
MSc in Petroleum Geophysics            Seismic Rock Physics                   RW Zimmerman                  Page 1 
   
 

  
Imperial College London                                                          Department of Earth Science and Engineering 

 

 

1. Introduction 

In this module, we will cover the basic governing equations of seismic 
waves, and the relationship between seismic wavespeeds and rock 
microstructure. We start in §2 with an introduction to elastic wave 
propagation in a simple one-dimensional context. This discussion pre-
supposes some elementary knowledge of one-dimensional concepts of 
stress, strain and Hooke’s law. In §3 we discuss some important 
concepts related to harmonic waves, which will also be relevant in a 
three-dimensional context. In §4 we derive the governing equations of 
three-dimensional elastic wave propagation. This will require us to first 
define the three-dimensional stress and strain tensors, and the three-
dimensional Hooke’s law. In §5 we show how, for isotropic rocks, the 
elastodynamic equations predict the existence of two types of waves, P-
waves and S-waves. In §6 we study the reflection, refraction and 
transmission of waves across an interface between two rock layers. In 
§7 we discuss Hooke’s law for anisotropic rocks, and present some 
approximate expressions for the wavespeeds in the case of weak 
anisotropy. In §8 we present some models that account for the effect of 
pore fluids on elastic wavespeeds. Although ideally elastic waves do not 
lose energy as they propagate, waves in real rocks are not perfectly 
elastic, and so in §9 we discuss mechanisms for wave attenuation. 
Finally, in §10 we discuss the effect that pores and cracks have on the 
elastic moduli and wavespeeds. 

Most of the material in these notes is taken from Fundamentals of Rock 
Mechanics, 4th edition, by J. C. Jaeger, N. G. W. Cook, and R. W. 
Zimmerman (Wiley-Blackwell, 2007). Other good sources of information 
relevant to this module are The Rock Physics Handbook, by G. Mavko, 
T. Mukerji, and J. Dvorkin (2nd ed., Cambridge, 2009), and Quantitative 
Seismic Interpretation, by P. Avseth, T. Mukerji and G. Mavko 
(Cambridge, 2005). Additional references are given in the reference list 
at the end of these notes, following §10. 
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2. One-Dimensional Elastic Wave Propagation 

The propagation of elastic waves through rock is governed by the three-
dimensional equations of elastodynamics, which will be presented in §4. 
Because of the physical coupling between the different stresses and 
strains due to the Poisson effect, the governing equations for three-
dimensional elastodynamics are mathematically coupled, and the 
mathematical analysis of elastic waves consequently becomes 
complicated. However, many of the concepts of elastic wave 
propagation can be understood within the context of a simplified, one-
dimensional model. This model, which is developed and discussed 
below, actually applies rigorously to long-wavelength waves propagating 
along a thin elastic bar.  

x

τ(x+Δx)   τ(x)

x+Δx  

Fig. 2.1. Force balance on a small element of rock that is part of a long 
thin bar.  

Imagine a thin elastic rod of a given cross-sectional shape that is 
uniform along the length of the rod (Fig. 2.1). The axial coordinate is x. 
The precise shape of the cross-section is not relevant, but it is 
convenient to think of it as circular, with radius a. If the rod is thin, we 
can assume that the normal stress τ, defined as the normal force divided 
by the area over which the force acts, does not vary over the cross-
section, in which case τ varies only with x and t. (This assumption is 
strictly true for waves whose wavelengths are greater than about ten 
times the radius of the rod; Graff, 1975, p. 471). If the rod is acted upon 
only by longitudinal forces in the x-direction, and its outer lateral 
boundary is traction-free, then the only non-zero stress within the rod will 
be the axial normal stress, τ.  
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A force balance in the x-direction taken on the infinitesimal segment of 
rod between x and x + Δx yields 

    

€ 

[τ (x,t)− τ (x + Δx,t)]A = −ρ(AΔx)∂
2u
∂t2

,         (1) 

where the – sign appears on the right because, according to the sign 
convention used in rock mechanics, the displacement u is considered to 
be positive if the particle moves in the negative x-direction. Dividing both 
sides of (1) by  AΔx, and taking the limit as     

€ 

Δx → 0, yields 

    

€ 

∂τ
∂x

= ρ
∂2u
∂t2

.             (2) 

This equation is independent of the stress-strain equation that applies to 
the rock. If we assume linear elastic behaviour, and note that there are 
no forces acting in the two directions perpendicular to the x-axis, then 
    

€ 

τ = Eε = E(∂u /∂x), where E is Young’s modulus and ε is the longitudinal 
strain, and (2) becomes 

    

€ 

E
ρ
∂2u
∂x2

=
∂2u
∂t2

.          (3) 

if we differentiate both sides of (3) with respect to x, and invoke the fact 
that the various partial differentiation operators commute with each 
other, we see that the strain ε and the stress τ also satisfy this same 
differential equation, i.e., 

    

€ 

E
ρ
∂2ε

∂x2
=
∂2ε

∂t2
,  

    

€ 

E
ρ
∂2τ

∂x2
=
∂2τ

∂t2
.       (4) 

Eq. (3) is the one-dimensional wave equation. This equation describes 
disturbances that propagate along the bar, in either the +x or -x 
direction, at a speed c that is given by  

    

€ 

c = (E /ρ)1/ 2 .          (5) 

We can prove that the solutions to (3) are “travelling waves” by utilising 
the following analysis, first given by the French mathematician and 
philosopher Jean d’Alembert in 1747. Consider any differentiable 
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function f of one variable, and let the argument of f be the new variable 
  

€ 

η = x − ct , where c is given by (5). Applying the chain rule gives 

  

€ 

∂f
∂x

=
df
dη

∂η
∂x

=
df
dη

,     so     
    

€ 

∂2f
∂x2

=
d2f
dη2

,      (6) 

  

€ 

∂f
∂t

=
df
dη

∂η
∂t

= −c df
dη

,     so     
    

€ 

∂2f
∂t2

= c2 d2f
dη2

=
E
ρ

d2f
dη2

.   (7) 

Inserting the right-hand terms of (6) and (7) into (3) shows that the 
function     

€ 

f (x − ct) satisfies the wave equation. Hence, any differentiable 
function that depends on the two variables x and t only through the 
combination   

€ 

x − ct  will be a solution to the wave equation.  

The function     

€ 

f (x − ct), which according to (3) and (4) may stand for 
displacement, stress or strain, represents a disturbance that moves to 
the right at speed c. To be concrete, consider the peak of the 
disturbance shown in Fig. 2.2, which is located at x = xo when t = 0. The 
magnitude of the disturbance at this peak is given by 
    

€ 

f (η = xo − c0) = f (xo ). At some time t > 0 later, this peak will move to a 
location at which the variable η has the same value as it did at t = 0, i.e., 
    

€ 

ʹ′ x − ct = xo , which is to say  

    

€ 

ʹ′ x = xo + ct , so ∂x
∂t
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
η=constant

= c .     (8) 

This argument holds for any point on the wave, not just the peak, and so 
entire wave moves to the right with speed c, without any distortion.  

The waveform shown in Fig. 2.2 can be interpreted as the graph of the 
displacement as a function of x, for a fixed value of t, but it can also be 
thought of as the time variation (with a scaling factor c) of the 
displacement at a fixed location x. The variable η is called the phase of 
the wave, and c is the phase velocity. 
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x '   =   x o   +   c t 
t   = 0 t   > 0 

   
Fig. 2.2. Elastic disturbance moving to the right at velocity c. During a 
time increment t the pulse moves to the right by a distance ct, without 
altering its shape. 

An identical analysis, using the variable   

€ 

ξ = x + ct , would show that 
    

€ 

g(x + ct) is also a solution to the wave equation, for an “arbitrary” 
function g, and represents a disturbance moving, without distortion, to 
the left at speed c. The general solution to (3) is given by 

    

€ 

u(x,t) = f (x − ct)+ g(x + ct),        (9) 

in the sense that any solution to (3) can be written in this form, as a 
combination of a left-moving and a right-moving wave (Bers et al., 1964).  

