from a 20 ft. thick reservoir. The wellbore 
pressures are as follows: 

Estimate the permeability, using the semi-log method described earlier in 
this lecture. 

Then, estimate the storativity (φ c) of the reservoir, using the method 
discussed in the FFiPM textbook. 
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A basic property of the pressure diffusion equation that governs flow of a 
single-phase compressible liquid through a porous medium is its linearity. 
Linearity allows us to use the principle of superposition to construct solutions 
to the equation. Most of the analytical methods that are used to solve 
differential equations, such as Laplace transforms, Green’s functions, 
separation of variables, etc., can be used only on linear differential equations. 
These analytical methods will be discussed to in later lectures in this module.  

In this lecture, we will discuss a simple form of the principle of superposition 
that will allow us to solve many important reservoir engineering problems, 
such as pressure buildup tests, or multi-rate flow tests.  

During well tests, the well may be flowed for a period of time, and then “shut 
in”, after which the well pressure rebounds towards the initial reservoir 
pressure. Or, a weIl may be flowed at a sequence of different rates, to obtain 
data that can be used to determine various reservoir properties. These 
sequences result in complex pressure signals. In this lecture, we will develop 
methods for modelling these complex pressure signals, which will help us to 
infer the values of important reservoir properties, such as permeability and 
storativity.  
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A differential operator, which we will call “M”, that operates on a function F, is 
a linear operator if it has the following two properties:  

                                     M(F1 + F2) = M(F1) + M(F2)   (a) 

                                           M(aF1) = aM(F1)     (b) 

for any two functions, F1 and F2, and any constant, a. 

The process of partial differentiation is a linear operation, since 

To test this property in a concrete situation, recall the pressure diffusion 
equation from Lecture 1: 
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d
dt

P1(R, t ) + P2(R, t )[ ] =
dP1(R, t )

dt
+

dP2(R, t )
dt

    

€ 

d
dt

aP1(R,t)[ ] = a dP1(R,t)
dt



Let’s check to see if the term on the left is “linear”. First, consider property (a): 

Now check property (b):   

Similarly, we can easily verify that, if the parameters {φ,µ,c,k} are each 
constant, then the right-hand side of the pressure diffusion equation is also 
linear. So, the “standard” PDE is linear. 

I leave it to you to convince yourself that if any of the parameters {φ,µ,c,k} 
vary with R in some known way (i.e., a “heterogeneous reservoir”), then the 
equation is still linear. 
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However, if any of the coefficients were functions of pressure, the equation 
would no longer be linear. This situation occurs, for example, with gas flow, for 
which the compressibility varies strongly with pressure. It is also the case for 
“stress-sensitive” reservoirs, in which the permeability varies with pressure.   

As a simple example, let’s imagine that the permeability varies with pore 
pressure, according to k(P) = ko(1+αP). In this case, the RHS of the PDE 
becomes nonlinear. The easiest way to see this is to consider property (b): 

A simple rule-of-thumb is that a differential equation will be nonlinear if it 
contains any term in which the dependent variable (in our case, P), or any of 
its derivatives, appear to a power higher than one, or are multiplied by one 
another.  
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€ 
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φµct
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The importance of linearity is that it allows us to create new solutions to the 
diffusion equation by adding together previously known solutions. We must be 
careful, however, with the initial conditions and boundary conditions.  

For example, if P1 and P2 are two pressure functions that each satisfy the 
diffusion equation and the initial condition P(R,t = 0) = Pi, then the sum of P1 
and P2 will also satisfy the diffusion equation, but will not satisfy the initial 
condition, because 

This difficulty can be avoided by working with the drawdown, defined by ΔP
(R,t) = Pi − P(R,t), instead of working with the pressure itself. Since the 
drawdown satisfies zero initial condition, by definition, the sum of two 
drawdown functions will also satisfy the correct initial condition. 

Similarly, the drawdown must be zero infinitely far from the well. So, if two 
drawdown functions satisfy the zero boundary condition at infinity, their sum 
will also satisfy this far-field boundary condition.  
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€ 

P1(R, t = 0) + P2(R, t = 0) = Pi + Pi = 2Pi



In a pressure buildup test, a well that has been producing fluid at a constant 
rate Q for some time t is then “shut in” – i.e., production is stopped.  

After this occurs, fluid will continue to flow towards the well, due to the 
pressure gradient in the reservoir, but will not be able to exit at the wellhead. 
Consequently, the pressure at the well will rise back towards it initial value, Pi. 
The rate of this pressure recovery at the well can be used to estimate both the 
transmissivity, kH, and the initial pressure, Pi, of the reservoir. 

The analysis of a pressure buildup test is based on the principle of 
superposition, and proceeds as follows. 

First, imagine that we produce at a rate Q0, starting at t = 0, in which case the 
pressure drawdown due to this production will be 

Now consider the following fictitious problem, in which, at some time t1, we 
begin to inject fluid into the same well, at rate Q0. The pressure drawdown 
due to this injection would be given by the same line source solution, except 
that:	  
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(a) The variable that we use in the line source solution to represent the 
“elapsed time” must be measured from the start of injection, i.e., the variable 
must be t – t1. 

(b) Since we are now “injecting” rather than producing, we must use “–Q0” in 
this second solution. 

Therefore, the pressure drawdown due to this fictitious injection is 

Note: it is implicitly understood that the value of the Ei function is taken to be 
zero when the term in brackets is positive, which is to say, when t < t1. This 
corresponds to the fact that production (or injection) starting at time t1 cannot 
possibly cause any drawdown for times t < t1! 

We now superimpose these two solutions (for the drawdown, not the pressure 
itself!), putting ΔP = ΔP1 + ΔP2:	  
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The key idea behind this use of “superposition” 
is that if the actual flowrate is decomposed into 
the superposition of two different problems with 
two different flowrates, then the pressure 
drawdown in the well will be the superposition of 
the drawdowns that correspond to these two 
different problems. 

The actual flowrate is shown in the top figure on 
the right. 

We decompose flowrate (a) into the sum of 
flowrates (b) and (c), i.e., (a) = (b) + (c) 

For 0 < t < t1, Q(a) = Q(b) + Q(c) = Q0 + 0 = Q0 

For t > t1, Q(a) = Q(b) + Q(c) = Q0 + (-Q0) = 0  

The reason for doing this is that, whereas it 
would be (very) hard to solve the pressure 
diffusion equation for case (a), we already know 
how to solve cases (b) and (c)!  
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(a) 

(b) 

(c) 
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The production rate at the well for the 
three scenarios: 

The pressure at the well for the three 
scenarios: 



The superposition principle that was used to solve the problem of a buildup 
test can also be used in the more general situation in which the production 
rate is changed by discrete amounts at various time intervals.  

First, imagine that the production rate is given by 

To find the drawdown, we superpose the solution for production at rate Q0 
starting at time t = 0, plus a solution starting at t1 that corresponds to the 
increment in the production rate, Q1–Q0:  

To verify that it is correct to use the flowrate increment in the second Ei 
function, note that for t > t1, the first Ei function corresponds to a flowrate of 
Q0, and the second corresponds to a rate of Q1–Q0, so the total flowrate is  

                          Q(t > t1) = Q0 + (Q1 – Q0) = Q0 + Q1 − Q0 = Q1	  

Multi-Rate Flow Tests 

60 

    

€ 

Q = Q0 for 0 < t < t1

    

€ 

Q = Q1 for t > t1

    

€ 

ΔP(R, t ) = −
µQ0

4πkH
Ei −φµcR2

4kt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

µ(Q1 −Q0 )
4πkH

Ei −φµcR2

4k(t − t1)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 



We can use this same idea of superposition to find the drawdown in the 
general case, in which flowrate Qi starts at time ti, etc., by adding up a 
sequence of additional line source solutions:  

We can simplify the notation by defining the pressure drawdown per unit of 
flowrate, with production starting at t = 0, as ΔPQ(t).  

For the line source in an infinite reservoir, this definition implies 

with the understanding that ΔPQ(t) = 0 when t < 0. 

Using this definition, the drawdown in a multi-rate test can be written as	  
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The superposition formula can be generalised further, to the case where the 
flowrate at the well varies according to some arbitrary function of time, Q(t).  

First note that an arbitrary production schedule can always be approximated 
by a discrete number of time periods during which the flowrate is constant, as 
shown in the figure below. The actual flowrate is given by the thick, irregular 
curve. The approximate flowrate is given by the “staircase” function.   	  

Convolution Integral for Variable-Rate Flow Tests 

62 



Note that the time derivative of the flowrate, at time ti, can be approximated as 
follows: 

We can rearrange this equation to find an expression for Qi – Qi-1:	  

If we plug this expression into our equation for the drawdown, we find 

We now simplify the notation by rewriting this in the following equivalent form: 

As we make each time increment smaller, the above approximation for the 
flowrate increment Qi – Qi-1 becomes more accurate, and the “step-function” 
approximation to Q(t) also becomes more accurate. In the limit as each time 
increment goes to zero, the errors due to these approximations will vanish. 	  
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The summation in this equation looks complicated, but it actually represents 
something simple and familiar. 

Recall from basic calculus that if we have a function f(t), the integral of f, from 
0 to t, is defined as the limit, as each Δt goes to zero, of the following sum: 

So, we see that as all of the Δt increments go to zero, the summation on the 
previous slide becomes an integral, and we arrive at  

Finally, we note that in the limit, as each of the time increments become 
infinitely small, the finite number of times that we were denoting by ti evolve 
into a continuous variable, which we will denote by τ. The drawdown can then 
be written as	  
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This integral is known as a convolution integral, and specifically represents 
“the convolution of the two functions dQ/dt and ΔPQ”.  

The importance of the convolution integral is that it allows us to find the 
drawdown for any production schedule, by merely doing a single integral 
based on the drawdown for the “constant-flowrate” case!  

This implies that, for any reservoir geometry, we only need to solve the 
problem of constant flowrate; the drawdown for any other situation can be 
found by convolution. This idea is a cornerstone of well test analysis.  

Another form of the convolution integral that is sometimes more convenient to 
use can be derived by applying integration-by-parts to the integral on the 
previous slide (see textbook for details). The result is: 

The short-hand notation for convolution, which is used often in Chapter 7 of 
the textbook, is the “star” symbol, i.e.,	  
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ΔP(R, t ) = Q(τ ) dΔPQ (R, t −τ )
dt0

t
∫ dτ.
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ΔP(R,t) = Q(τ) dΔPQ(R,t − τ)
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t
∫ dτ ≡Q(t)∗ dΔPQ(t)
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In Problem 3.2, you are asked to use convolution to solve an important, and 
realistic (but difficult!) problem. To gain some experience with doing 
convolution integrals, let’s now do a (relatively) easy problem: 

What is the convolution of the two functions f(t) = t, and g(t) = exp(-t)?  

Solution: First, let’s write the convolution integral in the following general form, 
involving two arbitrary functions, f and g: 

With f(t) = t, and g(t) = exp(-t), this integral takes the form: 

First, note that exp[-(t-τ)] = exp(-t)exp(τ). Since the integration variable is τ 
(not t), the variable t acts like a constant inside the integral, and so exp(-t) can 
be taken outside of the integral: 

Convolution Integral for Variable-Rate Flow Tests 
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€ 

f (t)∗g(t) = f (τ)g(t − τ)
0

t
∫ dτ.

    

€ 

f (t)∗g(t) = τ exp[−(t − τ)]
0

t
∫ dτ.

    

€ 

f (t)∗g(t)=exp(−t) τ exp(τ)
0

t
∫ dτ.



To go further, we need to use “integration by parts”. (This trick/method is 
almost always needed when we try to do a convolution integral). 

Recall the formula for integration by parts: 

It may look like we are going around in a circle, since we still have an integral 
on the right side. But the usefulness of integration by parts is that often we 
can cleverly pick our u and v functions so that, although the integral on the left 
is too hard to evaluate, the one on the right is easy. 

In our case, the left hand side is the integral of τ exp(τ). So, let’s identify τ with 
u(τ), and let’s identify exp(τ) with v’(τ). In this case: 

                                u’(τ) = dτ/dτ = 1,   and   v(τ) = exp(τ).  

If we plug this into the above expression, we find: 

Convolution Integral for Variable-Rate Flow Tests 
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€ 

τ exp(τ)dτ = τ exp(τ)]
0

t
∫

0

t

− exp(τ)dτ
0

t
∫

    

€ 

u(τ) ʹ′ v (τ)dτ = u(τ)v(τ)]
0

t
∫

0

t

− ʹ′ u (τ)v(τ)dτ
0

t
∫



Notice that the integral on the right is easy! So, we thereby find that 

Finally, we see that 

Note 1:  We could also have tried to identify τ with v’(τ), and exp(τ) with u(τ) 
But if we tried this, we would have arrived at an integral on the right that is 
even harder to do than the one that we started with on the left. If we had tried 
that, there was no harm done; you would then just try the other choice. 

Note 2: Integration by parts doesn’t always work, because sometimes the 
integral on the right is still too hard to evaluate. But it works in a surprising 
number of cases, and you should always try to use it when confronted with a 
difficult integral. 

Convolution Integral for Variable-Rate Flow Tests 
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€ 

τ exp(τ)dτ = τ exp(τ)]0

t

0

t
∫ − exp(τ)dτ

0

t
∫

= t exp(t)− 0exp(0)− exp(τ)]0

t

= t exp(t)− exp(t) +1

    

€ 

f (t)∗g(t) = exp(−t) τ exp(τ)
0

t
∫ dτ = e-t (tet - et +1) = t -1+e-t



We can also use superposition in space to solve many interesting problems 
in reservoir engineering.  

This method is discussed in detail in Chapter 4 of the FFiPM textbook. In 
this lecture, we will introduce the method, and use it to solve the problem of 
a vertical well in a reservoir that contains an infinite vertical fault. 

Consider first two wells located in an infinite reservoir, as shown below (top 
view). Well 1 is located at point A, and Well 2 is located at point B. It may be 
convenient to imagine an observation well located at point C, fitted with a 
pressure gauge. Well 1 starts producing at rate Q1 at time t1, and well 2 
starts producing at rate Q2, starting at time t2.  

Superposition of Sources/Sinks in Space, 1  
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As proven in detail in the textbook, the drawdown at point C in the reservoir, at 
some time t, is given by the sum of the two relevant line source solutions: 

Recall that in the basic line source solution, the variable R always refers to the 
distance from the well to the point where we want to measure or know the 
pressure. The variable t always refers to the time that has elapsed from the 
start of production to the time at which we want to measure or know the 
pressure. If you remember this, it should be easy to write down the above 
equation. 

Superposition of Sources/Sinks in Space, 2  
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Reservoirs are often transected by faults, many of which are nearly vertical. 
Due to mineral deposition on the fault surfaces, accumulation of fault gouge, 
and other geological processes, faults are often impermeable to flow. To 
properly interpret the results of well tests, it is important to understand the 
effect that an impermeable boundary will have on a drawdown test. 

Consider a well located at a perpendicular distance (i.e., nearest distance) d 
from an impermeable fault, which appears in planview as a straight line that 
extends infinitely far in both directions, as below. This well produces fluid at a 
constant rate Q, starting at t = 0.	  

Effect of an Impermeable Vertical Fault, 1  
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Next, let’s ignore the impermeable boundary, and assume that the reservoir 
extends infinitely far in all horizontal directions. But we will replace the fault by 
a dotted line, so as to remind us of where the fault is actually located.  

Now imagine a fictitious “image well” that is situated as the “mirror image” of 
the first well (i.e., located at a distance d on the other side of this dotted line), 
which also produces fluid from the reservoir, at rate Q, starting at t = 0.  

Any fluid to the left of this dotted line will flow towards the actual well, whereas 
any fluid to the right of this line will flow towards the image well. Hence, no fluid 
will cross this dotted line, and it will effectively act as a no-flow boundary. 
Hence, this scenario gives us the solution for a well near an impermeable fault!  	  

Effect of an Impermeable Vertical Fault, 2  
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The pressure drawdown in this situation is the superposition of the drawdown 
due to the actual well, plus the drawdown due to the fictitious image well:  

To find the pressure at the wellbore, we put (see figure above, and imagine that 
point C is located at the right edge of the actual borehole) R1 = Rw, and  
R2 = 2d – Rw ≈ 2d: 

Effect of an Impermeable Vertical Fault, 3  
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We now consider the various time regimes that occur in this problem: 

(i) There is an early time regime, during which the logarithmic approximation is 
not yet valid for either the actual well solution, or for the image-well solution. 
From Lecture 2, we know that this regime is defined by 

However, we saw in Lecture 2 that the duration of this regime is usually very 
short, and so there is no need to study it further. 

(ii) There is an intermediate time regime, in which the logarithmic approximation 
can be used for the well solution, but the drawdown in the wellbore due to the 
image solution is still negligible. This regime starts when tDw = 25. 

During this regime, the slope of the wellbore pressure curve vs. time, on a semi-
log plot, will be 

i.e., the same as if there were no fault! 

Effect of an Impermeable Vertical Fault, 4  
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t <
25φµcRw

2

k
, or tDw < 25
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dPw
d ln t

=
ΔPw
Δ ln t

=
−µQ
4πkH



(iii) There is a late-time regime during which the logarithmic approximation is 
valid for both the actual well solution, and the image well solution.  

In this regime, the pressure at the actual well is given by 

This equation will also yield a straight line on a plot of Pw vs. lnt, but with a slope 
that is twice that of the earlier slope, i.e., 

Effect of an Impermeable Vertical Fault, 5  
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dPw
d ln t
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ΔPw
Δ ln t
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−2µQ
4πkH

=
−µQ
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So, if we see from the measured data that the slope of the graph of Pw vs. lnt 
doubles, this is an indication of a nearby impermeable vertical boundary.  

Physical explanation of the slope-doubling: Because of the impermeable 
boundary, oil is being produced from a “semi-infinite” reservoir, rather than an 
infinite reservoir. So, at large times, only half as much oil will be produced, for a 
given wellbore pressure. Therefore, in order to maintain a constant flowrate, the 
drawdown must be doubled! 

Effect of an Impermeable Vertical Fault, 6  
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Note: the distance from the 
production well to the fault 
can be estimated from the 
intersection time of the two 
semi-log straight lines (see 
Problem 4.1 in FFiPM 
textbook). 



Problems for Lecture 3 
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Problem 3.1. Which, if any, of the following differential equations are linear, 
and why (or why not)? 

(a)                                       (b)                               (c) 
      
    

Problem 3.2.   Find an expression for the wellbore pressure in a vertical well 
in a laterally infinite reservoir, if the production rate increases linearly as a 
function of time, according to Q(t) = Q*t/t*, where Q* and t* are constants. Use 
convolution, in either of the following two forms derived earlier: 

and recall that ΔPQ(R,t) for a well in an infinite reservoir is given by  
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d2y
dx2

+ x dy
dx

+ y = 0
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d2y
dx2

+ x dy
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+ xy = 0
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ΔP(R, t ) = Q0ΔPQ (R, t ) +
dQ(τ )

dτ0

t
∫ ΔPQ (R, t −τ )dτ
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ΔP(R, t ) = Q(τ ) dΔPQ (R, t −τ )
dt0

t
∫ dτ.
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ΔPQ (R, t ) ≡ ΔP(R, t;Q)
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Thus far, we have assumed that our wells are located in an infinite reservoir. In 
reality, the reservoir is always of finite size.  

This outer boundary may be an “aquifer”, i.e., a vast expanse of water-filled rock 
that surrounds the hydrocarbon-filled reservoir. In this case, the appropriate outer 
boundary condition may be one of constant pressure.   

On the other hand, if a number of wells are producing from the same reservoir, 
each will drain fluid from only a finite region, and so each well will effectively 
behave as if it were surrounded by a no-flow boundary, as illustrated below.  

Production from Bounded Reservoirs  
and/or Finite Drainage Regions 
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Imagine that we have a well located at the centre of a circular reservoir, which is 
initially at some initial pressure Pi. At time t = 0, the pressure in the wellbore is 
immediately lowered to some value Pw, and is maintained at that value.  

Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant wellbore pressure  
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In contrast to previous problems, in which the 
flowrate was controlled, and we calculated the 
drawdown, in this problem the drawdown is 
specified, and we must calculate the flowrate. 

This problem can be formulated as follows: 

Governing PDE:    
   

BC at wellbore: 
    

BC at outer boundary:  

Initial condition: 
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R

d
dR

R dP
dR
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dP
dt
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P(R = Rw, t ) = Pw

    

€ 

P(R = Re , t ) = Pi

    

€ 

P(R, t = 0) = Pi



The first step in solving this problem is to simplify its appearance by introducing 
dimensionless variables. Define 

Dimensionless radius:     

Dimensionless time:            

Dimensionless pressure:  	  	  	  

Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant wellbore pressure  
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RD = R / Rw

    

€ 

tD =
kt

φµcRw
2

  

€ 

PD =
Pi −P
Pi −Pw

The dimensionless radius is defined so that it equals 1 at the well, and 
increases as we move into the reservoir.  

The dimensionless time is defined in the usual manner.  

The dimensionless pressure is defined so that it equals 1 at the well, and equals 
zero at the outer boundary of the reservoir.  

Note that the production rate Q is a priori unknown, and will not be constant in 
time, so we can’t define PD in terms of Q, as we did before.  



In terms of the dimensionless variables, the governing equations and subsidiary 
conditions take the form	  

Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant wellbore pressure, 1  
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Governing PDE: 

BC at wellbore:  

BC at outer boundary: 

Initial condition:  
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1
RD

d
dRD

RD
dPD
dRD
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dPD
dtD
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PD(RD = 1,tD ) = 1
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PD (RD = Re / Rw ≡ RDe , tD ) = 0

    

€ 

PD (RD, tD = 0) = 0

To solve this problem, we again use superposition, in a somewhat different 
form, to break up the pressure into a steady-state part,             , and a 
transient part,                  : 

The steady-state solution, by definition, must satisfy the PDE, but with the 
time derivative set to zero. It must also satisfy both boundary conditions. But 
it will NOT satisfy the initial condition – that’s why we need to add on the 
transient part of the solution. 
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PD
s (RD )
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pD (RD, tD )
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PD (RD, tD ) = PD
s (RD ) + pD (RD, tD )



Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant wellbore pressure, 2  
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As time is no longer relevant for the steady-state pressure, PD
S(RD) is governed  

by the following ordinary differential equation: 

 Governing ODE:    

 BC at wellbore:   

 BC at outer boundary:     

This problem can easily be solved by integrating the ODE using indefinite 
integration, and imposing the two boundary conditions. The result is: 

Note 1: The steady-state pressure satisfies the PDE on the previous slide, and 
the two boundary conditions, but it doesn’t satisfy the initial condition; this is 
why we also need the transient component of the pressure.   

Note 2: The above equation is just the Thiem equation from Lecture 1, in 
dimensionless form! 



Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant wellbore pressure, 3  
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We now substitute                                                         into the PDE on slide 80, 
and find that the transient pressure function must satisfy the following equations: 

 Governing PDE:    

 BC at wellbore:     

 BC at outer boundary:  

 Initial condition:     

To solve the above problem, we again make use of superposition, and first search 
for as many functions as we can find that each satisfy the PDE and the boundary 
conditions; later, we will superpose these functions to satisfy the initial condition. 

First, we assume that these functions can be written in the form  

Inserting this into the PDE leads to 
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PD (RD, tD ) = PD
s (RD ) + pD (RD, tD )
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Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant wellbore pressure, 4  
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We now divide through both sides by                     to arrive at 
   

The left-hand side of this equation doesn’t depend on tD, and the right-hand side 
doesn’t depend on RD. Since they are equal to each other, they cannot depend on 
tD or on RD. Hence, each side must equal a constant, which we call –λ2: 

Let’s first focus on the equation for the function F, which can be written as  

If we make a change of variables, x = λRD, this equation takes the form 

      



Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant wellbore pressure, 5  
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This equation is known as a Bessel equation of order zero. It is a second-order 
ordinary differential equation, so it must have two independent solutions. One 
solution is easily found by assuming a power-series solution:  

   

Insert this series into the ODE, and we find  

In order to have x appear to the nth power in each term, so that we can easily add 
them together, we replace n with n+2 in the first two series (which is valid 
because n is just a “dummy index”), which leads to 

The coefficient of each power of x in this equation must be zero. The x 
-2 term 

already has a zero in front of it, so a0 can have any value. The simplest choice is 
to pick a0 = 1.  

In order for the x -1 term to vanish, we must pick a1 = 0.       



Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant wellbore pressure, 6  
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For all higher-order terms to vanish, we must have (n+2)2an+2 + an = 0, which 
leads to the following recursion relationship:  

We already know that a0 = 1 and a1 = 0. This recursion relation allows us to 
compute a2, a3, etc. For example, with n = 0, the recursion generates a2 = -a0/4 = 
-1/4, and with n = 1, it generates a3 = -a1/9 = 0. Continuing in this way, we find: 

The function F(x) that we have just found is called the Bessel function of the first 
kind, of order zero, and is denoted by J0(x): 

              or:  

where                                 is the factorial function. 

     



Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant wellbore pressure, 6  
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The derivation of the second independent solution to the ODE on the bottom of 
slide 85 requires a lengthier procedure, which will not be given here. This 
solution, called the Bessel function of the second kind, of order zero, is defined by 

where γ = 1.781, and 

Graphs of these two Bessel functions are shown below:     

Although Bessel functions may be 
unfamiliar to you, and may seem 
complicated, they are actually not much 
more complicated than sines and cosines, 
and in polar coordinates they play roles 
similar to the roles that sines and cosines 
play in Cartesian coordinates.  



The general solution to the ODE on the bottom of slide 85 can be written as a 
linear combination of these two kinds of Bessel functions: 

where A and B are at this stage two unknown constants. 

Recalling that x = λRD, we can say that the following function will be a solution to 
our ODE, for any value of λ: 

However, the above expression will only satisfy the boundary conditions shown 
on slide 84 for certain special values of λ, which we will now find.  

Inserting the above expression for F(RD) into the BC on slide 84, we find 

which can be written in matrix form as 

Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant wellbore pressure, 7  
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In order for this matrix equation to have non-zero solutions for A and B, the 
determinant of the matrix must be zero, i.e., 

The values of λ that satisfy this equation are called the eigenvalues of this 
problem. They will depend on the dimensionless size of the reservoir, RDe. There 
will always be an infinite number of eigenvalues, and they can be arranged in 
order as 

Each eigenvalue generates its own eigenfunction, i.e.,  

It also follows from the equations on the bottom of slide 89 that 

Combining the two previous equations, and simplifying the notation, yields 

                 Fn(RD )  Fn(RD)  Fn(RD) Fn(RD)                      = CnUn(RD)  

Note that at this stage, we don't yet know the values of the constants Cn.  

Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant wellbore pressure, 8  
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We now return to the time-dependent part of the solution, which, according to 
slide 85, must satisfy the following ODE: 

Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant wellbore pressure, 9  
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The solution to this equation is 

Now that we have found the eigenvalues and the eigenfunctions, we can say 
that the the general solution for the transient part of the pressure function, that 
satisfies the PDE and the BCs, is given by 

We now need to pick the constants Cn so that this expression satisfies the 
initial condition shown on slide 84. This can be done using the “orthogonality” 
properties of eigenfunctions, as shown in Chapter 10 of The Flow of 
Homogeneous Fluids through Porous Media (Muskat, 1937). The result, 
skipping the details, is 



Lastly, we add together the transient and the steady-state parts of the solution. 
The resulting expression for the pressure throughout the reservoir is: 

If we revert to dimensional variables, the solution takes the form 

The flowrate into the well, as a function of time, can be found by differentiating 
the pressure with respect to R, and applying Darcy’s law at the wellbore.  

As time goes on, all of the exponential terms will eventually die off, and the 
solution will approach the steady-state solution, which is in fact equivalent to the 
Thiem equation that was derived in Lecture 1: 

Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant wellbore pressure, 10  
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Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant flowrate into the wellbore, 1  
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This problem can also be solved using the method of 
eigenfunction expansions. The solution is: 

where the eigenfunctions Un are defined by 
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J1(x ) ≡ − dJ0(x )
dx

, Y1(x ) ≡ − dY0(x )
dx

the eigenvalues λn are the roots of the following equation: 

the functions J1 and Y1 are Bessel functions of order one, defined by 

and the dimensionless variables are defined by 
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Well at the centre of a circular reservoir with constant pressure on 
its outer boundary and constant flowrate into the wellbore, 2  
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The pressure in the wellbore, ΔPDw, is found by setting RD = 1, and using the 
following Bessel function identity:                                                  . 