Imagine a thin elastic bar extending infinitely far in both directions. At 
time t = 0, assume that the displacement and velocity of each point 
along the bar are each given by some known function, i.e.,  

    

€ 

u(x,t = 0) = U(x), ∂u
∂t

(x,t = 0) =V(x).     (10) 

Eq. (3), along with the two initial conditions given in (10), form a well-
posed initial value problem whose solution is (Fetter and Walecka, 1980, 
p. 213) 

    

€ 

u(x,t) =
1
2

[U(x − ct)+U(x + ct)] +
1

2c
V(s)ds

x−ct

x+ct
∫ .    (11) 

Eq. (11) shows clearly that the initial disturbance U(x) splits into two 
parts, half propagating to the left, half to the right.  

The influence of the initial velocity V(x) on the resulting wave, which is 
given by the integral term, is not as easy to visualise, although it can 
also be written in terms of left-travelling and right-travelling waves by 
defining a function H that is the indefinite integral of V: 
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€ 

V(s)ds
x−ct

x+ct
∫ ≡ H(x + ct)−H(x − ct).       (12) 

The foregoing analysis applies to waves travelling in an infinite, 
unbounded bar. Such waves will travel indefinitely, without changing 
their shape. But whenever an elastic wave travelling through a given 
medium 1 reaches a boundary with another medium 2, the waveform will 
be altered. A “transmitted wave” will pass into medium 2, and, in 
general, a “reflected wave” will reflect off of the boundary and return into 
medium 1 (Fig. 2.3a). The amplitudes of the transmitted and reflected 
waves, relative to that of the incident wave, can be shown to depend on 
the elastodynamic properties of the two media, in the following manner.  

Consider an incident wave,     

€ 

ui (x − c1t), travelling to the right though 
medium 1, which occupies the region x < 0. The transmitted wave 
    

€ 

ut (x − c2t) travels to the right through medium 2, and the reflected wave 
    

€ 

ur (x + c1t) travels to the left through medium 1. At the interface between 
the two media,     

€ 

x = 0, the displacements and stresses must be 
continuous; these are the so-called “welded interface” boundary 
conditions. [If the interface is a fracture or fault, different boundary 
conditions may be appropriate (see Jaeger et al., 2007, §12.7)]. The 
variable   

€ 

x − ct  can be multiplied by any constant k without altering the 
fact that     

€ 

u(x − ct) satisfies the wave equation, so without loss of 
generality we can take     

€ 

k = −1/ c , and thereby denote the solutions as 
    

€ 

u(t − x / c). At the interface, x = 0, and so the displacement due to the 
incident wave is     

€ 

ui (t), for example. As usual, all displacements are 
considered positive if the motion is in the negative x-direction, regardless 
of the direction of propagation of the wave. The condition of continuity of 
the displacement at the interface then can be expressed as 

    

€ 

ui (t)+ ur (t) = ut (t).            (13) 
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Fig. 2.3. (a) Incident wave, transmitted wave and reflected wave at a 
welded interface; (b) Reflection and transmission coefficients as 
functions of the impedance contrast, from (18) and (19). 

The stress is related to the displacement by 
    

€ 

τ = Eε = E(∂u /∂x) = ρc2(∂u /∂x). By the chain rule,     

€ 

∂u /∂x = −(1/ c) ʹ′ u  for a 
right-travelling wave, and     

€ 

∂u /∂x = (1/ c) ʹ′ u  for a left-travelling wave, where 
the prime denotes differentiation with respect to the argument of the 
function. The condition of stress continuity at the interface therefore can 
be written as 

    

€ 

−ρ1c1 ʹ′ u i (t)+ ρ1c1 ʹ′ u r (t) = −ρ2c2 ʹ′ u t (t) .      (14) 

Integration of (14) yields 

    

€ 

−ρ1c1ui (t)+ ρ1c1ur (t) = −ρ2c2ut (t)+ B ,        (15) 

where B is a constant of integration. If the incoming wave is of finite 
duration, then after a sufficiently long time has elapsed, the stresses 
associated with each of the three waves must be zero, implying that the 
integration constant must be zero. Simultaneous solution of (13) and 
(15) yields 

    

€ 

ut (t − x / c2) =
2ρ1c1

ρ1c1 + ρ2c2
ui (t − x / c1),      (16) 

    

€ 

ur (t + x / c1) =
ρ1c1 − ρ2c2
ρ1c1 + ρ2c2

ui (t − x / c1).      (17) 
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The product of the density and the wavespeed of a material, 
    

€ 

ρc = (ρE)1/ 2, is called the acoustic impedance, and is usually denoted by 
Z. The results (16) and (17) can also be expressed as 

    

€ 

T =
amplitude of transmitted wave

amplitude of incident wave
=

2Z1
Z1 + Z2

,    (18) 

    

€ 

R =
amplitude of reflected wave
amplitude of incident wave

=
Z1 −Z2
Z1 + Z2

.     (19) 

According to the sign convention that we use for displacements,     

€ 

u < 0 
corresponds to compression, and     

€ 

u > 0 corresponds to extension. If 
    

€ 

Z2 < Z1, the transmitted wave has the same “sense” as the incident 
wave (i.e., compression or rarefaction), and larger amplitude; the 
reflected wave has the same sense as the incident wave, but smaller 
amplitude. If     

€ 

Z2 > Z1, the transmitted wave has the same sense as the 
incident wave, but smaller amplitude, whereas the reflected wave has 
the opposite sense, and smaller amplitude.  

The reflection and transmission coefficients R and T are plotted in Fig. 
2.3b as functions of the impedance ratio. If these coefficients are defined 
in terms of stresses rather than displacements, the expressions and 
curves would be somewhat different. If the displacements are reckoned 
relative to the direction of wave propagation, rather than with respect to 
a co-ordinate system fixed in space, the expression for R in (19) should 
be multiplied by -1 (Mavko et al., 2009, p. 94). 

The special case of a wave impinging on a free surface can be obtained 
by letting     

€ 

ρ2,E2 → 0, in which case     

€ 

Z2 → 0. The reflected wave then 
has the same sense and same magnitude as the incident wave, 
whereas the transmitted wave has the same sense, but twice the 
magnitude of the incident wave. The prediction of a transmitted wave 
travelling through a medium with zero stiffness and zero density may 
seem paradoxical, but it must be remembered that media with zero 
density and stiffness do not exist. The above result is can be thought of 
as an asymptotic result that holds in the limit in which the impedance of 
medium 2 is very small relative to that of medium 1.  

The other extreme case is a wave impinging on an interface with a 
medium of infinitely large impedance. If     

€ 

Z2 →∞, (18) shows that there 
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will be no transmitted wave, and (19) shows that the incident wave will 
be totally reflected back into medium 1, but with the opposite sense. 
Hence, a compressive wave will be reflected as a rarefaction wave, and 
vice versa. An example of this is a sound wave in air hitting a hard wall. 
A third interesting case is when the two media have identical values of 
the acoustic impedance. In this case, the wave will be fully transmitted 
into medium 2, with no change in amplitude, and there will be no 
reflected wave.  

An elastic wave carries energy with it, in the form of both elastic strain 
energy and kinetic energy. For a wave described by     

€ 

u(x − ct), the strain 
is 

    

€ 

ε =
∂u
∂x

= ʹ′ f (x − ct).           (20) 

The stress is then given by     

€ 

τ = E ʹ′ f (x−ct ), and so the elastic strain 
energy density is 

      

€ 

E = 1
2
τε =

1
2
ρc2( ʹ′ f )2,        (21) 

where (5) has been used to write     

€ 

E = ρc2 .  

The local particle velocity of the rock is not equal to the phase velocity of 
the wave, c. Instead, we can use the chain rule to find that the velocity is 
given by 

ct)(xfc
t
u=u −ʹ′−=
∂
∂ .            (22) 

The kinetic energy density per unit volume is therefore 

        

€ 

K = 1
2ρ( ˙ u )2 = 1

2ρc2 ( ʹ′ f )2 ,       (23) 

and is exactly equal, at each location x and at each time t, to the elastic 
strain energy density. The total energy density contained in the wave is 

      

€ 

T =K +E = ρc2( ʹ′ f )2.        (24) 
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The total energy contained in any region of the bar could be found by 
multiplying (24) by the cross-sectional area A, and integrating along the 
length.  

Comparison of (20) and (22) shows that the particle velocity is related to 
the phase velocity by εcu −=  for a right-travelling wave, and by εcu =  
for a left-travelling wave. Although the particle of rock moves at speed 

εc=u , the “wave” travels at speed c. As the strain must by necessity 
be very small in order for Hooke’s law to apply, it follows that the particle 
velocity in an elastic wave is but a small fraction of the phase velocity. 

Use of Hooke’s law and (5) in the expression εcu =  shows that the 
particle velocity can also be expressed as 

c/|| ρτ=u ,          (25) 

which shows that the acoustic impedance can also be interpreted as the 
coefficient of proportionality that relates the stress to the particle velocity.  
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3.  Harmonic Waves and Group Velocity 
The analysis in §2 treated the general case of a wave of arbitrary shape. 
But the most important type of wave, and the one that is used as the 
basis for most seismic analyses, is a harmonic wave in which the 
displacement (and hence also the strain and the stress) oscillates 
sinusoidally. The reason for the importance of harmonic waves is that, 
by use of Fourier’s theorem, a wave of any time-variation can be de-
composed into a combination of harmonic waves of different 
frequencies, each with its own amplitude. In this section we discuss 
some of the properties of harmonic waves, using the same 
nomenclature of longitudinal wave propagation in a thin elastic bar as 
was used in §2.  

Consider a displacement described by 

      

€ 

u(x,t) = UoRe{eik(x−ct) } = Uo cos[k(x − ct)] ≡Uo cos(kx −ωt),   (1) 

where   

€ 

ω = kc, and we recall that     

€ 

eiθ = cosθ + i sinθ . The form 
    

€ 

Uo cos(kx −ωt) is convenient, although it obscures the fact that k and ω 
are not independent, but are related by     

€ 

ω / k = c. Note that c is a 
property of the rock, whereas k and ω can be different for different 
waves. Although it is less ambiguous to use only the real part of the 
exponential as the displacement, it is usually simpler to carry out 
mathematical manipulations using the complex exponential form, and 
then to take the real part at the end. As the argument of an exponential 
must be dimensionless, the parameter k, called the wave number, must 
have dimensions of [1/L]. The parameter ω therefore has dimensions of 
[1/T].  

At a fixed value of t, the wavelength λ of this displacement wave is 
determined by the condition     

€ 

k(x + λ) = kx + 2π , which shows that 
    

€ 

λ = 2π / k ; the wave number therefore is a sort of inverse wavelength. 
Similarly, at a fixed location, the period T of the wave is determined by 
the condition     

€ 

ω(t +T) =ωt + 2π , so     

€ 

T = 2π /ω . The period T represents 
the number of “seconds per cycle”, so 1/T would be the number of 
“cycles per second”; it is called the cyclic frequency, and is usually 
denoted by either f or ν. The units of “cycles per second” are also known 
as Hz, in honour of the 19th century German physicist and acoustician 
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Heinrich Hertz. The parameter     

€ 

ω = 2π /T = 2π f is the radial frequency, 
and represents the number of “radians per second”.  

Some useful relations between the parameters of a harmonic wave are 

    

€ 

ω = kc, ω = 2πf , T = 2π /ω, λ = 2π / k, λ = 2πc /ω  .   (2) 

The strain associated with a harmonic displacement wave is found by 
differentiating the displacement:  

    

€ 

ε = ∂u /∂x = −kUo sin(kx −ωt),        (3) 

and the stress is then found by using Hooke’s law: 

    

€ 

τ = Eε = −kEUo sin(kx −ωt).        (4) 

Since a sine function is 1/4-cycle out of phase with a cosine, we see that 
the stress and strain also vary sinusoidally, with the same frequency as 
the displacement, but 1/4-cycle out of phase with the displacement. 

The stored elastic strain energy density, per unit volume, is 

      

€ 

E = 1
2
ετ =

k2EUo
2

2
sin2(kx −ωt).         (5) 

Using the relations     

€ 

k =ω / c and     

€ 

c2 = E /ρ, this can be written as 

      

€ 

E = ρω2Uo
2

2
sin2(kx −ωt) .        (6) 

The kinetic energy density is 

)(sin
2

)(
2
1=

2
o

22 tkx2Uu ωρωρ −=K  ,     (7) 

and so the total energy density is 

      

€ 

T = K +E = ρω2Uo
2 sin2(kx −ωt) .      (8) 

At any location x, the energy density varies in time between 0 and 

    

€ 

ρω2Uo
2 , with an average value of     

€ 

ρω2Uo
2 / 2. Likewise, at any time t the 

energy density varies in space between 0 and     

€ 

ρω2Uo
2 , with an average 

value of     

€ 

ρω2Uo
2 / 2. At all times, the total energy contained in the wave, 
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at any location x, is equally partitioned between elastic strain energy and 
kinetic energy, as was shown in a more general context in §2.  

The time-averaged flux of energy through a given cross-section located 
at x can be calculated as follows. Consider the total energy contained in 
the region between   

€ 

x − λ  and x: 

      

€ 

ΔT = T
x−λ

x
∫ Adx = ρω2Uo

2 sin2(kx −ωt)
x−λ

x
∫ Adx =

ρω2Uo
2Aλ

2
.  (9) 

The entire wave travels to the right at speed c, so all of the energy in the 
region between   

€ 

x − λ  and x at time t will pass through the plane at x 
within an elapsed time of     

€ 

Δt = λ / c . The time-averaged power flux, which 
is the rate at which energy flows past location x, per unit area, is equal to 

      

€ 

P =
ΔT
AΔt

=
ρcω2Uo

2

2
.         (10) 

As discussed in §2, the actual velocity of the material particles is not the 
same as the velocity at which the “wave” propagates. The particle 
velocity is found from (1) by differentiation: 

)()(/ wtkxsinockUtkxsinoUtuu −=−== ωω∂∂  .    (11) 

Comparison of (11) and (3) shows that, in accord with the general results 
of §2, εcu −= , and so 1/|| <<cu . 

Although the theory of wave propagation along a thin elastic bar was 
presented in §2 to provide a simplified, one-dimensional context in which 
to develop the basic ideas of elastic wave propagation, it has great 
importance in its own right, because most laboratory measurements of 
wave propagation in rocks are made on cylindrical core samples. 
According to this simplified low-frequency, long-wavelength theory, the 
wavespeed c is independent of the wavelength or wave number. This is 
also the case for wave propagation in three-dimensional, unbounded 
elastic media (see §4 below). Waves for which the speed is independent 
of wavelength are called non-dispersive. This term refers to the fact that, 
since the various frequency components of the wave each travel at the 
same speed, the waveform retains its shape as it travels through the 
medium.  
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The fully three-dimensional theory of wave propagation in an elastic bar 
(Graff, 1975, pp. 468-74) predicts that the wavespeed actually depends 
on wavelength, and hence on frequency. The wavespeed asymptotically 
approaches     

€ 

(E /ρ)1/ 2  as the wavelength becomes infinite, and 
decreases as the wave number increases. Moreover, there are 
additional, higher “modes”, each with their own complicated     

€ 

c(k) 
relationship, that correspond to motions in which the stress is not 
uniform across a given cross-section at any given time. It is generally 
thought that these higher modes are not excited in most laboratory 
measurements. Nevertheless, the wavespeed in an elastic bar, as would 
be measured in the laboratory, does vary with wave number. 
Wavespeed will vary with wave number whenever an elastic wave 
travels through a “waveguide”; for example, when a wave travels along a 
layer of rock that is bounded above and below by strata having different 
elastic properties. Waves whose speed varies with frequency are called 
“dispersive”, because, as the different components of the total wave 
travel at different speeds, the waveform will not retain its overall shape 
as it moves through the medium. Waves that travel through viscoelastic 
media also exhibit dispersion, although in this case they do so not for 
geometrical reasons, but because the waves lose energy as they travel.  

The phenomenon of dispersion leads to the concept of the group 
velocity of a wave, which was first analysed in the following manner by 
the British mathematical physicist George Stokes in 1876. Consider a 
wave that consists of two harmonic components, with the same 
amplitude, but with slightly different wave numbers,     

€ 

k1 and     

€ 

k2 = k1 + Δk , 
and slightly different frequencies,   

€ 

ω1 and   

€ 

ω2 =ω1 + Δω : 

    

€ 

u = Uo cos(k1x −ω1t)+Uo cos(k2x −ω2t).     (12) 

Using standard trigonometric identities, this can be written as 

    

€ 

u = 2Uo cos{ 1
2 (k1 + k2)x − 1

2 (ω1 +ω2)t }cos{ 1
2Δkx − 1

2Δωt }.   (13)  

Now denote the mean wave number by k, and the mean frequency by ω, 
so that (13) can be written as 

    

€ 

u = 2Uo cos{k(x − ω
k

t)}cos{ 1
2Δk(x − Δω

Δk
t)}.     (14) 
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The first cosine term is a high-frequency “carrier” wave that travels at a 
speed     

€ 

c =ω / k . Since     

€ 

k1 and     

€ 

k2 each differ only slightly from k, and   

€ 

ω1 
and   

€ 

ω2 each differ only slightly from ω, both of the two individual waves 
in (11) travel essentially at velocity c, the so-called phase velocity. 
However, (14) shows that these two waves combine in such a way that 
the wave travelling at velocity c is modulated by the second cosine term, 
which represents a low-frequency wave that travels at a speed given by 

    

€ 

cg = Δω /Δk , the so-called group velocity.  