The result is: 
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A detailed analysis of this solution 
would show that at early times, the 
pressure agrees with that given by the 
Theis line source solution.  

At early times the pressure pulse will 
not have reached the outer boundary 
of the reservoir, and so the finite-
reservoir solution should coincide with 
the infinite-reservoir solution.  

Eventually, the wellbore reaches a 
steady-state pressure (see figure) that 
is equivalent to that which occurs in 
the Thiem problem of Lecture 1.  



Well at the centre of a circular reservoir with a no-flow outer 
boundary and constant flowrate into the wellbore, 1  
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This problem is identical to the previous problem, except that the boundary 
conditions are now: 

  wellbore:           outer boundary:   

The solution to this problem was found by Muskat of Gulf Oil Company in 1937 
using the eigenfunction method, and was re-derived by van Everdingen and 
Hurst at Shell in 1949 using Laplace transforms. The solution is 

where the eigenfunctions Un are given by 

and the eigenvalues λn are defined implicitly by 
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Well at the centre of a circular reservoir with a no-flow outer 
boundary and constant flowrate into the wellbore, 2  
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The pressure in the wellbore is found by setting RD = 1, and again using the 
relation                                                 : 

In cases of practical interest, RD >> 1 and tDw >> 1, and so we can simplify this 
to 

There are three important time regimes in this problem:  

(i)  A regime in which the leading edge of the pressure pulse has not yet 
reached the outer boundary of the reservoir. This regime is defined by: 

As we would expect, the drawdown given by the above equation reduces to 
the line-source solution during this time regime, although this is not obvious 
or easy to prove from the equation shown above. 
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(ii)  A second regime that is “late” enough that the presence of the closed outer 
boundary is felt at the well, but still early enough that the exponential terms in 
the drawdown function have not yet died out. The duration of this regime is 
delineated by (see Problem 6.1) 

In this regime we must use the entire series to calculate the wellbore pressure, 
and the drawdown curve has no simple description.  

(iii) A third regime, in which the time is large enough that the exponential terms 
have effectively died out. This regime is defined by 

In this regime the wellbore drawdown is given by 

These regimes have been given many conflicting and confusing names in the 
literature. We will refer to the first regime as the “infinite reservoir” regime, the 
second as the “transition regime”, and the last as the “finite reservoir” regime.  
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An important feature of the finite reservoir regime is that the pressure in the 
well declines linearly with time. The rate of pressure decline can be used to 
find the drainage area of the well, as follows.  

First, rewrite the late-time drawdown in terms of the actual variables, rather 
than the dimensionless variables, to find the pressure at the well in the form 

Next, take the derivative of Pw with respect to t: 

The rate of change of the late-time well pressure can therefore be used to find 
the drainage area, A:     

The textbook gives a simpler and more general derivation of this result, which 
shows that it holds for drainage areas that have any shape.   

    

€ 

Pw (t ) = Pi −
Qµ

2πkH
2kt

φµcRe
2

+ ln Re
Rw

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

3
4

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

    

€ 

dPw
dt

= −
Qµ

2πkH
⋅

2k
φµcRe2

=
−Q

πRe2Hφc
=

−Q
AHφc

    

€ 

A =
−Q

φcH(dPw /dt)



Well at the centre of a circular reservoir with a no-flow outer 
boundary and constant flowrate into the wellbore, 5  

99 

The dimensionless wellbore pressure for a well located at the centre of a circular 
reservoir is plotted below, for various values of the dimensionless reservoir size, 
RDe, for the two cases of constant pressure at the outer boundary, and no-flow at 
the outer boundary.  

As claimed above, the “infinite reservoir” regime ends when                     . For 
example, when RDe = 1000, the curves begins to deviate from the semi-log 
straight line at about                                    .  
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FFiPM Problems 6.1 and 6.2. Some of you may enjoy working through these 
difficult problems, which are described in the textbook.  

FFiPM Problem 6.3. Starting with the equation for the pressure distribution in 
the reservoir, as given on slide 93, calculate the average pressure in a circular 
reservoir that has a constant-pressure outer boundary, and constant flowrate 
into the wellbore, during the finite-reservoir time regime in which all of the 
exponential terms have died out.  

Use this result to find an equation for the well productivity, which relates the 
production rate to the difference between the average reservoir pressure and 
the pressure at the well.  

FFiPM Problem 6.4. Imagine a vertical well of radius 4 in, at the centre of a 
closed circular reservoir whose outer radius is 1000 ft. The well is producing 
oil at a rate of 100 barrels per day. The oil has a viscosity of 1 cP. The 
thickness of the reservoir is 50 ft, the permeability of the reservoir is 100 mD, 
the porosity is 0.2, and the total compressibility of the rock-fluid system is 
10×10-6/psi. 

What will be the drawdown at the well, after three days of production?  
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The most widely used method for solving the pressure diffusion equation, for 
different reservoir geometries and different boundary conditions, is the method of 
Laplace transforms.  

In this approach, the partial differential diffusion equation in the “time domain” is 
transformed into an ordinary differential equation in the “Laplace domain”, which 
is generally much easier to solve. The solution in the Laplace domain is then 
transformed back into the “time domain”, using well-known analytical or 
numerical algorithms.	  	  

In this lecture we will introduce the Laplace transform method, present many of 
its useful properties, and then use the method to solve an important reservoir 
engineering problem – flow to well containing a vertical hydraulic fracture. 	  

Introduction to Laplace Transforms 
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Definition: If we have a function f(t), its Laplace transform is defined by 

Both notations,            and       , are useful, depending on the context. In the 
general theory of Laplace transforms, the parameter s must be regarded as a 
complex variable, but for our purposes we can think of it as a real variable. 

If we have a function of two variables, such as P(R,t), we can define its Laplace 
transform in the same manner: 

Note that the Laplace transform is taken with respect to the time variable, not the 
spatial variable. To simplify the notation, we will often hide the R variable when 
discussing the general theory. 

A key and very useful fact about Laplace transforms is that L is a linear operator, 
i.e.,  
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L{f (t)} ≡
 
f (s) ≡ f (t)e-stdt

0

∞
∫
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L{f (t)}       

€ 

 
f (s)
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P (R,s) ≡ P(R,t )e−stdt

0

∞

∫

    

€ 

L{cf (t)} = cL{f (t)}

    

€ 

L{f (t) + g(t)} = L{f (t)} +L{g(t)}



Let’s compute a simple Laplace transform, to see how this definition works in 
practice. 

The simplest function f(t) is the constant function, f(t) = 1. 

According to our definition, the Laplace transform of the function 1 is given by 

In other words, the Laplace transform of 1 is 1/s. This is the most important 
Laplace transform, and you must remember it. 

Because of the linearity of Laplace transforms, we immediately see that the 
Laplace transform of a constant, c, is equal to c/s.  

As a more pertinent example, since the function we are interested in is usually 
the pressure, P, we can see, for example, that the Laplace transform of the initial 
pressure, Pi, is Pi /s. 
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€ 

L f (t){ } = L 1{ } = 1e−st

0

∞
∫ dt =

−1
s

e−st ]0

∞
=

1
s



The most important property of the Laplace transform is that differentiation in the 
time domain essentially corresponds to multiplication by s in the Laplace domain.  

To prove this, consider the Laplace transform of the time derivative of f (t). By 
definition, it is given by the following integral: 

Recall the general formula for integration by parts, for two functions f ’(t) and g(t): 

If we apply this formula, with e-st  playing the role of g(t), we find 
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L{ ʹ′ f (t)} ≡ ʹ′ f (t)e−stdt
0
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∫
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ʹ′ f (t )g(t )dt
0

∞

∫ = f (t )g(t )]0

∞
− f (t ) ʹ′ g (t )dt

0

∞

∫
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L{ ʹ′ f (t)} = f (t)e−st ]0

∞
+ s f (t)e−stdt

0

∞
∫ = f (∞)e−s⋅∞ − f (0)e−s⋅0 + sL{f (t)} = sL{f (t)}− f (0)

    

€ 

i.e.,   L{ ʹ′ f (t)} = sL{f (t)} − f (0)

In other words, the Laplace transform of the derivative of f (t) is equal to the 
Laplace transform of f (t) multiplied by s, minus the initial value of f (t).   
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€ 

L{ ʹ′ f (t)} = sL{f (t)} − f (0)

This important result is repeated here: 

This equation illustrates two important properties of Laplace transforms:  

(i)  Differentiation in the time domain essentially corresponds to multiplication 
by s in the Laplace domain. 

(ii) The initial conditions in the time domain become incorporated directly into 
the governing differential equation in the Laplace domain. This is unlike the 
situation in “time domain” methods, where initial conditions must be considered 
separately after we have found the general solution to the differential equation. 

Note: Since our function “f ” is usually the pressure drawdown, which is defined 
to be zero when t = 0, the f (0) term will often drop out of our calculations.  

In this case, we simply can say that  
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L{dP /dt } = sL{P(t)} = s
 
P (s)
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Many other important and useful properties of Laplace transforms are proven in 
the textbook. Most of the proofs are easy, and you should be able to follow 
them. The most important of these properties are given below. 

1. Integration with respect to time corresponds to division by s in the Laplace 
domain, i.e.,  

An interesting application of this theorem is to use it to calculate the Laplace 
transform of the function t. 

First, note that t is the integral of the function f (t) = 1.  

We already know that the Laplace transform of 1 is 1/s.   

And, we see from the equation above that the Laplace transform of the integral 
of a function is simply the Laplace transform of the function, divided by s. 

So, the Laplace transform of t is 1/s2.   

Using the theorem/property shown at the top of this slide, and the other 
properties shown on the following slides, we can often calculate the Laplace 
transform of a function without having to actually compute the integral.    
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2. If we take a function f (t), and “damp it out” by multiplying it by e-at, this is 
equivalent to replacing s with s+a in the Laplace domain, i.e., 

As an interesting example of the use of this theorem, let f(t) = 1.  

We already know that if f(t) = 1, then  

So, using this theorem with f(t) = 1, we have 

In other words, the Laplace transform of e-at  is 1/(s+a). 

Using this result, and the making use of the linearity property of Laplace 
transforms, we can find the Laplace transforms of some more complicated 
functions. For example, since sinh(at) = (eat - e-at)/2, we can find that  
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3. In reservoir engineering, we often consider functions that “start” at some time 
t0, rather than at time 0. Consider f(t), and the “time-shifted” function f(t – t0), 
defined by the graph below: 

Note that f(t – t0) is assumed to be 0 for t < t0, which is consistent with the fact 
that, when using Laplace transforms, we always consider all functions to be 
zero when t < 0. This assumption reflects the physical fact that the pressure 
drawdown will be zero before production begins! 

As proven in the textbook, the Laplace transform of f(t – t0) is found by taking 
the Laplace transform of f(t), and multiplying it by        , i.e.,      
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e−st0

      

€ 

L f (t − t0){ } = e−st0
 
f (s)
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Two types of specific functions that often arise when solving the pressure 
diffusion equation are t taken to an integer power, and t taken to a half-integer 
power. The Laplace transforms of these functions are derived in the textbook.  

1. The Laplace transform of t taken to an integer power is 

in which n! is the factorial function, defined as n! = 1×2×3×…×n. (When n = 0, 
the factorial function is defined as 0! = 1). 

For example, if n = 1, this theorem tells us that L{ t } = 1/s2, which agrees with 
what we already knew. It also tells us, for example, that L{ t 

2
 } = 2/s3, etc.  

2. An important function is t  
-1/2, whose Laplace transform is 

3. The general case of t taken to a “half-integer” power is, for n = 1,2,…: 

For example, n = 1 shows us that                                .  
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There is one last, but very important, rule about Laplace transforms that we 
must learn before we can (finally) start solving reservoir engineering problems. 

The pressure diffusion equation involves derivatives with respect to time, but 
also involves derivatives with respect to a space variable, such as R or x. 

The rule for taking the Laplace transform of the derivative of P with respect to R 
is simple (see textbook for the proof): 

 The Laplace transform of the partial derivative of P with respect to R is equal 
to the partial derivative, with respect to R, of the Laplace transform of P, i.e.,  

Mathematicians describe fact this by saying that “the operation of taking the 
Laplace transform with respect to t, and the operation of taking the derivative 
with respect to R, are commutative with respect to each other”. 

Do NOT confuse this rule with the rule for the Laplace transform of dP/dt, which 
is 
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We have now learned enough about Laplace transforms to be able to use this 
method to solve an important reservoir engineering problem.  

In low permeability reservoirs, we often introduce fractures into the rock by 
pumping fluid into the borehole at high pressure. These “hydraulic fractures” 
provide very conductive paths for the oil to reach the wellbore. Oil first flows to 
the fracture, and then through the fracture to the well. 

Imagine that the thickness of the reservoir is H, and that the hydraulic fracture 
extends out from the borehole to a distance L in each direction: 
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The governing equation for this problem is the 1-D pressure diffusion equation in 
Cartesian co-ordinates, derived in Lecture 1 (consider only z > 0; the solution for 
z < 0 will be the mirror image): 

        PDE: 

If the total flowrate into the well is Q, distributed uniformly over an area 4LH (two 
fractures with two faces, each of area LH), then the subsidiary conditions are 

      IC: 

    far-field BC:   

    fracture BC:   

Initially, fluid flows straight to the 
nearest part of the fracture, after 
which it travels through the 
hydraulic fracture to the wellbore. If 
the length L is large, or equivalently, 
at early times, we can model this 
process as uniform, one-
dimensional, horizontal flow.  
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Flow to an Hydraulically Fractured Well, 3  

114 

To solve this problem, we first define the Laplace transform of P(z,t): 

Next, we take the Laplace transform of both sides of our governing PDE. For the 
left side, 

For the right side, we use (twice!) our rule for the Laplace transform of a spatial 
derivative: 

So, the transformed version of our PDE is 

      

€ 

 
P (z,s) ≡ P(z,t)e−stdt

0

∞
∫

      

€ 

L dP
dt

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= sL{P(z, t )} −P(z, t = 0) = s
 
P (z,s) −Pi

      

€ 

L D d2P
dz2

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= D d2

dz2
L P(z, t ){ }[ ] = D d2

 
P (z,s)
dz2

      

€ 

D d2
 
P (z,s)
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P (z,s) = −Pi

Although            is a function of two variables, z and s, this equation contains no  
derivatives of            with respect to s. In other words, s is a parameter, not a 
variable. Consequently, the above equation is an ODE, rather than a PDE. 