This modulated wave is illustrated schematically in Fig. 3.1. If one 
focuses on the detailed motion of the medium, one observes the carrier 
wave travelling at speed c. But if one ignores the detailed motion and 
focuses attention on the “macroscopic” motion, one observes the 
amplitude curve moving forward at speed   

€ 

cg. If   

€ 

cg > c , the individual 
wavelets seem to appear at the front of the group, and disappear at the 
rear, as they are overtaken by the modulator wave. If   

€ 

cg < c , the 
individual wavelets seem to appear at the rear of the group, travel 
forward through it, and disappear at the front (Brillouin, 1960). An easily 
observable example of this phenomenon is the radially-diverging wave 
pattern produced by dropping a small object into a still lake or pond. In 
this case   

€ 

cg > c , and the individual ripples start at the outer edge of the 
ring, and eventually disappear at the inner edge. 

Group

ModulatorCarrier wave

x

cgc

 
Fig. 3.1. Superposition of two waves of slightly differing frequencies, 
which combine to yield a high-frequency carrier wave travelling at the 
phase velocity c, modulated by a low-frequency modulator wave 
travelling at the group velocity,   

€ 

cg, as described by (12)-(14). 

In the more general context in which a wavepacket may contain a range 
of frequencies, the group velocity is defined by     

€ 

cg = dω / dk . Using the 
relationships given in (2), the group velocity can also be expressed as 
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€ 

cg =
dω
dk

= c + k dc
dk

= c − λ dc
dλ

.      (15) 

Another useful form of (15) is 

    

€ 

1
cg

=
1
c
−
ω

c2
dc
dω

,         (16) 

which is expressed in terms of the slowness, 1/c.  

Dispersion is termed normal if the group velocity decreases with 
frequency (Bourbié et al., 1987, p. 111), and is termed anomalous or 
inverse if   

€ 

cg increases with frequency. Dispersion due to geometrical 
effects, such as the dispersion of waves in an elastic layer, is typically of 
the normal type, whereas dispersion due to viscoelastic or other energy-
dissipative effects is usually anomalous (Mavko et al., 2009, p. 84).  

For a non-dispersive wave,     

€ 

cg = dω / dk = c = constant , and the group 
velocity coincides with the phase velocity. In this case, the energy 
travels with velocity c. But for dispersive waves in an elastic medium, it 
can be shown, by a lengthy mathematical argument (Achenbach, 1973, 
pp. 211-215), that the energy actually travels through the medium at the 
group velocity,   

€ 

cg. The group velocity is therefore also equal to the 
velocity of energy propagation. Waves in inelastic media are also 
dispersive, but they lose energy as they propagate, and consequently 
the relationship between the various velocities is not so simple or 
meaningful as for elastic media (Mavko et al., 2009, pp. 83-86).  

An arbitrary wave can be thought of as being composed of a 
superposition of a (possibly infinite) number of waves, each with its own 
frequency and amplitude. Mathematically, this is accomplished by the 
Fourier transform (Bracewell, 1986). Given a time-varying function     

€ 

f (t), 
its Fourier transform     

€ 

F(ω) can be defined as 

    

€ 

F(ω) = f (t)e−iωt

−∞

∞
∫ dt  .         (17) 

Other notations for the Fourier transform of     

€ 

f (t) are     

€ 

f ∗(ω) or )(ˆ ωf . The 
mathematical conditions under which the integral in (17) exists are 
discussed by Bracewell (1986). In practice, a Fourier transform exists for 
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all waveforms arising in wave propagation in rocks, in the laboratory or 
the field. The function     

€ 

F(ω) can be thought of as representing that 
portion of the total wave     

€ 

f (t) that has frequency ω. This is seen from the 
Fourier inversion integral, in which the function     

€ 

f (t) is represented as a 
superposition of the various “components”     

€ 

F(ω): 

    

€ 

f (t) =
1

2π
F(ω)eiωt

−∞

∞
∫ dω  .       (18) 

A more symmetric form of these relationships is obtained by utilising the 
cyclic frequency,   

€ 

ω = 2πν . A change of variables applied to (17) and (18) 
shows that the Fourier transform can also be defined as follows:  

    

€ 

F(ν) = f (t)e−2πiνt

−∞

∞
∫ dt , f (t) = F(ν)e2πiνt

−∞

∞
∫ dν  .   (19) 

Fourier transforms are useful in solving wave propagation problems 
(Miklowitz, 1978), and are ubiquitous in the analysis of seismic data 
(Berkhout, 1987).  
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4. Equations of Elastodynamics 
In previous sections, we assumed knowledge of the simple one-
dimensional definitions of stress, strain, and Hooke’s law. But in order to 
derive the partial differential equations that govern three-dimensional 
seismic wave propagation in rocks, we must define and discuss the 
concepts of stress and strain in more detail. Stress and strain are related 
to each other by constitutive relations, specifically, Hooke’s law of linear 
elasticity. Combination of Newton’s law of motion and Hooke’s law then 
leads to the equations of elastodynamics, which are the equations that 
govern seismic wave propagation. 

4.1. Stress 
The concept of stress was introduced by the French civil engineer and 
mathematician Cauchy in 1823. The concept of stress is a generalisation 
of the concept of pressure in a fluid. When a static fluid is at rest and in 
contact with a solid, the fluid will exert a compressive force on the 
surface, and this force will act normal to the surface. The force per unit 
area is defined as the pressure, and it has units of Newtons per square 
meter, which are also known as Pascals. For reference, note that 
standard atmospheric pressure is 101,325 Pa, and 1 psi = 6895 Pa. If a 
fluid is under pressure, it will not only exert a pressure on the walls of 
any container that encloses it, but it will also exert a pressure on any 
imaginary surface within the fluid. [In these notes we will discuss stress 
and strain only as far as necessary to be able to derive the equations of 
elastodynamics. A more detailed discussion of stress and strain can be 
found in Fundamentals of Rock Mechanics by Jaeger et al. (2007).]  

Consider an infinitesimally small cubical piece of rock, as in Fig. 4.1 
below. It may be thought of as a small laboratory specimen, or a cubical 
region that is part of a larger rock mass, in which case the outer surface 
is an imaginary surface. An arbitrary force may act on each of the six 
faces of the cube. Since the cube is small, we can assume that each of 
these forces is uniformly distributed across the face on which it acts. 

We set up a Cartesian co-ordinate system aligned with the axes of the 
cube. Consider the face whose outward unit normal vector lies along the 
positive x-axis. The force that acts on this surface has components 
{fx,fy,fz}. If we divide each of these force components by the area of the 
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surface, dydz, we will convert the forces into stress components, which 
we label as {τxx, τxy, τxz}.  

In this notation, the first subscript denotes the fact that this surface is 
normal to the x-direction, and the second subscript indicates the 
direction of the force component. The stresses with matching subscripts 
are normal stresses, because they represent stresses that act normal to 
the surface. Stresses with un-matched subscripts are shear stresses, 
which act tangentially to the surface.  

 

Fig. 4.1. Small cube of rock showing the stress components that act on 
the three faces that face rightwards (x), upwards (z), and forward (z). 
Similar stresses act on the three hidden faces. The arrows point in the 
directions that nominally correspond to positive values of stress.  

Since there are six faces of the cube, and three force components acting 
on each face, it might seem that there would be eighteen different stress 
components. But Cauchy showed that the stress components that act on 
the face that faces the +x direction must be equal to the stress 
components that act on the opposite face that faces the –x direction. 
This fact follows from a simple force balance on the cube. So, there are 
really only nine stress components, and they form the stress matrix, 
which is denoted by τ , and which can be written as 

  

€ 

τ =

τ xx τ xy τ xz
τ yx τ yy τ yz
τ zx τ zy τ zz

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
            (1) 
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Cauchy also showed, by taking a moment balance on the small cube of 
rock, that   

€ 

τ xy = τ yx ,   

€ 

τ xz = τ zx , and   

€ 

τ zy = τ yz. Hence, the stress matrix 
is always symmetric, and there are really only six independent stress 
components at any point the rock. Note that the result   

€ 

τ xy = τ yx  holds at 
a given point; there is no reason that the value of   

€ 

τ xy  at one point 
should equal   

€ 

τ yx  at some other point, for example. 

Now let’s consider a cubical element of rock that is not infinitesimally 
small, and not necessarily in static equilibrium. In this case, the stresses 
that act on the surface of the cube that faces the +x direction will not 
necessarily be equal to the stresses that act on the surface that faces 
the -x direction. Any imbalance in these stresses will in fact cause the 
rock to accelerate. The relation between the spatial variation in stresses, 
and the acceleration, can be found by doing a force balance on the cube 
of rock. 

According to Newton’s law of motion, the net force acting on the cube in 
the x-direction will equal the product of the mass of this cube times the 
acceleration of the cube. To keep the drawings and algebra simple, we 
will consider a two-dimensional version of this problem; the 
generalisation to three dimensions will be obvious.  

Consider a small cube of rock having side lengths {dx,dy,dz}, with a 
Cartesian co-ordinate system aligned with the edges of the cube, as in 
Fig. 4.2 below. The dimension dz is into the page, and so is not explicitly 
shown. In the figure, each arrow points in the direction that corresponds 
to the direction of positive stresses.  
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Fig. 4.2. Small cube of rock showing the stress components that act on 
four of its faces. The stress components acting at A are not necessarily 
equal to the stress components acting at C. The arrows point in the 
directions that nominally correspond to positive values of stress.  

Let’s now do a force balance in the x-direction. First, consider the face 
on the left. Only the stress τxx acts in the x-direction. Although this stress 
may vary from point to point, the best estimate of its average value 
would be given by its value at point A, which is to say, at (x = 0, y = 
dy/2). If we convert the stress to a force by multiplying by area, we have 
a force component τxx(0,dy/2)dydz. If we add up all the forces that act in 
the x-direction, we find 

    

€ 

Fx =∑ τ xx (0,dy / 2)dydz − τ xx (dx,dy / 2)dydz

       + τ yx (dx / 2,0)dxdz − τ yx (dx / 2,dy)dxdz.
           (2) 

If we do a Taylor series on the term τxx(dx,dy/2), we can say that  

    

€ 

τ xx (dx,dy / 2) = τ xx (0,dy / 2)+
∂τ xx
∂x

(0,dy / 2)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dx + ...  (3) 

Similarly, the term τyx(dx/2,dy) can be expressed as  
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€ 

τ yx (dx / 2,dy) = τ yx (dx / 2,0)+
∂τ yx
∂y

(dx / 2,0)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dy + ...    (4) 

Substituting expressions (3) and (4) into eq. (2) yields 

    

€ 

Fx =∑ −
∂τ xx
∂x

(0,dy / 2)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dxdydz −

∂τ yx
∂y

(dx / 2,0)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dxdydz .       (5) 

By Newton’s law, this must equal the product of the mass of the cube, 
which is ρdxdydz, and its acceleration in the x-direction, which is 
    

€ 

−(∂2u /∂t2), where u is the x-component of the displacement. The 
peculiar minus sign arises from the “compression is positive” sign 
convention used in rock mechanics. In order to be consistent with that 
convention as used for stresses, the displacement must be considered 
positive if the rock moves in the negative x-direction. So, equating the 
net force to the mass × acceleration leads to  

    

€ 

−
∂τ xx
∂x

(0,dy / 2)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dxdydz −

∂τ yx
∂y

(dx / 2,0)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dxdydz = −ρdxdydz∂

2u
∂t2

.    (6) 

The acceleration in (6) must be the average value over the entire small 
cube; the most appropriate place to evaluate it would be at the centre of 
the cube, i.e., at the point (dx/2, dy/2, dz/2). 

If we cancel out the minus signs and the volume term dxdydz, we have 

    

€ 

∂τ xx
∂x

(0,dy / 2)+
∂τ yx
∂y

(dx / 2,0) = ρ
∂2u
∂t2

(dx / 2,dy / 2,dz / 2).      (7) 

The last step in this derivation is to note that since dx and dy are small, 
    

€ 

(∂τ xx /∂x) evaluated at the point     

€ 

(0,dy / 2) is equal (to first order) to 
    

€ 

(∂τ xx /∂x) evaluated at the point   

€ 

(0,0). Likewise for the other terms. 
Hence, we can actually evaluate all the derivatives in (7) at the point 
(0,0,0). But the location of our origin was arbitrary, so the result actually 
holds at any point:  

    

€ 

∂τ xx
∂x

+
∂τ yx
∂y

= ρ
∂2u
∂t2

.               (8) 
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If we had taken into account the two faces of the cube that are parallel to 
the page, we would also find a term     

€ 

∂τ zx /∂z . So, the equation of motion 
in the x-direction is  

    

€ 

∂τ xx
∂x

+
∂τ yx
∂y

+
∂τ zx
∂z

= ρ
∂2u
∂t2

.         (9) 

Likewise, the equations of motion in the other two directions are 

    

€ 

∂τ xy
∂x

+
∂τ yy
∂y

+
∂τ zy
∂z

= ρ
∂2v
∂t2

.       (10) 

    

€ 

∂τ xz
∂x

+
∂τ yz
∂y

+
∂τ zz
∂z

= ρ
∂2w
∂t2

,       (11) 

where v and w are the displacement components in the y and z 
directions. Note that when writing these equations, we haven’t made use 
of the facts that   

€ 

τ xz = τ zx, etc. So, there are really only six independent 
stresses appearing in these equations, not nine. 

Most of the steps in the above derivation involved approximations, so it 
might seem that the results are only approximately true. However, if we 
had consistently applied Taylor series to all terms, and then let dx, dy 
and dz all get very small, we would have found that the resulting 
equations (9-11) are exact.  

A much shorter derivation that involves no seemingly arbitrary 
approximations is given in Fundamentals of Rock Mechanics by Jaeger 
et al. (2007). However, that derivation requires some properties of the 
stress matrix that we have not covered in this course, and also makes 
use of the divergence theorem, which might not be familiar.  

Note that eqs. (9-11) are a set of three equations, containing nine 
unknowns: six stresses and three displacements. In order to solve these 
equations, we therefore need to find more equations. These equations 
are found by relating the stresses to the displacements, which requires 
first that we introduce the concept of strain. 
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4.2. Displacement and Strain 
In rock mechanics, as in the mechanics of particles and rigid bodies, the 
fundamental kinematic variable is the displacement, which is the vector 
that quantifies the change in the position of a given particle of rock. The 
position of each rock particle can be labelled by its location, relative to 
some coordinate system, in some state that is taken to be the “initial” 
state of the rock. This position can be denoted by       

€ 

x = (x,y,z). If a load is 
applied to the rock, or a stress wave passes through the rock, then the 
rock particle that was initially located at point x will be displaced to a new 
position,       

€ 

x* = (x*,y*,z*). The vector that connects the original position x 
and the final position     

€ 

x *  is known as the “displacement of the particle 
that was initially at point x”, or simply the “displacement at x”. This vector 
is denoted in vector notation by u, and its components are     

€ 

(u,v,w). To be 
consistent with the sign convention used for tractions, in which a traction 
component is represented by a positive number if it points in the 
negative coordinate direction, the displacement vector must be defined 
according to 

      

€ 

x* = x −u, i.e., x* = x −u, y* = y −v, z* = z −w .          1) 

The displacement u can be interpreted as a vector that points from the 
new position, x*, towards the original position, x (Fig. 4.3). In general, 
the displacement will vary from point to point, so that each component 
    

€ 

(u,v,w) will vary with all three position coordinates, x, y, and z. 

 

O 

P 

P’ 
x 

x* 

u 

(a)  

 

x x + Δx x - u(x) x + Δx - u(x+Δx) 

(b)  
Fig. 4.3. (a) Displacement vector u of the piece of rock that is initially 
located at point x. (b) Generic displacement of a one-dimensional bar, 
used to define the normal strain. 