      

€ 

 
P (z,s)

      

€ 

 
P (z,s)



Flow to an Hydraulically Fractured Well, 4  

115 

The initial condition is already incorporated into this ODE. However, we must 
take the Laplace transforms of the two boundary conditions. 

The far-field boundary condition: 

The fracture boundary condition:      

For clarity, let’s summarise the situation. We have reduced a 2nd-order PDE to 
a 2nd-order ODE. Being a second-order ODE, it must satisfy two boundary 
conditions. The problem in the Laplace domain can therefore be expressed as 
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The general solution to our ODE is (you should be able to derive this easily): 

where A and B are arbitrary constants.  

If we apply the far-field boundary condition to the general solution, we see that A 
must be zero (or else the pressure would become infinite, far from the well). 

Applying the fracture boundary condition to the general solution, implies that 

So, we have now found A and B, and the solution to this problem in the Laplace 
domain is    

     

      

€ 

 
P (z,s) = Aez s / D + Be−z s / D +

Pi
s

      

€ 

d
 
P 

dz
(z = 0,s) = −B s / D =

µQ
4kLHs

    

€ 

⇒ B =
−µQ

4kLHs s / D

      

€ 

 
P (z,s) =

Pi
s
−

µQ D
4kLHs3 / 2

e−z s / D



Flow to an Hydraulically Fractured Well, 6  

117 

Finally, we must invert             to find P(z,t). To keep the analysis simple, we will 
only invert for the pressure in the fracture, P(z=0,t), which is actually the pressure 
that we are most interested in. (If the permeability of the fracture is much greater 
than that of the reservoir - which is the idea behind hydraulic fracturing! - then 
there will be very little pressure drop in the fracture itself, and the pressure in the 
fracture will be equal to the pressure in the wellbore.) 

In the fracture,   

We now invert this function, to go back to the time domain, making use of 
linearity, and using our knowledge of a few specific Laplace transforms:  

The key point is that the drawdown increases proportional to the square root of t.   
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In the hydraulic fracturing problem, we were able to easily “invert” the pressure 
from the Laplace domain, to the time domain, because we recognised the 
Laplace transforms s 

-1 and s 
-3/2 as ones that we had already encountered. 

In general, unless we recognise the functions that we obtain after we solve 
for        , or find them in a table of Laplace transforms, we will need to perform 
an integration to “invert”         to find P(t). 

This inversion process, first derived by the British mathematician Bromwich in 
the early 1900s, requires performing an integration in the complex plane, where  
s = x + iy, and the integration path is any vertical line in the complex plane that 
lies to the right of all the singularities of        : 

The proof of this inversion formula can be found in most monographs on 
transform methods, such as Operational Mathematics by H. S. Carslaw  
and J. C. Jaeger (Oxford University Press, 1949). 
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Many numerical algorithms have been derived that allow us to avoid doing an 
integration in the complex plane.  

The algorithm that is the most commonly used in petroleum engineering is the 
Stehfest algorithm, which requires evaluating         at a finite number of carefully 
chosen real values of s, multiplying these values by carefully chosen weighting 
functions, and summing up.  

The Stehfest algorithm can be written, after correcting two small typographical 
errors in the textbook, as: 

    where 

and      is the largest integer k such that         . For example, if n = 2, then  
then                  , whereas if n = 3, then                    .  

In contrast to most numerical integration schemes, the Stehfest algorithm does 
not become more accurate as we add terms to the summation. It is generally 
observed that N = 9 is the optimum value.  
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FFiPM Problem 7.2. Starting with the basic definition of the Laplace transform, 
verify the formula                              . 

FFiPM Problem 7.3. Derive the general expression for the Laplace transform  
of the function t 

n. 

FFiPM Problem 7.4. Following the steps that taken to solve the problem of flow 
to a hydraulic fracture at a constant flowrate, use Laplace transforms to solve the 
problem of flow into a hydraulic fracture with constant pressure in the fracture: 

      
        PDE:            
       

       IC:            

    far-field BC: 

    fracture BC: 

First, find the pressure in the Laplace domain,            . Next, use Darcy’s law to 
find the flowrate into the fracture, in the Laplace domain; call it          . Lastly, 
invert           back to the time domain to find the flowrate into the fracture as a 
function of time,         . 
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dP
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d2P
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P(z, t = 0) = Pi

    

€ 

P(z →∞, t ) = Pi
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P(z = 0, t ) = Pf

      

€ 

 
P (z,s)

      

€ 

 
Q f (s)

      

€ 

 
Q f (s)
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Consider a vertical fault in the subsurface, aligned in a north-south direction, with 
the two opposing faces of rock being pressed together by tectonic forces. The 
rock to the east then exerts a force on the rock to the west, and vice versa. The 
most relevant quantify is actually not the total force exerted on the sides of the 
fault, but rather the force per unit area, which is known as the traction. Since 
force is a vector, the traction will also be a vector. 

If a net force F is acting on a planar surface that has area A, the traction vector p 
is defined as the ratio of the resultant force F to the surface area A:   

This is a generalisation of the concept of fluid pressure. However, whereas a 
static fluid can only exert a force normal to a surface, the traction vector in a rock 
might also have a component that acts tangential to the surface.   

We now introduce a sign convention that is widely used in rock mechanics. The 
component of the traction vector p in any given direction r is considered to be a 
positive number if the dot product pr is negative. The reason for this sign 
convention will become clear after we discuss the concept of stress. 	  

Traction Acting on a Plane 
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€ 

p(averaged over the area) =
1
A

F



Consider now a specific planar surface of a rock, as in (a) below. This surface 
might be an actual exposed surface in a mine, tunnel, borehole, or outcrop, or it 
might be a fictitious surface in the interior of the rock mass.  

This plane can be uniquely identified by its outward unit normal vector n, which is 
oriented normal to its surface, and points in the direction away from the rock.  

With respect to some (x,y) coordinate system, n has components (nx,ny). 
Pythagoras’s theorem tells us that                          . Note that n is perpendicular 
to the plane; it does not lie within the plane. 

The traction vector p acting on this surface, as shown in (b) above, may act at an 
arbitrary angle with respect to n. 

Traction Acting on a Plane 
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(nx)2 + (ny )2 = 1



Since the traction may vary from point to point, it will generally depend on 
position, x. However, at any given point x, the traction will also, in general, be 
different on different planes that pass through that point. In other words, the 
traction will also be a function of n, the outward unit normal vector. The fact that 
p is a function of two vectors, the position vector x and the outward unit normal 
vector n, is mathematically awkward. Specifically, if we eventually want to 
develop a PDE that governs the deformation if the rock, we need to work with 
variables that are functions of x.  

This difficulty is eliminated by appealing to the concept of stress, which was 
introduced in 1823 by the French civil engineer and mathematician Cauchy. The 
stress concept allows all possible traction vectors at a point to be represented by 
a single mathematical entity, called the stress tensor, that does not explicitly 
depend on the unit normal vector of any particular plane. 

Cauchy’s concept of stress was perhaps the most significant development in the 
field of continuum mechanics. Within a few decades of this development, a large 
number of problems in solid and fluid mechanics had been solved. 

The keys to Cauchy’s theory of stress are his so-called First and Second Laws, 
which will now be derived.  

Cauchy’s Theory of Stress 
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Consider a thin coin-shaped piece of rock, as seen in 
(a) at the right in a side view, and do a force balance.  

The total force acting on the face with outward unit 
normal vector n is π r 

2p(n), whereas the total force 
acting on the opposing face is π r 

2p(-n). The total force 
acting on the outer rim is found by integrating the 
traction vector over the outer rim, and is given by  
2π r h t, where t is the mean traction acting over the 
outer rim.  

Cauchy’s First Law 
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Performing a force balance on this thin slab of rock yields 

If we let the thickness h of this slab become very small, the third term drops 
out, and the condition for equilibrium becomes 

The above equation, known as Cauchy’s First Law, essentially represents 
Newton’s 3rd Law: if the material to the left of a given plane exerts a traction p 
on the material on its right, then the material on the right will exert a traction  
–p on the material to its left. 

      

€ 

π r 2p(n) +π r 2p(−n) + 2π rht = 0
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p(−n) = −p(n)



Consider a triangular slab of rock, as in (b) at the 
right, with a uniform thickness w in the third (z) 
direction. Two faces of this slab have outward unit 
normal vectors that lie in the –x and –y directions, 
respectively, whereas the third face has an outward 
unit normal vector n = (nx,ny). The length of the face 
with o.u.n. vector n is h.  

Cauchy’s Second Law 
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The length of the face that has o.u.n. vector n is h, and so its area is hwnx. 
The traction vector on this face is p(–ex), and so the total force acting on 
this face is hwnxp(–ex). Similar considerations show that the total force 
acting on the face with outward unit normal vector –ey is hwnyp(–ey).  

A force balance on this slab leads to 

Canceling out the common terms hw, and utilizing Cauchy’s first law, leads 
to Cauchy’s Second Law: 

As shown in FoRM, this law continues to hold if the rock is also subjected 
to a body force, such as that due to gravity. 

      

€ 

hwnxp(−ex) + hwnyp(−ey ) + hwp(n) = 0

      

€ 

p(n) = nxp(ex) + nyp(ey )



Now recall that traction is a vector, and therefore (in 2D) it will have two 
components. The components of a traction vector are denoted using two 
indices: the first to indicate the direction of the outward unit normal vector, and 
the second to indicate the component of the traction vector, i.e., 

Recalling from the previous slide that                                       , we see that we 
can write this equation in matrix form as follows:     

The matrix on the right side is essentially the “stress tensor”, with one slight 
difference. The standard way of writing a matrix is for the first index to denote 
the row, and the second index to denote the column. Since x is the first index, 
and y is the second index, the matrix in the above equation is actually the 
transpose of the stress tensor/matrix τ, i.e.,   

The Stress Tensor 
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p(ex) =
τxx

τxy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
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p(n) = nxp(ex) + nyp(ey )
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p(ey ) =
τyx

τyy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
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p(n) = nx
τxx

τxy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ + ny

τyx

τyy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

τxx τyx

τxy τyy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
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ny
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⎣ 
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⎤ 

⎦ 
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p(n) =
τxx τxy

τyx τyy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
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T
nx

ny

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = τTn
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The physical significance of the stress tensor is 
traditionally illustrated by the cartoon shown at the 
right. Consider a two-dimensional square element of 
rock, whose faces are each perpendicular to one of 
the two coordinate axes.  

Consider the right face of this cube, for which n = ex. 
Hence, the traction in this face is given by  

      

€ 

p(n) =
τxx τyx

τxy τyy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

nx

ny

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

τxx τyx

τxy τyy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1
0

⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

τxx

τxy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Another key point about the stress tensor is that it is always symmetric. This 
can be seen by taking a moment balance about the centre of the cube. The 
details can be found in the FoRM textbook, but it should be obvious that the 
cube will only be in rotational equilibrium if τxy = τyx. 

Hence, it is always the case that  τ = τT. Consequently, the relationship 
between traction and stress can be written as  

  

€ 

p = τ n



Principal Stresses, 1 
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The equation, p = τn gives the traction vector p that acts on a plane whose 
outward unit normal vector is n, in terms of stress tensor, τ. An interesting 
question to ask is: for a given stress tensor, are there any planes on which the 
traction vector acts normal to the plane, with no tangential component?  

If p is normal to the plane, then it is parallel to n, and so p = σn, where σ is a 
scalar. But we also know that p = τn. Equating these two expressions for p 
gives τn = σn.  

The equation τn = σn, where τ is a matrix, n is a vector, and σ is a scalar, is a 
standard algebraic eigenvalue problem. You may already know how to solve 
this type of problem; if not, we will now develop the solution procedure. 

Recall that we can write n = In, where I is the identity matrix. So, we can write 
σn as σIn. Hence,  

                 τn = σIn,    so      τn − σIn = 0,    and hence   (τ−σI)n = 0  

We know τ, but at this point we don’t know σ or n. The vector n = 0 will satisfy 
(τ−σI)n = 0. But n must be a unit vector, whereas the vector 0 has zero length, 
so n = 0 is not an admissible solution. 
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Recall that in order for the equation Ax = 0 to have a non-zero solution for n, 
the determinant of A must be zero. (Proof: Assume that Ax = 0 has a non-zero 
solution n. Now assume that det A ≠ 0. If so, then A-1 exists, and so x = A-10 = 
0, which contradicts our assumption that n is non-zero. Hence, the assumption 
that det A ≠ 0 must have been false. Therefore, detA = 0. QED)  

Therefore, in order to have non-zero solutions n for the equation (τ − σI)n = 0, 
we need det(τ − σI) = 0. Let’s set det(τ − σI) = 0, and see where this leads us. 
Recalling that I has the property that its diagonal terms are 1, and its off-
diagonal terms are 0, and also recalling that τyx = τxy, we have: 

So, we see that setting det(τ − σI) = 0 leads to a quadratic equation for σ, which 
is called the “characteristic equation”. There will always be two solutions for σ, 
although in some special cases the two roots of the quadratic equation might 
coalesce and become equal.  
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det(τ − σ I) = det
τxx − σ τxy

τyx τyy − σ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = (τxx − σ )(τyy − σ )− (τxy )2

= σ 2 − (τxx + τyy )σ + [τxxτyy − (τxy )2] = 0.
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Using the standard solution method for a quadratic equation, we find 

These two values are known as the principal stresses. It is traditional to label 
the larger one as σ1, and the smaller one as σ2, and refer to them as the 
maximum and minimum principal stresses. Since the terms inside the large 
square brackets are always non-negative, these two principal stresses will be 
real numbers, not complex numbers.  

Now that we have found the two principal stresses (“eigenvalues” in 
mathematical jargon), we need to find the eigenvector n that corresponds to 
each of these two eigenvalues. Since the vector n1 represents the outward unit 
normal vector of plane on which the normal traction is equal to σ1, we call this 
vector the direction of the maximum principal stress. Similarly, n2 is the direction 
of the minimum principal stress σ2.	  
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σ1=
1
2

(τxx + τyy ) + sqrt (τxy )2 +
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(τxx − τyy )2
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σ2 =
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(τxx + τyy )− sqrt (τxy )2 +
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(τxx − τyy )2
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⎤ 

⎦ 
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We could proceed in general, to find n1 and n2 in terms of the three stress 
components {τxx,τyy,τxy}. This is done in detail in FoRM4. But the expressions 
are messy, and it is much easier and more instructive to look at a specific case.  

Example: Consider the following stress matrix, with respect to the (x,y) 
coordinate system, in units of MPa: 

From the equations on the previous slide, we can find the two principal stresses: 
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τ =
τxx τxy

τyx τyy
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30 20
20 30
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Now, let’s calculate the eigenvector that corresponds to σ1 = 50. We start with  
(τ−σ1I)n = 0. If we write out these two equations explicitly, the first row becomes 

The second equation becomes 

Note that the two equations have degenerated into the same equation, nx = ny, 
and therefore did not supply us with two independent equations that we would 
need to uniquely solve for nx and ny. This always happens in an eigenvalue 
problem: the equations are no longer “linearly independent”, and so we can find 
the direction of the eigenvector, but not its magnitude.                      
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(τxx − σ1)nx + τxyny = 0 ⇒ (30− 50)nx + 20ny = 0 ⇒−20nx + 20ny = 0 ⇒ nx = ny

    

€ 

τyxnx + (τyy − σ1)ny = 0 ⇒ 20nx + (30− 50)ny = 0 ⇒ 20nx − 20ny = 0 ⇒ nx = ny

However, if we recall that n must be a unit vector, this helps us to find specific 
values for nx and ny. Since nx = ny, the length of n is given by 

which tells us that nx = ny = 1/√2. Hence, the first principal stress direction is 

This vector is rotated by 45o (anti-clockwise) from the x-axis. 
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| n | = (nx)2 + (ny )2 = (nx)2 + (nx)2 = 2(nx)2 = 2 | nx | = 1

    

€ 

n1 = [1/ 2, 1/ 2]



Principal Stresses, 6 

134 

Now, let’s calculate the eigenvector that corresponds to σ2 = 10. We start with  
(τ−σ2I)n = 0. If we write out these two equations explicitly, the first row becomes 

We know from the discussion on the previous slide that the second equation 
would give us this same result, nx = −ny, so we don’t need to consider it further. 
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(τxx − σ1)nx + τxyny = 0 ⇒ (30−10)nx + 20ny = 0 ⇒ 20nx + 20ny = 0 ⇒ nx = −ny

Recalling again that n must be a unit vector, we see that 

which tells us that nx = −1/√2, and ny = 1/√2. Hence, the second principal 
stress direction is 
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| n | = (nx)2 + (ny )2 = (nx)2 + (−nx)2 = 2(nx)2 = 2 | nx | = 1
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n2 = [−1/ 2, 1/ 2]

This vector is rotated by 135o (anti-clockwise) from the x-axis. 

Note that n1n2 = (−1/√2)(1/√2) + (1/√2)(1/√2) = 0, which means that the two 
eigenvectors are orthogonal to each other. This will always be the case; it 
follows mathematically from the fact that the stress matrix is symmetric.  

Note also that we could have chosen nx = +1/√2, and ny = −1/√2. We chose our 
signs so that n2 is rotated by 90o anticlockwise from n1. 
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We could study the manner in which the traction vector acting on a plane varies 
with the orientation of the plane, by using the equations derived above. But it is 
simpler and more visually instructive to use a graphical construction known as 
Mohr’s circle.	  

First assume that we start out with a coordinate system oriented with the x-axis 
pointing east, and the y-axis pointing north, for example. In this coordinate 
system, there will generally be four non-zero components in the 2×2 stress 
matrix.  

However, if we instead change to a new coordinate system in which the 
principal stress directions n1 and n2 are the unit coordinate vectors, there will be 
no shear stresses appearing in the stress matrix! In other words, in this new 
coordinate system, the stress matrix has a much simpler form: 

Now, let’s calculate the traction on a plane that has an outward unit normal 
vector n, relative to the principal coordinate system. Recall that p = τn, so 
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The value of σ is given by the projection of p onto n, i.e., p.n. So: 

We now make use of the following trigonometric identities 

and thereby rewrite the expression for σ as 

Mohr’s Circle, 2 
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We now make the notation more “geometric”,  
by noting that n1 = cosθ, and n2 = sinθ, so that	  

In general, p will have a normal component 
and a shear component. Let’s first calculate 
the normal component, which we will 
denote by σ. 
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p =
σ1cosθ
σ2 sinθ
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σ = p •n =
σ1cosθ
σ 2 sinθ
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⎥ = σ1cos2θ +σ 2 sin2θ
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(σ1 +σ 2) +
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(σ1− σ 2)cos2θ



The value of τ is given by the projection of p onto t, i.e., 

Recall from the previous slide that 

These expressions for σ  and τ  can be plotted on a graph known as a Mohr 
diagram, after the German engineering professor Otto Mohr, who popularised 
the use of this graphical construction in the 1880s.  

Mohr’s Circle, 2 
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We now perform a similar calculation to find τ, 
the shear component of p, which lies parallel to 
the t vector, that lies along the plane. Note that 	  
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σ = 1
2

(σ1 +σ 2) +
1
2

(σ1− σ 2)cos2θ
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t = cos(θ + 90)
sin(θ + 90)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

− sinθ
cosθ
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⎣ 
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⎤ 

⎦ 
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τ = p • t =
σ1cosθ
σ 2 sinθ

⎡ 

⎣ 
⎢ 
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⎦ 
⎥ •

−sinθ
cosθ
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⎣ 
⎢ 
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⎦ 
⎥ = −σ1sinθ cosθ +σ 2 sinθ cosθ

            = −(σ1− σ 2)sinθ cosθ = − 1
2

(σ1− σ 2)sin2θ
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The two traction components that act on some plane who outward unit normal 
vector makes an angle θ with the σ1 direction are therefore given by: 

  

€ 

σ = 1
2

(σ1 +σ 2) +
1
2

(σ1− σ 2)cos2θ
  

€ 

τ = − 1
2

(σ1− σ 2)sin2θ

where {σo,τo} is the centre of the circle, R is its radius, and β is the angle of 
rotation from the σ-axis. Comparison of the above sets of equations shows that 
the graph of τ  vs. σ  will be a circle that has the following properties: 
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σ = σ o + R cosβ,   τ = τo + R sinβ

Recall that the equation of a circle in the {σ,τ } plane will have the general form 

(a)  Its centre will lie on the σ - axis, at a point given by σo = (σ1+σ2)/2 

(b)  Its radius will be given by R = (σ1−σ2)/2 

(c)  The angle β  that parameterises the circle will be equal to two-times the 
angle of rotation θ of the outward unit normal vector of the plane 

(d) The vertical axis is actually –τ  instead of τ.  

Aside from the factor of 2 in the trigonometric terms, and the minus sign in 
the equation for τ, these equations are essentially the equations of a circle.  
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A generic Mohr’s circle is show on 
the left.  

Many interesting facts can be seen 
directly from a Mohr’s circle. For 
example: 

The maximum shear stress (in absolute value; forgetting about the signs) that 
acts along any plane is equal to (σ1−σ2)/2. This occurs at the top and bottom of 
the Mohr’s circle. At the top, 2θ = 90°, and so θ = 45°, which corresponds to a 
plane that has a normal vector that bisects the σ1 and σ2 directions. The other 
plane of maximum shear stress occurs where 2θ = 270°, or θ = 135°. This plane 
has a normal vector that bisects the σ1 and –σ2 directions. 

Since Mohr’s circle intersects the σ-axis at the two points σ = σ1 and σ = σ2, 
we see that σ1 is the maximum possible normal stress that acts on any plane, 
and σ2 is the minimum normal stress acting on any plane. This is another 
sense in which the principal stresses are “special”.  

Much more discussion of Mohr’s circle can be found in Chapter 2 of FoRM. 
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Problem 6.1. Consider the following stress matrix, with respect to the (x,y) 
coordinate system, in units of MPa: 

Find the maximum and minimum principal stresses, and their associated 
directions. Verify that the two principal stress directions are perpendicular to each 
other. 

Problem 6.2. The principal stresses can be found without using any knowledge 
of matrix algebra or determinants. First, write out explicitly the two equations 
embodied by matrix equation (τ − σI)n = 0. Now, try to solve these equations 
using Gaussian elimination, and you should arrive at the same characteristic 
equation that we found on slide 130, using determinants.  

Problem 6.3. Consider a location in an underground ore body at which the two 
principal horizontal stresses are equal to σ1 = 60 MPa, and σ2 = 30 MPa. Draw a 
Mohr’s diagram on a sheet of graph paper, to find the normal and shear tractions 
that act on a plane whose outward unit normal vector is rotated by 60o from the 
σ1-direction. 
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τ =
τxx τxy

τyx τyy
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In the Lecture 6, we defined and discussed the stress tensor, which is the 
mathematical entity that we use to quantify the forces that act within a rock. 

These stresses cause the rock to deform. To quantify the deformation of the rock, 
let vector x = (x,y,z) denote the initial position of a particle of rock, and let vector 
u = (u,v,w) be the displacement of this particle of rock, so that vector x* = x − u = 
(x−u,y−v,z−w) is the new location of this particle of rock after it has deformed. 

The minus sign is used so as to be consistent with the convention that positive 
displacements correspond to a rock that is compressed.  

Note that the general process of a rock changing its location or shape is called 
deformation, and the vector that quantifies the motion of a piece of rock is called 
the displacement. 

Deformation and Displacement 
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€ 

ε =
L − L *

L
=
Δx − {[x +Δx]− u(x +Δx)− [x − u(x)]}

Δx
=

u(x +Δx)− u(x)
Δx

    

€ 

εxx(x) = lim
L→0

L − L *
L

= lim
Δx→0

u(x +Δx)− u(x)
Δx

≡
du
dx

If we let Δx become very small, the normal strain εxx at point x is defined as  

The stresses acting on the rock are not directly related to the displacement, but 
rather to the relative displacement of particles of rock that are initially close to 
each other. This relative displacement is quantified by the strain. 

Consider a short element of rock that initially lies along the x-axis, with its left 
edge at x, and it right edge at x + Δx:   

The normal strain of this element is the fractional decrease in its length, i.e., 



Shear Strains 
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The normal strains are the diagonal components of the strain tensor. 

The off-diagonal components are called the shear strains. The shear strain εxy is 
defined as one-half of the increase in the angle initially formed by two small line 
segments that initially lie parallel to the x and y axes, i.e., εxy = (α +β)/2, with 
reference to the figure below. 

As shown in Section 2.10 of FoRM4, using only simple calculus and trigonometry, 
the shear strain εxy is related to the displacements by     
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The other two shear strains can be defined in an analogous manner, i.e.,   
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Taken together, the normal and shear strains form the strain tensor : 
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The three-dimensional version of the strain tensor follows the same pattern.  

Being (necessarily) a symmetric tensor, the strain tensor will always have three 
principal values, aligned along three mutually orthogonal axes, etc.  

In vector-matrix notation, the strain tensor can be expressed as: 

In polar co-ordinates, the displacement components in the r and θ directions 
can be denoted by u and v, but the strain components have different 
expressions than they do in Cartesian co-ordinates: 
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Stress-Strain Relationships for Rocks 
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Rocks can exhibit many different types of stress-strain behavior. Elastic 
behavior can be defined as that in which the current state of strain depends 
only on the current state of stress. Elastic behavior can be linear, or nonlinear, 
and can also exhibit hysteresis: 

As discussed in detail in Chapter 9 of FoRM4, in plastic behavior, a permanent 
strain will exist even if the stresses return to zero. In viscoelastic behavior, the 
strain depends not only on the stress, but also on the rate of change of the 
stress. In this module we will focus on the most common model for the stress-
strain behavior of a rock: linear elasticity.    



Hooke’s Law for Linear Elastic Behavior, 1  
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€ 

τ = λ trace(ε)I+ 2Gε

In linear elastic behavior, the stress tensor is linearly related to the strain 
tensor. This type of linear elastic relationship is referred to as “Hooke’s law”.   

Let’s focus first on isotropic rocks, in which “the behavior is the same in all 
directions”. Hooke’s law for isotropic rocks can be written in tensor notation as 

where λ is called the Lamé modulus (named after the French mathematician 
Gabriel Lamé, who wrote the first textbook on elasticity in 1854), G is the shear 
modulus, and the trace of the strain tensor, trace(ε), is defined as the sum of 
the diagonal components, i.e., trace(ε) = εxx + εyy + εzz. 

When written in explicit component form, Hooke’s law takes the following form:  
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τxx = (λ + 2G)εxx + λεyy + λεzz
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τyy = λεxx + (λ + 2G)εyy + λεzz
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τzz = λεxx + λεyy + (λ + 2G)εzz
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τxy = 2Gεxy , τxz = 2Gεxz, τyz = 2Gεyz



Hooke’s Law for Linear Elastic Behavior, 2  
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If we want to express the strains as functions of the stresses, Hooke’s law can 
be written as follows, where E is Young’s modulus, and ν is Poisson’s ratio: 

The various elastic moduli can be expressed in terms of each other, as follows: 

where K, the bulk modulus, is the multiplicative inverse of the compressibility. 

For a material to be stable, it must be the case that K > 0 and G > 0, which 
implies that ν must lie between -1 and 0.5. However, although artificial 
materials have been created that have negative Poisson ratios, the Poisson 
ratios of all known natural materials, including rocks, are positive.  
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Hooke’s Law for Anisotropic Rocks 
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Many rocks are elastically anisotropic, in the sense that, for example, the 
Young’s modulus has different values in different directions. 

There are many types of elastic anisotropy. The most important type of 
anisotropy, particularly in petroleum reservoirs, is the case of so-called 
transverse isotropy, where the rock possesses a z-axis of rotational symmetry 
(usually vertical), and is isotropic within the (x,y) plane normal to this axis. 
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Note that whereas an isotropic rock has two independent elastic parameters, a 
transversely isotropic rock has five independent elastic parameters.  

The stress-strain relations for a transversely isotropic rock can be written as 

A commonly used notation for transversely isotropic materials is for the elastic 
coefficients pertaining to the (x,y) plane of isotropy to be referred to as {E,G,ν}, 
with E = 2G(1+ν), and those involving the z-direction denoted by {E’,G’,ν’}, 
where it is not necessarily true that E’ = 2G’(1+ν’).  



Navier Equations of Equilibrium (or Motion) 
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Thus far, we have learned how to represent the forces acting within a rock by a 
mathematical entity called the stress tensor, we have learned how to quantify 
the deformation of the rock with an entity called the strain tensor, and we have 
learned that, during linear elastic behavior of a rock, the stress is related to the 
strain by Hooke’s law.  