Ultimately, we need to relate the stresses to the displacements. But to 
do this, it is first necessary to introduce a set of intermediate quantities 
known as the strains. Strain is essentially a measure of the relative 
displacement of nearby particles, rather than a measure of their absolute 
displacement.  
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The basic concept behind the strain can be introduced in a one-
dimensional context (Fig. 4.3b). Consider a short one-dimensional bar, 
initially of length L, whose left edge is initially located at point x, and 
whose right edge is located at point   

€ 

x + Δx . The initial length of this bar 
is given by   

€ 

L = Δx . This bar is now assumed to be deformed, such that 
the left edge of the bar moves to the location     

€ 

x −u(x), and the right edge 
of the bar moves to the position     

€ 

[x + Δx]−u(x + Δx). The new length of 
the bar is therefore equal to     

€ 

L* = {[x + Δx]−u(x + Δx)} − [x −u(x)]. We now 
define the mean strain undergone by this bar as the fractional decrease 
in the length of the bar, i.e., 

    

€ 

ε =
L −L *

L
=
Δx − {[x + Δx]−u(x + Δx)− [x −u(x)]}

Δx
=

u(x + Δx)−u(x)
Δx

.   (2) 

According to this definition, the strain will be a positive number if the bar 
becomes shorter, and vice versa. Hence, positive strains represent 
contractions, and negative strains represent extensions.  

Eq. (2) gives the mean strain over the region between x and   

€ 

x + Δx . The 
strain at the point x is found by taking the limit of an infinitesimally short 
bar, which is mathematically equivalent to letting the initial length of the 
bar go to zero: 

    

€ 

ε(x) = lim
L→0

L −L *
L

= lim
Δx→0

u(x + Δx)−u(x)
Δx

≡
du
dx

.         (3) 

The strain is therefore defined in terms of the spatial derivative of the 
displacement.   

The type of strain described above, which is called a normal strain, can 
be generalised in an obvious way to two or three dimensions. However, 
in two or more dimensions there are other types of strains, called the 
shear strains, which measure angular distortion, rather than stretching. 
Together, the normal and shear strains form a second-order tensor, 
mathematically analogous to the stress tensor.  

Consider a particle in a “two-dimensional” rock that is initially located at 
point     

€ 

P = (x,y), as in Fig. 4.4. Now consider a second particle that is 
initially located at     

€ 

Q = (x + Δx,y), and a third particle located at 
    

€ 

R = (x,y + Δx). The rock is then assume to be deformed, such that these 
three particles move to positions P*, Q*, and R*. The coordinates of 
these new locations are 



MSc in Petroleum Geophysics            Seismic Rock Physics                   RW Zimmerman                  Page 26 
   
 

  
Imperial College London                                                          Department of Earth Science and Engineering 

 

 

      

€ 

P* = P −u(P) = (x,y)− [u(x,y),v(x,y)]    

€ 

= [x −u(x,y),y −v(x,y)],    (4) 

      

€ 

Q* = Q −u(Q) = (x + Δx,y)− [u(x + Δx,y),v(x + Δx,y)]

                = [x + Δx −u(x + Δx,y),y −v(x + Δx,y)],
                 (5) 

      

€ 

R* = R −u(R) = (x,y + Δy)− [u(x,y + Δy),v(x,y + Δy)]

                    = [x −u(x,y + Δy),y + Δy −v(x,y + Δy)].
          (6) 

Also shown in Fig. 4.4 are the points   

€ 

ʹ′ ʹ′ Q , which is the projection of point 
Q* onto an x-axis that passes through point P*, and   

€ 

ʹ′ ʹ′ R , which is the 
projection of point R* onto a y-axis that passes through point P*. For 
example,   

€ 

ʹ′ ʹ′ Q  will have the same x-component as Q*, and the same y-
component as P*, and likewise for   

€ 

ʹ′ ʹ′ R . 

x

y
α

P Q

R

R*R”

Q*

Q”
β

P*

 
Fig. 4.4. Displacement of two small line segments PQ and PR that are 
initially at right angles to each other. 

We now express each of the displacements that appear in (4)-(6) as 
Taylor series taken about the point (x,y). As the increments   

€ 

Δx and   

€ 

Δy  
are infinitesimally small, all terms in the Taylor series higher than the 
first-order terms can be ignored. For example, we can say that 
    

€ 

u(x,y + Δy) = u(x,y)+ (∂u /∂y)Δy , etc., where the partial derivative is 
understood to be evaluated at (x,y). The positions of the five points 
shown in Fig. 4.4 can therefore be expressed as 

    

€ 

P* = (x −u,y −v),           (7) 

    

€ 

Q* = (x + Δx −u − ∂u
∂x

Δx, y −v − ∂v
∂x
Δx),        (8) 

    

€ 

R* = (x −u − ∂u
∂y

Δy, y + Δy −v − ∂v
∂y

Δy)                    (9) 
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€ 

ʹ′ ʹ′ Q = (x + Δx −u − ∂u
∂x

Δx, y −v),             (10) 

    

€ 

ʹ′ ʹ′ R = (x −u, y + Δy −v − ∂v
∂y

Δy),      (11) 

where it is understood that u, v, and all of their partial derivatives are 
evaluated at the point (x,y). 

The normal strain in the x direction, which is denoted by   

€ 

εxx, is now 
defined, as previously, as the fractional shortening of a line element that 
is initially oriented along the x-axis. In other words, the strain   

€ 

εxx at point 
(x,y) is equal to the fractional contraction undergone by the element PQ, 
in the limit as     

€ 

Δx → 0. Initially, the length of element PQ, which we 
denote by |PQ|, is   

€ 

Δx. After deformation, the length |P*Q*| is found using 
the Pythagorean theorem: 

    

€ 

| P * Q* |2= | P * ʹ′ ʹ′ Q |2 + |Q * ʹ′ ʹ′ Q |2 
    

€ 

= Δx − ∂u
∂x

Δx
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
+
∂v
∂x
Δx

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
 

    

€ 

= (Δx)2 1−2∂u
∂x

+
∂u
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
+
∂v
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
.                  (12) 

The crucial assumption is now made that all partial derivatives of the 
displacements are much smaller than unity, which is equivalent to 
assuming that the displacements not to vary too abruptly from point to 
point. This assumption leads to the theory of infinitesimal strain, within 
which theory the strains are linear functions of the partial derivatives of 
the displacement components. This assumption is usually acceptable in 
seismic wave propagation problems, and also has the advantage of 
leading to a set of mathematically linear equations that are solvable by 
classical techniques. 

Under the assumption that the partial derivatives of the displacement are 
small, we can neglect the squares of these derivatives in (12), and use 
the approximation that   

€ 

(1−2δ)1/ 2 ≈ 1−δ  when   

€ 

δ << 1, to find 

    

€ 

| P * Q* |= Δx 1− ∂u
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .          (13) 
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Hence, the normal strain in the x-direction at the point (x,y) is given by 

    

€ 

εxx = lim
Δx→0

| PQ | − | P * Q* |
| PQ |

= lim
Δx→0

Δx −Δx(1−∂u /∂x)
Δx

=
∂u
∂x

.       (14) 

A similar analysis shows that the normal strain in the y-direction,   

€ 

εyy , is 
given by 

    

€ 

εyy = lim
Δx→0

| PR | − | P * R* |
| PR |

= lim
Δx→0

Δy −Δy(1−∂v /∂y)
Δy

=
∂v
∂y

.      (15) 

There are other types of distortion, other than stretching or contraction, 
that can also be quantified. Fig. 4.4 shows that the three points {P,Q,R} 
initially form a right angle, but, in the case shown, form an acute angle 
after deformation. The change in this angle is known as the shear strain. 
Specifically, the shear strain   

€ 

εxy  is defined as one-half of the increase in 
the angle initially formed by two perpendicular infinitesimal line 
segments that initially lie parallel to the x and y axes, i.e.,  

    

€ 

εxy =
1
2

lim
Δx,Δy→0

∠R * P * Q * −∠RPQ( ).      (16) 

From Fig. 4.4 we see that       

€ 

∠R * P * Q* = 90 −α −β , whereas 
      

€ 

∠RPQ = 90, by construction. The angle α is calculated from 

    

€ 

tanα =
| R * ʹ′ ʹ′ R |
| P * ʹ′ ʹ′ R |

=

−
∂u
∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Δy

Δy 1− ∂v
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

≈ −
∂u
∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,      (17) 

where, due to the smallness of the partial derivatives, we ignore the term 
    

€ 

∂v /∂y  in the denominator. But the smallness of the partial derivatives 
also allows us to approximate the angle α by   

€ 

tanα , so that     

€ 

α = −(∂u /∂y). 
Similarly, it can be shown that     

€ 

β = −(∂v /∂x). Combining these results 
with (16) leads to 

    

€ 

εxy =
1
2
∂u
∂y

+
∂v
∂x

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ .          (18) 

The pattern embodied in (18) is that the shear strain   

€ 

εxy  is equal to the 
mean of the partial derivative of the displacement in the x direction with 
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respect to y, and the partial derivative of the displacement in the y 
direction with respect to x. By this definition, we see that if a shear strain 
  

€ 

εyx is defined, it will necessarily be equal to   

€ 

εxy .  