In order to solve a full rock mechanics problem in the subsurface, we need a 
set of partial differential equations that govern the way in which the stresses 
and strains vary in time and space. These equations are called the Navier 
equations, and can be derived by applying Newton’s laws of motion to the rock. 

We will derive these equations in the one-dimensional context. This will simplify 
the mathematical details, but still demonstrate the basic ideas involved. 
Consider a small piece of rock, having cross-sectional area A, lying between x 
and x + Δx, as shown below (right): 

Note the sign convention used for the 
body-force Fx, which is considered to  
be positive if it points in the negative 
x-direction. This is done to be consistent 
with the compression is positive rule.  



Navier Equations in One Dimension 
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This piece of rock is acted upon by surface forces acting along its two faces, 
and by a generic body force F that acts throughout the interior of the body. We 
now simply apply Newton’s law of motion to this piece of rock. 

The net surface force acting on the left face of this rock is Aτxx(x). The net 
surface force acting on the right face is −Aτxx(x+Δx). If Fx is the body force per 
unit mass, then the total body force is −ρFx AΔx. The sum of these three forces 
must equal the mass times the acceleration of this piece of rock: 

Now divide both sides by AΔx, and take the limit as Δx  goes to 0, yielding 

We now recall the 1-D version of Hooke’s law,  

and insert it into the above PDE, to obtain: 
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Navier Equations in Three Dimensions, 1 
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We can see that the left side of this equation contains second derivatives of the 
displacement with respect to the space variable, multiplied by the elastic 
moduli, and the right side contains the second derivative of the displacement 
with respect to time, multiplied by the density. 

If we retain the time derivative, this equation governs the dynamic motion of 
the rock, for example during seismic wave propagation. If the time derivative is 
zero, the equation governs the static equilibrium of a rock mass. 

The Navier equations in 3D are derived in Section 5.4 of FoRM4. The basic 
idea is the same: apply Newton’s law of motion, and then use Hooke’s law to 
express the stresses in term of the strains – i.e., in terms of the partial 
derivatives of the displacements.   

Ignoring the acceleration terms, the 3D Navier equations can be written in 
vector form as follows:  

where     is the gradient operator.  

The Navier equations are a set of three coupled PDEs in three unknowns, the 
three components of the displacement vector, u = (u,v,w). 
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Navier Equations in Three Dimensions, 2 
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If we write out the Navier equations explicitly, without using vector notation, 
they will take the following form:    

These equations are difficult to solve, in part because they are coupled, in the 
sense that all three unknowns, (u,v,w), appear in each of the three equations. 
Nevertheless, many analytical methods have been developed over the past 
200 years, which have allowed these equations to be solved in various 
geometries and with various boundary conditions. Chapter 8 of FoRM4 
discusses some of these methods.  
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In the next lecture, we will present the solutions to a few important rock 
mechanics problems.  



Elasticity Equations in Cylindrical Co-ordinates, 1 
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For problems involving boreholes or circular tunnels, 
it is convenient to use a cylindrical co-ordinate 
system, which is a polar co-ordinate system in the
{x,y} plane, with a Cartesian z-axis appended, normal 
to the {x,y} plane. 

Stress-strain equations (note: take the same form as in Cartesian co-ordinates): 
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The derivation of the elasticity equations in cylindrical 
co-ordinates can be found in Chapter 5 of FORM4. 
These equations are summarised below. 

Strain-displacement equations: 



Elasticity Equations in Cylindrical Co-ordinates, 2 
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Navier equations of equilibrium: 

Equations of elastic equilibrium, in terms of stresses: 
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Problem 7.1. Invert the equation τ = λ trace(ε) + 2Gε, which expresses the 
stresses in terms of the strains, to find the analogous tensor equation that 
expresses the strains in terms of the stresses. Then, write out the six resulting 
stress-strain equations explicitly.  

Hint: start by taking the trace of both sides of the equation τ = λ trace(ε) + 2Gε, to 
find an expression for tr(τ). 

Problem 7.2. The result of Problem 7.1 will be an equation that contains λ and G 
as the two elastic parameters. Equate this expression to the forms of the stress-
strain equation shown on the top of slide 148, and thereby derive the relations 
between λ, G, E, and ν. 
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The most common method of studying the mechanical properties of rocks is by 
axial compression of a circular cylinder, with the lateral stresses applied by a 
pressurised fluid, and the axial stress applied by an axial load.  

Triaxial Testing of Rocks 
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If the lateral surface of the rock is traction-free, the configuration is referred to 
as uniaxial compression, or unconfined compression (below, a). In this case, the 
resulting state of stress in the rock is {σ1 > 0, σ2 = σ3 = 0}.  

If tractions are applied to the lateral surfaces, the experiment is referred to as 
confined compression. For the standard configuration described above, the 
stresses applied in the two orthogonal directions perpendicular to the cylinder 
axis are necessarily equal (below, b), and the resulting state of stress in the 
rock is  {σ1 > σ2 = σ3 > 0}. This state is traditionally referred to as “triaxial”.  

The more general state of stress, in which {σ1 > σ2 > σ3 > 0}, can  be achieved 
with cubical specimens and a special type of apparatus, and is known either as 
“polyaxial” or “true triaxial” (below, c).  



Consider now the so-called “triaxial” test. Typically, σ2	  and	  σ3 are held constant, 
while σ1 is increased. The results can be plotted in the form of a stress-strain 
curve, in which “σ” (i.e., σ1) is plotted against “ε” (i.e., ε1).   

Idealised Stress-Strain Curves of a Rock 
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The simplest possible behavior is illustrated below in (a), in which the strain 
increases linearly with stress, until the rock abruptly breaks at some point F. 
This type of linear relationship between stress and strain corresponds to the 
elastic behaviour that was discussed in the previous lecture. For this type of 
behaviour, if the load is removed gradually, the rock moves “back down” on the 
same stress-strain curve as during loading. 
More general, and less idealised, types of behavior are nonlinear elastic 
behaviour (b), in which the the slope of the stress-strain curve varies with the 
level of stress, but the rock follows the same stress-strain curve during loading 
as during unloading, and hysteretic behaviour (c), in which the rock follows a 
different stress-strain path during loading than during unloading.  



The idealized materials described on the previous slide each deform until F, at 
which point they fail abruptly if the applied stress is increased further. This type 
of abrupt failure is observed in materials under tension, but the behavior of a 
rock under a compressive stress regime is more complicated (see below).  

The stress-strain curve for a rock under uniaxial compression can be divided 
conceptually into four regions. In region OA, the curvature, roughly indicated by 
the second derivative, is positive. In region AB the curve is very nearly linear. 
The curve continues to rise in region BC, but the curvature is now negative. The 
strain reaches a maximum at C, after which it falls throughout region CD. 

Realistic Stress-Strain Curve of a Rock, 1 
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In the first two regions, OA and AB, the behavior is nearly elastic. The local 
elastic modulus increases with stress, as small pre-existing cracks close up and 
the rock becomes stiffer. Some slight hysteresis may occur in this regime, but 
loading and unloading in this region will not produce irreversible changes in the 
structure or properties of the rock.  

Realistic Stress-Strain Curve of a Rock, 2 

161 

In the third region, BC, which usually begins at a stress of about two-thirds of 
the maximum stress at C, the slope of the stress-strain curve decreases steadily 
to zero as the stress increases. In this region, irreversible changes occur in the 
microstructure of the rock, and an unloading cycle such as PQ that starts in 
region BC would lead to a permanent strain when the stress returns to zero.  



In region BC the rock is said to be in a ductile state. Ductile behavior is 
characterised by the ability of the rock to support an increasing load as it 
deforms. In region CD, on the other hand, the load supported by the rock 
decreases as the strain increases. A rock exhibiting this behavior is said to be in 
a brittle state.  

Realistic Stress-Strain Curve of a Rock, 3 
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The stress at point B, which marks 
the transition from elastic to ductile 
behavior, is known as the yield stress 
of the rock, and is usually denoted by  
σo. The stress at point C, which 
marks the transition from ductile to 
brittle behavior, is known as the 
uniaxial compressive strength, and is 
usually denoted by Co.  

The process of failure is a continuous process that occurs throughout the brittle 
region CD, in which the rock physically deteriorates, and its ability to support a 
load decreases. Failure therefore begins at C, and the criteria for failure for a 
rock subjected to uniaxial compression would simply consist of the condition 
that “failure occurs when σ = Co”.  



Failure under triaxial stress states is governed by a more complicated criterion 
than merely saying “failure occurs when σ = Co”. 

The simplest, and still most widely used, failure criterion is that of Coulomb 
(1773). Coulomb assumed that failure in a rock or soil takes place along a plane 
due to the shear stress τ  acting along that plane. In analogy with sliding along 
non-welded surfaces, the sliding motion was assumed to be resisted by a 
frictional-type traction whose magnitude equals the normal traction σ acting 
along this plane, multiplied by some constant factor µ.  

But in contrast to sliding along non-welded surfaces, Coulomb assumes that 
motion along the initially intact failure plane is also resisted by an internal 
cohesive force of the material. These considerations lead to the criterion that 
failure will occur along a plane if the following condition is satisfied: 

Coulomb Failure Criterion, 1 
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The sign of the shear stress only effects the direction of sliding after failure, so 
the absolute value of τ  appears in the Coulomb failure criterion. The parameter  
So, sometimes denoted by c, is known as the cohesion. The parameter µ is the 
coefficient of internal friction, as it applies along an imaginary surface that is 
internal to the rock before failure occurs. 
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| τ | = So + µσ



The mathematical form of the Coulomb criterion suggests that the Mohr’s circle 
construction will be useful. The Coulomb equation defines a straight line on the 
{σ, −τ } plane that intercepts the τ - axis at −So, and has slope µ. The angle φ  
that this line makes with the σ-axis is given by φ = tan-1µ, and is known as the 
angle of internal friction.  

Coulomb Failure Criterion, 2 
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(a) Normal and shear tractions on a plane whose outward normal is rotated from 
the σ1 direction by some angle β.  

(b) Mohr diagram, with the Coulomb failure curve shown as line AL. Failure will 
occur on a specific plane whose angle β, demarcated by line CP, is given by 
β = 45o + (φ /2).  

(c) Example of a rock core that has failed in shear under compression. 



When written in terms of the maximum and minimum principal stresses, the 
Coulomb criterion takes the form (see FoRM4, section 4.5) 

Making use of the result that β = 45o + (φ / 2), and after some trigonometric 
manipulations, the Coulomb criterion can also be written as 

The value of σ1 that would cause failure under unconfined compression, i.e., 
when σ3 = 0, is called the unconfined compressive strength, Co , and the above 
equations show that  

On the other hand, under unconfined tension, when σ3 < 0 (tension!) and σ1 = 0, 
the value of the tensile stress σ3 that would cause failure, which is known as 
unconfined tensile strength, To , is given by 

Coulomb Failure Criterion, 3 
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The equations on the previous slide imply that, according to the Coulomb 
criterion, the ratio of unconfined compressive strength to unconfined tensile 
strength is given by   

Since µ is often around 0.6, and is never found to exceed 1, the Coulomb 
criterion predicts that the compressive strength will exceed the tensile tensile by 
only a factor between about 2 and 6. But experimental data show that Co is 
usually at least 10 times greater than Co. 

Deficiencies of the Coulomb Failure Criterion 
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Another shortcoming of Coulomb’s failure criterion is that it predicts that τ  will 
increase linearly with σ, and that σ3 will increase linearly with σ1. In reality, 
curves of τ  vs. σ (i.e., a Mohr diagram), or σ3 vs. σ1, are usually somewhat 
concave downwards. 

In order to correct these deficiencies, in 1900, Otto Mohr suggested that 
Coulomb’s equation, be replaced by a nonlinear relation of the general form 

Many different forms have been proposed for this failure function; some of the 
more widely used ones are reviewed in Chapter 4 of FoRM4. 
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Aside from the fact that f may be a nonlinear function, Mohr retained the basic 
ideas of Coulomb’s theory. Failure is supposed to occur if one of the Mohr’s 
circles touches the failure curve in {τ , σ} space. As shown below, this will 
necessarily occur for the circle defined by σ1  and σ3, and so the intermediate 
principal stress is not expected to affect the onset of failure. 

The state of stress at the point of contact of the Mohr’s circle and the failure 
curve represents the stresses acting on the failure plane, and so the 
generalized Mohr theory predicts that the failure plane passes through the 
direction of the intermediate principal stress, and its normal vector makes an 
angle β with the direction of maximum principal stress. If the failure criterion is 
concave downwards, the angle β of the failure plane will decrease with 
increasing confining stress, as indicated in (b) above. 

Mohr’s Generalization of the Coulomb Failure Criterion:    
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The preceding discussion ignored the fact that crustal rocks are typically 
porous, with a pore space filled with fluids under pressure. The pore fluid may 
affect the failure of the rock in two ways: due to the purely mechanical effect of 
pore pressure, or due to chemical interactions between the rock and the fluid. 

Effect of Pore Fluids on Failure, 1    
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It seems plausible that pore pressure, which acts “outwards” from the pore 
space, would act like a tensile stress. In an isotropic rock, this effect should be 
the same in any three mutually orthogonal directions. Karl Terzaghi proposed in 
1936 that failure of a soil would be controlled by the “effective stresses”, defined 
as the principal stresses minus the pore pressure P, i.e.,  

A stress state that lies below the  
failure curve.       

Pore pressure causes the 
effective stress state to move 
closer to the failure curve. 



Murrell (1965) conducted standard triaxial compression tests on a Darley Dale 
sandstone, at several different values of the pore pressure. In each test, the 
pore pressure and the confining stress were held constant, while the axial stress 
was increased until failure occurred. When plotted in the {P, σ1} plane, as in (a) 
below, the data fall on different curves, for different values of σ3.  

Effect of Pore Fluids on Failure, 2    
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If plotted on the {σ1, σ3} plane, the data would form three distinct vertical lines. 
However, when plotted in the plane of maximum and minimum effective 
stresses, as in (b) below, the failure data nearly form a single failure curve, 
which in this particular case is slightly concave downwards . 



Although the Mohr-Coulomb theory assumes that σ2 has no influence on failure, 
compression tests conducted under true-triaxial conditions show that, for many 
rocks, the intermediate principal stress does influence the value of σ1 at failure.  

Failure Under True-Triaxial Conditions, 1 
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In the context of metal plasticity, Nadai suggested that the “driving force” for 
failure will be the “octahedral shear stress”, which is defined by 

The octahedral shear stress is sort of an “average shear stress” in the rock; 
specifically, it is equal to (5/3)1/2  times the root-mean-square shear stress, with 
all planes weighted equally.   