These four strains,     

€ 

{εxx ,εyy ,εxy ,εyx } , can be thought of as the four 
components of the strain matrix, 

€ 

ε : 

    

€ 

ε =
εxx εxy
εyx εyy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

∂u
∂x

1
2
∂u
∂y

+
∂v
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
2
∂v
∂x

+
∂u
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

∂v
∂y

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

.      (19) 

The strain matrix is equal to the symmetric part of a matrix that is known 
as the displacement gradient,   

€ 

∇u, whose components are the partial 
derivatives of the displacements with respect to the two coordinates, i.e.,  

    

€ 

ε = sym(∇u) ≡ 1
2
∇u + (∇u)T[ ],       (20) 

where 

    

€ 

∇u =

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

.           (21) 

The displacement gradient, and hence also the strain, is a second-order 
tensor. 

It is clear from (20) that any deformation whose displacement gradient is 
anti-symmetric will lead to zero infinitesimal strain. One such type of 
deformation is an infinitesimal rigid-body rotation. To verify this, consider 
a rigid rotation of the rock in the anti-clockwise direction, by some small 
angle 

€ 

ϕ . This rigid-body rotation is described by 

    

€ 

x* = xcosϕ − y sinϕ, y* = xsinϕ + y cosϕ .     (22) 

The coordinates (x*,y*) are the coordinates of the particle that was 
originally located at (x,y), after the rock has been rotated, but still 
referred to the original coordinate system. Since   

€ 

x* = x −u, the 
displacement components are given by 
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€ 

u = x − x* = x(1− cosϕ)+ y sinϕ ,       (23) 

    

€ 

v = y − y* = −xsinϕ + y(1− cosϕ).      (24) 

The displacement gradient can be calculated as 

      

€ 

∇u =

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

=
1− cosϕ sinϕ
−sinϕ 1− cosϕ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .         (25) 

As the angle of rotation is small, we can expand out the trigonometric 
terms in Taylor series, and ignore all terms that are higher than first-
order in 

€ 

ϕ , yielding 

    

€ 

∇u =
0 ϕ

−ϕ 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .          (26) 

The displacement gradient corresponding to an infinitesimal rigid-body 
rotation is therefore anti-symmetric, in the sense that     

€ 

(∇u)T = −(∇u). 
This type of rotation leads to no strain, since       

€ 

2ε = [(∇u)+ (∇u)T ] = 0 .  

The above analysis applied to a rigid-body rotation of the entire rock. But 
for a general deformation that varies from point to point, we can, at each 
point, define a local tensor 

€ 

ω  as the anti-symmetric part of the 
displacement gradient, i.e., 

      

€ 

ω = asym(∇u) ≡ 1
2
∇u− (∇u)T[ ] =

0 1
2
∂u
∂y

−
∂v
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−
1
2
∂u
∂y

−
∂v
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

,         (27) 

in which case it follows from (20) and (27) that   

€ 

∇u = ε +ω .   

The definitions of the strain components in three dimensions follow 
exactly as for two-dimensions. The formal relations between ε , ω  and 
  

€ 

∇u given by (20) and (27) continue to hold, where   

€ 

∇u, as defined by 
(21), is generalised in an obvious way into a 3×3 matrix. The explicit 
definitions of the strains in terms of the displacement derivatives are: 
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€ 

εxx =
∂u
∂x

, εyy =
∂v
∂y

, εzz =
∂w
∂z

,           (28) 

    

€ 

εxy =
1
2
∂u
∂y

+
∂v
∂x

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ , εyz =

1
2
∂v
∂z

+
∂w
∂y

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ , εzx =

1
2
∂w
∂x

+
∂u
∂z

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ,          (29) 

with   

€ 

εxy = εyx ,   

€ 

εyz = εzy , and   

€ 

εzx = εxz . 

4.3. Hooke’s Law 
Eqs. §4.1(9-11) are equations of motion expressed in terms of the 
stresses and the displacements. Eqs. §4.3(19,20) relate the 
displacements to the strains. Ultimately, we would like to eliminate the 
stresses from the equation of motion, and express this equation solely in 
terms of the displacement. In order to do this, the stresses and strains 
must be related to each other by a constitutive law. The simplest type of 
constitutive law is that of linear elasticity, in which the strains are linear 
functions of the stress, and do not depend on the stress rate, or on the 
previous stress path, etc. This type of stress-strain law is often called 
“Hooke’s law”, and is the one used in most seismic analysis. 

The precise form of Hooke’s law depends on the structure of the rock, 
and whether it contains bedding planes, fractures, etc. Instead of 
discussing the most general possible case, we will focus on the simplest 
and most common one: an isotropic rock. An isotropic solid can be 
loosely defined as one in which all directions are “equivalent”. For 
example, in an isotropic rock, if we take a core oriented vertically, and a 
core that was oriented horizontally, and compress these two cores in a 
rock testing machine, we would obtain the same results.  

We first consider the effect of a normal stress. Imagine that we have a 
cylindrical core of rock having radius a, and height L. We now subject 
this rock column to an axial stress τ, as in Fig. 4.5. 
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Fig. 4.5. A cylindrical rock specimen subject to a uniaxial compressive 
stress will contract in the direction of the load, and will expand in the two 
transverse directions.  

In response to the axial stress, the rock core will get shorter, and will 
bulge outwards, as shown on the right. The fact that the core will bulge 
outward may not be obvious, but you can convince yourself that it occurs 
by doing this experiment using a rubber eraser. 

The ratio between the axial stress and axial strain is called Young’s 
modulus, E (named after Thomas Young, one of the scientists who 
derived the Young-Laplace equation of capillarity): 

  

€ 

E =
τaxial
εaxial

.           (1) 

For most rocks, E lies between 10-100 GPa. 

The outward bulging of the core is quantified by the Poisson ratio, which 
is usually denoted by ν, as follows: 

  

€ 

ν =
-εtransverse
εaxial

.          (2) 

For natural materials, the Poisson ratio always lies between 0 (i.e., cork) 
and 0.5 (i.e., rubber), but is usually between 0.1-0.3 for rocks. 

If we combine (1) and (2), we see that the transverse strain is related to 
the axial stress by  
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€ 

εtransverse = −νεaxial =
−ν
E
τaxial .       (3) 

Now imagine that a piece of rock is subjected to three orthogonal 
stresses,     

€ 

{τ xx ,τ yy ,τ zz } . Let’s try to find the strain   

€ 

εxx  that would be 
caused by these stresses. From (1), we see that   

€ 

τ xx  will cause a strain 
of     

€ 

εxx = τ xx / E , whereas each of the two “transverse” stresses   

€ 

τ yy  and 

  

€ 

τ zz  will give rise to a strain     

€ 

εxx = −ντ yy / E , and similarly for   

€ 

τ zz . Adding 
these strains together gives a total strain of  

    

€ 

εxx =
1
E
τ xx −

ν
E
τ yy −

ν
E
τ zz =

1
E

[τ xx −ν(τ yy + τ zz )].   (4) 

The main idea here is that a normal stress τ causes a normal strain of 
τ /E in the direction of the stress, and normal strains of –ντ /E in the two 
other directions.   