Nadai further suggested that failure was “opposed” by the mean stress in the 
material, which is consistent with the concept that confinement strengthens the 
rock. The mean stress is defined by  

Hence, Nadai’s assumption can be written in the form 
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In 1971, Mogi modified Nadai’s reasoning, as follows. According to the Mohr 
hypothesis, the failure plane will lie parallel to the direction of the intermediate 
principal stress. Hence, it is plausible that fracture is resisted only by the mean 
normal stress acting on that plane, which is (σ1 + σ3)/2, rather than by the total 
mean normal stress. This suggests a brittle failure criterion of the general form 

To test this hypothesis, Mogi conducted true-triaxial compression tests on 
several rocks. The results showed that, for a fixed value of the minimum stress 
σ3, the value of σ1 at failure at first increases with an increase in σ2, but 
eventually decreases slightly as σ2 increases further. If the stresses at failure 
are plotted in the {τoct ,τm2} plane, the results coalesce to a single curve:  

Failure Under True-Triaxial Conditions, 2 
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Al-Ajmi and Zimmerman (IJRMMS, 2005) proposed using a linear expression 
for Mogi’s failure function: 
                                                    τoct = a + bσm,2  

This expression reduces to the Mohr-Coulomb criterion if any two of the 
principal stresses are equal. Thus, the linear Mogi law, which they referred to as 
the “Mogi-Coulomb” criterion, is in some sense a natural extension of the 
Coulomb criterion into the polyaxial (true-triaxial) stress domain. 

Moreover, they shows that the parameters a and b that appear in the Mogi-
Coulomb criterion can be expressed in terms of the strength parameters that 
appear in the Coulomb criterion, as follows:  

An advantage of the linear form of the Mogi-Coulomb criterion is that it allowed 
Al-Ajmi and Zimmerman to develop closed-form analytical solutions for the 
problem of the stability of a borehole, for vertical and horizontal boreholes. 

Application of these solutions to various sets of drilling data showed that the 
Mogi-Coulomb criteria led to more realistic predictions than does the Coulomb 
criterion (Al-Ajmi & Zimmerman, IJRMMS, 2006). 

Failure Under True-Triaxial Conditions, 3 
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a = (2√2/3)Socosφ,    b = (2√2/3)sinφ 



Problems for Lecture 8 
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Problem 8.1. Three samples of a rock from the same reservoir are tested under 
triaxial compression, and the following stresses are measured at “failure”:   

σ1 = 50 MPa,    σ3 = 10 MPa,  

σ1 = 90 MPa,    σ3 = 20 MPa,  

σ1 = 130 MPa,  σ3 = 30 MPa.  

In this problem, assume that σ2 = σ3 for all of the tests.  

(a) Plot these stresses on a Mohr diagram, and find the cohesion, So, the 
coefficient of internal friction, µ, and the angle of internal friction, φ.  

(b) Draw a picture of one of one of the cylindrical specimens, and show the angle 
β that the normal to the failure plane makes with the direction of the maximum 
principal stress, σ1. What is the numerical value of β ?  

(c) Another sample of this rock is subjected to the state of stress {σ1 = 100 MPa, 
σ3 = 40 MPa}. Will this state of stress cause the rock to fail?  

(d) Now imagine that the pore pressure is increased from 0 to P. What value of P 
will be sufficient to cause the rock to fail?   



Imperial College MSc in 
GeoEnergy with Machine Learning and Data Science 

GEMS 3: Geomechanics and Pressure Transient Analysis 

Lecture 9:  
Stresses around Excavations and Boreholes 

Prof. Robert Zimmerman 

March 2024 

174 



Stresses around Excavations in Rock 

Some of the most important problems in rock mechanics involve the 
calculation of the stresses and displacements around subsurface cavities, 
excavations, and boreholes.  

On a macroscopic scale, calculation of the stresses and displacements 
around boreholes, tunnels, and mine excavations is of paramount 
importance to petroleum, mining, and civil engineers.  

On a microscopic scale, the calculation of stresses around small voids and 
cracks in a rock is a necessary first step in the development of 
micromechanically-based theories of rock deformation and failure.  

As there is no intrinsic “size effect” in classical linear elasticity, the 
deformation of both engineering-scale excavations and micro-scale cracks 
and pores are governed by the same equations.  

In this lecture we will present analytical solutions to a few important 
problems involving cavities and voids in rock, in most cases without 
derivation. Details of the methods used to arrive at these solutions can be 
found in FoRM4, and the references cited therein. 
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Pressurised Hollow Cylinder, 1 

The problem of a circular hole in an infinite rock mass, with a uniform state 
of stress at infinity, is probably the most important single problem in rock 
mechanics. We start with the case of hydrostatic stress at infinity. The 
general case of two unequal far-field principal stresses will be treated later.  

To generate this solution, we start with the problem of a hollow cylinder 
subjected to uniform pressure at both its inner and outer boundaries. The 
solution for the infinite region outside of a circular hole can then be found 
by letting the outer radius of the cylinder become infinite. The hollow 
cylinder problem is of interest in its own right, in the context of laboratory 
testing. 
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Consider a hollow cylinder having 
inner radius a, and outer radius b. A 
uniform pressure (i.e., radial stress) Po 
is applied over the outer boundary, 
and a uniform fluid pressure Pi is 
applied over the inner boundary.  



For a problem such as this, having radial 
symmetry, the only component of the 
displacement vector that is not zero is the radial 
component, u, and u will depend only on r. 

Consequently, most terms in the Navier 
equations, when written in cylindrical 
coordinates, will be zero, and the Navier 
equations reduce to the following single ODE: 
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Pressurised Hollow Cylinder, 2 
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The boundary conditions at the inner and outer surfaces are 

Although the dependent variable in the ODE is the displacement, the 
boundary conditions involve the stresses. So, we need to relate the stresses 
to the displacement, using Hooke’s law in polar co-ordinates: 
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τrr (a) = Pi , τrr (b) = Po



First, we expand out the derivatives in the ODE, and 
collect similar terms, to find 
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Pressurised Hollow Cylinder, 3 

This equation is an Euler-type ODE, whose two independent solutions will be 
of the form u = Cr n. If we substitute u = Cr n  into this equation, we find 

We now expand out and combine terms to arrive at 

For this to be true for all r, without requiring C = 0, we can have either n = +1, 
or n = −1. So, the general solution to this ODE is 

where C and D are constants, whose values must be found by appealing to 
the boundary conditions. 
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If we plug this expression for the displacement into Hooke’s law for τrr, as 
given on the bottom of slide 177, we find 
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Pressurised Hollow Cylinder, 4 

We now force this expression to satisfy the two Boundary Conditions: 

These are two linear equations for the unknown constants C and D. These 
constants are easily found to be 

If we plug these constants back into the expression u(r) = Cr + D/r, and recall 
that λ = 2Gν /(1−2ν), we find 
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The stresses within the cylinder are found to be 
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Pressurised Hollow Cylinder, 5 

These stresses are plotted below, for the case of a hollow cylinder having   
b = 2a. The left panel (a) shows the case of an external pressure only, and 
the right panel (b) shows the case of an internal pressure only. Note that in 
this latter case, τθθ  is tensile!	
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The solution for a circular hole in an infinite rock mass, with a far-field 
hydrostatic stress Po, and a uniform fluid pressure Pi in the borehole, can be 
found by letting           . The results are: 
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Circular Hole in an Infinite Rock Mass 

The stresses die off as r 
-2  as we move away from the borehole. This is in 

contrast to the fluid flow problem, in which the fluid pressure drops off 
logarithmically with distance from the borehole.  

The most important implication of this solution is that, if the borehole pressure 
is large enough, tensile normal stresses in the “theta” direction can be 
generated at the borehole. If we plug r = a into the equation for τθθ, we find: 

So, if the borehole pressure Pi is greater than twice as large as the in situ 
stress Po, the tangential normal stress around the borehole wall will be 
negative, i.e., tensile! This may give rise to hydraulic fracturing. 
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The problem of calculating the displacements and stresses outside of a 
circular hole in an infinite elastic solid, with a non-hydrostatic state of stress far 
from the hole, was first solved by the German engineer Kirsch in 1898. 

Unfortunately, Kirsch did not explain how he found this solution. This problem 
is solved in FoRM4 using complex stress potentials. We will present the 
solution below, without showing the details of the derivation.  

Since we can utilize the principle of superposition, we can start with the case 
of a single non-zero principal stress at infinity. We align the x-axis with this 
principal stress, the value of which we will denote by      . The expressions for 
the stresses are as follows: 
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Circular Hole in a Rock Mass with a Uniaxial Far-field Stress 
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At the surface of the hole, the hoop stress τθθ  varies with θ, the angle of 
counterclockwise rotation from the σ1

∞ axis, according to: 

This stress therefore varies from a tensile stress of  −σ1
∞ when θ = 0 or θ = π,  

to a compressive stress 3σ1
∞ when θ = π/2 or θ = 3π/2. The hoop stress at the 

borehole wall is tensile within the regions where 2cos2θ > 1, which is to say, 
−30o < θ < 30o, and 150o < θ < 210o. 
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Circular Hole in a Rock Mass Subjected to a Far-field Stress 
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The general case of two principle stresses σ1
∞ and σ2

∞ at infinity, and a fluid 
pressure P in the borehole, can be found by superposition: 

At the surface of the hole, τθθ  varies with θ, according to 

This stress varies from a minimum of 3σ2
∞ − σ1

∞ − P when θ = 0 or θ = π,  to a 
maximum of 3σ1

∞ − σ2
∞ − P  when θ = π/2 or θ = 3π/2. A region of tensile hoop 

stresses will exist if  

If we assume that the rock has zero strength under tension, this yields the 
simplest criterion for hydraulic fracturing due to fluid pressure in the borehole.  184 

Circular Hole in a Rock Mass with Two Different Far-field Stresses 
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The stresses around the boundary of any hole in a rock mass will generally be 
greater than the in situ stresses that existed before the hole is created. An 
important type of hole is a thin crack. The stresses around the tips of these 
cracks will be very large, often large enough to cause the cracks to grow. 

Knowledge of the stresses around the tip of a microcrack is important for 
understanding the micromechanical processes that cause rocks to deform and 
fail. On a larger scale, these stresses will determine how faults grow, or how a 
hydraulic fracture propagates from a pressurised wellbore. 

Consider a thin 2D crack, lying along the x-axis between –c < x < c , in the x-y 
plane. The crack extends infinitely far “into the page” in the z-direction. A far-
field stress       of magnitude       acts normal to the crack plane. 
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Stresses near the Tip of a Two-dimensional Crack, 1 
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If the crack is filled with a pore fluid at pressure P, the stresses are given by 
these same expressions, with       replaced by –P. 

If far-field stress of magnitude              
acts normal to the crack plane, the 
dominant terms in the equations 
for the stresses will be as shown 
below, where {r,θ} is a polar co-
ordinate system centred on the tip 
of the crack, i.e., at {x = c, y = 0}: 
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Stresses near the Tip of a Two-dimensional Crack, 2 
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These stresses are often written as follows: 

where                          is called the mode I stress intensity factor. 

The three “modes” of deformation at a crack tip are illustrated below, with 
mode I being the “crack-opening” mode, mode II being the “sliding” mode, and 
mode III being the “tearing” mode (in which the top half of figure moves into 
page, and the bottom half moves out of page):  
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Stresses near the Tip of a Two-dimensional Crack, 3 
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If the far-field state of stress is a shear stress       that has magnitude     , then 
the dominant terms in the stresses near the crack tip will be: 

where                         is called the mode II stress intensity factor. 

The third important case, mode III, which is caused by a far-field out-of-plane 
shear stress      , gives rise to the following stresses near the crack tip:  

where                          is the mode III stress intensity factor. 
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Stresses near the Tip of a Two-dimensional Crack, 3 
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Consider a very thin “penny-shaped” crack of radius a, that lies in (x,y) plane, 
as shown below, where (a) is the side view, and (b) is the planview:    

If the crack is filled with a fluid at pressure p, the leading terms in the stresses 
near the edge of the crack are: 

where (ρ,α) is a local polar coordinate system lying in the (x,y) plane, centred 
on a point on the edge of the crack.  
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Stresses near a 3D “Penny-Shaped” Crack, 1 
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If the crack faces are subjected to a shear traction of magnitude S, then the 
stresses in the vicinity of the edge of the crack will be, to leading order:    

The problem of a traction-free crack subject to far-field shear stress S can 
easily be found from the above solution, using superposition. 

Stresses near a 3D “Penny-Shaped” Crack, 2 
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Spherical cavities are not as common or important in rock mechanics as 
cylindrical cavities, but they are still of some interest, particularly on a small 
scale, where they can represent small pores in a rock.    

Imagine a rock mass containing a spherical cavity of radius a, subjected to a 
uniform stress τzz = T at infinity (below left). A spherical co-ordinate system is 
shown below on the right. The cavity surface is assumed to be traction-free.  

Stresses around a Spherical Cavity 
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The full solution to this problem is derived in Section 8.12 of FORM4, using 
Papkovich-Neuber displacement functions. The key outcome of the solution is 
the stress concentration at the surface of the cavity (see next slide). 



The stresses at the surface of the cavity are given by    

Stresses around a Spherical Cavity, 2 
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The maximum value of τφφ  occurs along the equator (φ = π  /2), and equals 2T 
for a rock with ν = 0.2. For this value of ν, τθθ varies between 0 and −0.5T, and 
attains its extreme value of -0.5T at the north (φ = 0), and south (φ = π ) poles.  

The maximum stress concentration factor τφφ  /T along the equator varies 
slightly with ν, albeit only within a narrow range from 1.93 when ν = 0, to 2.17 
when ν = 0.5. This is in contrast to the stress concentration at the boundary 
of a two-dimensional circular cavity under far-field uniaxial stress, which 
equals 3, regardless of the value of the Poisson ratio.  

As a general rule, stress concentrations around three-dimensional cavities 
are less severe than those around two-dimensional cavities. 



Another interesting and important problem involving a spherical geometry is 
that of a spherical cavity in an infinite rock mass, subjected to an internal fluid 
pressure of magnitude P.   

Pressurised Spherical Cavity in an Infinite Rock Mass 
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Due to the radial symmetry of this problem, the only non-zero displacement 
component is the radial component, ur , which is given by 

Also due to the symmetry of this problem, no shear stresses will be developed 
anywhere within the rock mass. The normal stress are given by 

The displacement dies off as r 
-2, and the stresses decay as r 

-3. This is in 
contrast to a pressurised two-dimensional circular cavity, for which the 
displacement varies as r 

-1, and the stresses vary as r 
-2. As a general rule, 

stresses around three-dimensional cavities die off more rapidly with distance 
from the cavity surface than do stresses around two-dimensional cavities. 
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Introduction to Elastic Wave Propagation 

It is usually assumed that rock is at rest under the action of static stresses, 
and most problems in rock mechanics are treated as problems of statics.  

However, there are a number of important situations in which the stresses are 
of a dynamic nature, and the propagation of these stresses through the 
medium as a wave must be considered.  

Such situations may arise naturally, for example, in earthquakes. Dynamic 
stresses in rock may also be the result of man-made activities, such as 
explosive blasting. In other cases they are inadvertent consequences of 
human activities, such as the rockbursts that occur in underground mines due 
to the redistribution of stresses caused by the excavations.  

The amplitudes of the dynamic stresses are usually small compared to the 
compressive strength of the rock, except perhaps in the immediate vicinity of 
the source, and the time of application is generally short. In such situations, 
the resulting stresses and displacements can be analyzed using the dynamic 
theory of linear elasticity.  

Waves traveling through rock, governed by the laws of linear elasticity, are 
known as seismic waves. 
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One-dimensional Elastic Wave Propagation 

The propagation of elastic waves in a rock is essentially a three-dimensional 
problem. However, many of the concepts of elastic wave propagation can be 
understood within the context of a simplified, one-dimensional model.  

Imagine a thin elastic rod of a given cross-sectional shape that is uniform 
along the length of the rod. If the rod is acted upon only by longitudinal forces 
in the x direction, and its outer boundary is traction-free, then the only non-
zero stresses within the rod will be τ xx.  

Ignoring the body force, a force balance in the x-direction taken on the 
infinitesimal segment of rod between x and x + Δx then yields 
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One-dimensional Elastic Wave Propagation 

Dividing both sides of this equation by AΔx, and taking the limit as Δx goes to   
0, yields  

This equation is independent of the stress-strain relation of the rock. Assuming 
linear elastic behavior, and noting that there are no forces acting in the 
directions perpendicular to the x-axis, then                                      , and so 

This is a one-dimensional wave equation. It describes disturbances that can 
propagate along the bar, in either the +x or -x direction, at a speed c that is 
given by 

How do we know that the solutions to this equation will be “travelling waves”?  

One hint of this can be found by looking at the units of (E /ρ)1/2 , which are  

  [(N/m2)/(kg/m3)]1/2 = [(kg m /s2
 m2)(m3/kg)]1/2 = [m2/s2]1/2 = m/s 

which seems to imply that (E /ρ)1/2  is a velocity of some sort.  
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d’Alembert Solution to the Wave Equation, 1 

To actually prove that the solutions to this equation are indeed travelling 
waves with velocity c = (E /ρ)1/2, we first define a new variable, η = x - ct, and 
assume that u is a function of this new variable η (often called the “phase”). 

Applying the chain rule shows that  

and so applying this rule twice shows that 

Similarly,  

and so  

which shows that any function u(η) will satisfy the PDE on the previous slide. 
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d’Alembert Solution to the Wave Equation, 2 

To show that this function u(η) represents a wave that travels with speed c, 
consider the graph of the displacement, for fixed values of t, as shown below: 

To be concrete, consider the crest of the disturbance, which is located at         
x = xo at time t = 0. The magnitude of the disturbance at this crest is given by       
u(η = xo – c*0) = u(xo).   

At some time t later, this crest will move to a location at which the variable η 
has the same value as it did at t = 0, i.e., x / – ct = xo, which is to say 

Hence, the crest moves to the right at speed c. But this same argument will 
hold for any point on the wave, so we see that u(η) = u(x - ct) represents a 
disturbance that propagates, without distortion, to the right at speed c.  
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d’Alembert Solution to the Wave Equation, 3 

An identical analysis, using the variable ζ = x + ct, shows that u(ζ) will be a 
solution to the wave equation for any function u, and will represent a 
disturbance moving, without distortion, to the left at speed c.  

The general solution to the wave equation, first derived by the French scientist 
and philosopher d’Alembert in 1747, can be written as 

Imagine a thin elastic bar extending infinitely far in both directions. At time t = 
0, assume that the displacement and velocity of each point along the bar are 
each given by some known function, i.e., 

The solution to the 1D wave equation, subject to these initial conditions, can 
be written as follows (see Problem 10.2) 

The integral term in this expression can also be expressed in terms of left- and 
right-traveling waves by defining a function H that is the indefinite integral of V:  
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Reflection and Transmission of One-Dimensional Waves, 1 
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Whenever an elastic wave traveling through a given medium 1 impinges on 
an interface with another medium 2, a “transmitted wave” will pass into 
medium 2, and a “reflected wave” will reflect off of the boundary and return 
into medium 1; see figure below: 

Consider an incident wave ui(x-c1t) traveling to the right though medium 1, 
which occupies the region x < 0. The transmitted wave ut(x-c2t) travels to the 
right through medium 2, and the reflected wave ur(x+c1t) travels to the left 
through medium 1. 

At the interface between the two media, defined by x = 0, the displacements 
and tractions must each be continuous; these are the so-called “welded 
interface” boundary conditions.  

By mathematical arguments given in Section 11.2 of FoRM4, we find that the 
amplitude of the reflected and transmitted waves are related to the amplitude of 
the incident wave, via the transmission and reflection coefficients, as follows: 



Reflection and Transmission of One-Dimensional Waves, 2 
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amplitude of transmitted wave

amplitude of incident wave
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2Z1
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R =
amplitude of reflected wave
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=
Z1− Z2
Z1 + Z2

where Z is called the acoustic impedance, and is defined by Z = ρc, the 
product of the density and the wavespeed. 

The transmission and reflection coefficients are plotted below, as functions of 
the impedance ratio: 



Harmonic Waves and Group Velocity, 1 
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The previous discussion treated the general case of a wave of arbitrary 
shape. But the most important type of wave, which is used as the basis for 
most mathematical analyses of waves, is a harmonic wave in which the 
displacement, and hence also the strain and the stress, oscillates in a 
sinusoidal manner. 

The reason for the importance of harmonic waves is that, according to 
Fourier’s theorem, a wave of arbitrary time-variation can be decomposed into 
a combination of harmonic waves of different frequencies, each with its own 
amplitude.  

Consider a displacement described by 

where ω = kc. The form u = Uocos(kx-ct) is often convenient, although it 
obscures the fact that k and ω are not independent, but are related by ω = kc. 

As the argument of an exponential function must be dimensionless, the 
parameter k, called the wave number, must have dimensions of [1/L].  

Similarly, the parameter ω must have dimensions of [1/T].   
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u(x,t) = UoRe{eik(x−ct ) } = Uocos[k(x − ct)] ≡Uocos(kx −ωt)



Harmonic Waves and Group Velocity, 2 
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At a fixed value of t, the wavelength λ of this wave is determined by the 
condition k(x + λ) = kx + 2π, which shows that λ = 2π / k. The relation shows 
that the wave number is essentially the inverse of the wavelength. 

Similarly, at a fixed location x, the period T of the wave is determined by the 
condition ω (t + Τ) = ω t + 2π, which shows that T = 2π / ω.  

The period T represents the number of “seconds per cycle”. Hence, 1/T 
would be the number of “cycles per second”, which shows that ω = 2π /T 
represents the number of “radians per second”, i.e., the angular frequency.  

It is often more natural to refer to the frequency in terms of the number of 
“cycles per second”, rather than “radians per second”. This frequency, the so-
called cyclic frequency, or simply “the frequency”, is usually denoted by either 
f or ν, and is related to ω by ν = ω /2π = 1/T. The units of “cycles per second” 
are also known as Hz, in honor of the 19th century German physicist and 
acoustician Heinrich Hertz.  

A few of the more useful of the various relations between the parameters of a 
harmonic wave are  

    

€ 

ω = kc, ω = 2π f ,  T = 2π /ω,    λ = 2π / k,   λ = 2πc /ω,    λ = c / f



Elastic Waves in 3D Unbounded Media, 1  
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Elastic waves travel at the speed c = (E/ρ)1/2 only in the special case of a 
long-wavelength disturbance traveling along an elastic bar of constant cross-
section.  

Waves that travel in three-dimensional, unbounded, isotropic elastic media 
can be studied by starting with the full three-dimensional equations of motion, 
as derived in Lecture 7, with the inertia term included: 

Consider a planar wave traveling at speed c along some direction n, which 
can be represented by 

where d, the particle displacement vector, is taken to be a constant. (In the 
1D theory, the particle displacement must necessarily be in the same 
direction as the wave motion, but this need not be true in three dimensions. 
We will say more about this point later). 

Since         is the projection of the vector x onto the direction n, the phase                      
        will have the same value for all points x that lie on a given plane 

perpendicular to n. Hence, the displacement                          represents a  
plane wave. 
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Elastic Waves in 3D Unbounded Media, 2  
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Since the phase will have the same value for all points x that lie on a given 
plane perpendicular to n, for simplicity, we can consider a point lying on the 
vector n, i.e., x = ζ n.   

For this point, the phase is equal to 

The velocity at which the wavefront moves along the direction n is then given, 
in analogy with the discussion on slide 199, by   

This proves that this disturbance does indeed propagate as a wave in the n 
direction, and c is the phase velocity of this wave.  

At this stage, we don’t actually know what value c has, and we haven’t 
specified the direction of d. To go further, we need to insert the expression                                 

       into the governing PDE on the previous slide. 

The required time derivatives of u are easily found by applying the chain rule: 
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Elastic Waves in 3D Unbounded Media, 3  
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The phase of this wave is explicitly given by η = xnx + yny + znz - ct, so the 
spatial derivatives of u are:  

It follows that  

in which case the governing equation    

reduces to  
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Elastic Waves in 3D Unbounded Media, 4  
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Aside from the trivial case f’’’(η) = 0, which leads to either a rigid-body motion 
or a state of uniform strain that is independent of time (see Problem 10.3), 
this latter equation is equivalent to 

If the particle motion is perpendicular to the direction of wave propagation, 
then             , and the above equation can only be satisfied for non-zero d if 

where cT is the velocity of transverse waves, in which the particle motion is 
transverse to the direction of wave propagation. Hence, in an isotropic elastic 
medium, transverse plane waves can only travel at speed given by (G/ρ)1/2. 

If, on the other hand, the particle displacement vector d is parallel to, rather 
than perpendicular to, the direction of wave propagation, then           , where d 
is a scalar, and the equation at the top of this slide reduces to 

which can only be satisfied by non-zero values of d  if  

Hence, in an isotropic elastic medium, longitudinal plane waves can only 
travel at a speed given by                        . 
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P-Waves and S-Waves, 1 
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In rock mechanics and geophysics, the transverse wave velocity is usually 
denoted by VP, and the longitudinal velocity by VS. The subscript S can be 
thought of as signifying a shear wave, or it can be thought of as signifying a 
secondary wave, as these waves arrive at a receiver later than the faster-
moving longitudinal waves. The subscript P can similarly be thought of as 
standing for primary wave, or pressure wave. These two types of waves are 
often referred to as P-waves and S-waves.  

Use of the relations given in Lecture 7, between the various elastic moduli 
parameters, allows the longitudinal wavespeed to be written in the following 
forms  

from which it follows that the ratio of the two wavespeeds is 

In any isotropic rock or soil, P-waves always travel faster than S-waves. The 
ratio of the two wavespeeds is 1.41 when ν = 0, increases with increasing ν, 
and becomes unbounded as ν approaches 0.5. 
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P and S Waves, 2 
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Attenuation, 1 
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When a wave travels through an elastic medium, the total energy contained 
in the wave, is conserved. Since the energy of a plane wave is related to the 
square of its amplitude, a plane elastic wave will propagate without any 
change in amplitude.  

However, rocks do not behave entirely elastically under transient conditions.  
There are numerous mechanisms, such as friction along crack faces and 
grain boundaries, which cause the kinetic energy of seismic waves to be 
transformed into internal energy.  

This energy is not lost, but rather serves to slightly raise the temperature of 
the rock. But from a purely mechanical point of view, this energy appears to 
be “lost”, or “dissipated”, and the amplitude of a plane wave will become 
attenuated as the wave travels. 

A simple model of wave attenuation can be developed by assuming that the 
rock obeys the “Kelvin-Voigt” stress-strain equation:  

which is essentially a combination of elastic-like and viscous-fluid-like 
behavior, and where η is a viscosity-like parameter. 
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Attenuation, 2 
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If we insert this stress-strain law into the general form of the wave equation as 
listed on slide 197,                                   , we arrive at the following PDE: 

As shown in Section 11.9 of FoRM4, for “small” values of η, the plane-wave 
solution to this equation is  

where c0 = (E/ρ)1/2 is the wavespeed in the absence of viscous effects, and α 
is the attenuation coefficient, given by 

The total mechanical energy in a plane wave is proportional to the square of 
the amplitude, so the fractional loss of energy over one wavelength is 

The quality factor Q is defined in terms of the fractional energy loss as follows:  
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Measured values of Q for P-waves in various rocks are shown in the table 
below.  

Porous rocks such as sandstones and limestones tend to have Q values in 
the range of 10-100, whereas igneous and metamorphic rocks will have 
values in the range 100-1000.  



Problems for Lecture 10 

Problem 10.1. In a one-dimensional elastic wave, prove that the stress and 
the strain satisfy the same partial differential wave equation as does the 
displacement, i.e.,                                     , where f can represent u, τ, or ε. 

Problem 10.2. Starting with the general solution and the initial conditions 
given on slide 200, derive the d’Alembert solution of the wave equation. If you 
can’t derive it, then try to work backwards from the d’Alembert solution, and 
verify that it satisfies the wave equation and the initial conditions. Hint: 

Problem 10.3. Prove the assertion made on slide 208, that choosing              
will lead to a rigid-body motion, or a steady-state uniform strain, but not to a 
wave-like motion.   

Problem 10.4. Using the relations between the various elastic moduli that are 
given on slide 148 of Lecture 7, and the expressions for the compressional 
wavespeed given on slide 208 of this lecture, show that the compressional 
wavespeed can also be written in the forms given on slide 209. 
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