Using these ideas, we can write similar equations for the strains in the 
other two directions:  

    

€ 

εyy =
1
E
τ yy −

ν
E
τ xx −

ν
E
τ zz =

1
E

[τ yy −ν(τ xx + τ zz )],   (5) 

    

€ 

εzz =
1
E
τ zz −

ν
E
τ xx −

ν
E
τ yy =

1
E

[τ zz −ν(τ xx + τ yy )],   (6) 

Now let’s think about the effect of a shear stress. Imagine a cube of rock, 
subjected to tangential “shear” stresses τxy, as in the figure below. In 
response to this stress, the rock will be distorted, as shown on the right: 

τxy

τxy

τxy

τxy
ψ

τxy

τxy

τxy

τxy

α
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Fig. 4.6. A cubical rock specimen subject to a shear stress (left) will 
deform into the shape shown on the right. (Note that, according to our 
sign convention, the shear stresses shown here are negative). 

The shear modulus, G, is the ratio of the amount of distortion, as 
measured by the angle of distortion α, to the applied shear stress, τ, as 
follows: 

τ
α21

=
G

.             (7) 

But according to the discussion in §4.3, α is equal to the shear strain, εxy. 
Hence,     

€ 

εxy = τ xy / 2G . (The appearance of the factor of 2 arises from the 
fact that before tensors were invented, the shear strains were originally 
defined without the factor of 1/2, in which case (7) took the more obvious 
form     

€ 

ε = τ /G). 

A normal stress will not cause the type of angular distortion shown in  
Fig. 4.6, and so there is no coupling between normal stresses and shear 
strains. So, in general, (4)-(6) are not affected by the presence of shear 
stresses, and the full expression of Hooke’s law for an isotropic material 
consists of (4)-(6) along with the following equations for the shear 
stresses/strains: 

      

€ 

εxy =
τ xy
2G

, εyz =
τ yz
2G

, εzx =
τzx
2G

.      (8) 

The shear modulus G is related to E and ν by     

€ 

G = E/ 2(1+ ν), although 
this relation is not easy to derive without using concepts that we will not 
cover in this module (see Jaeger et al., 2007). 

If we invert (4)-(6) to express the normal stresses in terms of the strains, 
we find: 

    

€ 

τ xx =
E(1−ν)

(1+ ν)(1−2ν)
εxx +

νE
(1+ ν)(1−2ν)

εyy +
νE

(1+ ν)(1−2ν)
εzz,      (9) 

    

€ 

τ yy =
νE

(1+ ν)(1−2ν)
εxx +

E(1−ν)
(1+ ν)(1−2ν)

εyy +
νE

(1+ ν)(1−2ν)
εzz,     (10) 
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€ 

τ zz =
νE

(1+ ν)(1−2ν)
εxx +

νE
(1+ ν)(1−2ν)

εyy +
E(1−ν)

(1+ ν)(1−2ν)
εzz.     (11) 

The full inverse version of Hooke’s law, including the normal strains and 
shear strains, is often written in the following simpler notation: 

    

€ 

τ xx = (λ + 2G)εxx + λεyy + λεzz,        (12) 

    

€ 

τ yy = λεxx + (λ + 2G)εyy + λεzz ,        (13) 

    

€ 

τ zz = λεxx + λεyy + (λ + 2G)εzz ,        (14) 

    

€ 

τ xy = 2Gεxy , τ xz = 2Gεxz, τ yz = 2Gεyz ,    (15) 

where     

€ 

λ = Eν /(1+ ν)(1−2ν). The two elastic moduli appearing in (12)-
(15), λ and G, are also known as the Lamé parameters, named after the 
French elastician Gabriel Lamé. The parameter G is often denoted, 
particularly in mathematical elasticity treatments, by the symbol µ (note 
that λ and µ are the two Greek consonants in the name Lamé). In order 
to avoid confusion with the coefficient of friction, in rock mechanics the 
shear modulus is usually denoted by G. Although E and ν have a clearer 
physical interpretation, the mathematical development of the equations 
of elastodynamics is notationally simpler if we use λ and G instead of E 
and ν. 

The mean normal stress can be found by summing up (12)-(14): 

    

€ 

τm =
1
3

(τ xx + τ yy + τ zz ) = [λ + (2 / 3)G](εxx + εyy + εzz ).     (16) 

But the sum of the three normal strains is the volumetric strain, εv, so we 
see that the volumetric strain is related to the mean normal stress by 

    

€ 

τm = (λ + 2
3

G)εv ≡ Kεv ,          (17) 

where K = λ + (2/3)G is the bulk modulus. The multiplicative reciprocal of 
the bulk modulus, 1/K, is known as the bulk compressibility, and is 
usually denoted by either β or C. 

Although many elastic parameters can be defined for an isotropic 
material, only two of them are independent. A full listing of all thirty 
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relations that can be obtained by expressing any three of the set 
{λ,K,G,E,ν} in terms of the other two is given by Davis and Selvadurai 
(1996). Some of the more useful of these relations are 

    

€ 

λ =
Eν

(1+ ν)(1−2ν)
, G =

E
2(1+ ν)

, K =
E

3(1−2ν)
;   (18) 

    

€ 

λ =
2Gν

(1−2ν)
, E = 2G(1+ ν), K =

2G(1+ ν)
3(1−2ν)

;   (19) 

    

€ 

λ = K −
2
3

G, E =
9KG

3K + G
, ν =

3K −2G
6K + 2G

.    (20) 

In 1829 the French mathematical physicist Simeon Denis Poisson 
developed a simplified model for atomic interactions in an elastic solid, 
and concluded that   

€ 

λ =G. If this were the case, then we would also have 

K = 5G/3,   E = 5G/2,   ν = 1/4.      (21) 

The approximation   

€ 

λ =G, known as “Poisson’s relation”, is actually not 
very accurate for most rocks. In fact, Poisson’s ratio takes on a range of 
values for different rocks, usually in the range 0.1-0.3. Nevertheless, 
Poisson’s relation is sometimes used in geophysics to simplify the 
equations of elasticity. However, the difficulties in solving elasticity 
problems are not caused by the appearance of two elastic parameters in 
the equations, but rather are due to the structure of the differential 
equations themselves. Hence, any advantages gained by putting   

€ 

λ =G 
are outweighed by the resulting loss in generality. 

Another particular case of an idealized isotropic elastic material is the 
incompressible solid, which has   

€ 

β = 0, and hence     

€ 

K = 1/β → ∞. For such 
materials, (19) and (20) show that  

    

€ 

K →∞, λ → ∞, E → 3G, ν → 1/ 2,         (22) 

whereas E and G can remain finite. A completely rigid material, on the 
other hand, is not only incompressible, but also has infinite values of E 
and G.  
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The special case of a compressible fluid is that in which the shear 
modulus vanishes, but the bulk modulus remains finite. In this case (18)-
(20) show that 

    

€ 

G → 0, ν → 1/ 2, E → 0, λ = K .    (23) 

4.4. Equations of elastodynamics for an isotropic rock  
We are now ready to combine some of the equations that we have 
derived, to arrive at the equations of elastodynamics. First, if we 
substitute the strain-displacement equations, §4.2 (28) and (29), into the 
stress-strain equations, §4.3 (12)-(14), we find 

    

€ 

τ xx = (λ + 2G)∂u
∂x

+ λ
∂v
∂y

+ λ
∂w
∂z

,       (1) 

    

€ 

τ yy = λ
∂u
∂x

+ (λ + 2G)∂v
∂y

+ λ
∂w
∂z

,       (2) 

    

€ 

τ zz = λ
∂u
∂x

+ λ
∂v
∂y

+ (λ + 2G)∂w
∂z

.       (3) 

    

€ 

τ xy = G ∂u
∂y

+
∂v
∂x

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ , τ yz = G ∂v

∂z
+
∂w
∂y

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ , τ zx = G ∂w

∂x
+
∂u
∂z

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ .    (4) 

We now substitute these relations into the stress equilibrium equations, 
§4.1 (9)-(11), to arrive at   

    

€ 

λ
∂2u
∂x2

+
∂2v
∂x∂y

+
∂2w
∂x∂z

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + G ∂2u

∂x2
+
∂2v
∂x∂y

+
∂2w
∂x∂z

+
∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = ρ

∂2u
∂t2

,  

(5) 

    

€ 

λ
∂2u
∂y∂x

+
∂2v
∂y2

+
∂2w
∂y∂z

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + G ∂2u

∂y∂x
+
∂2v
∂y2

+
∂2w
∂y∂z

+
∂2v
∂x2

+
∂2v
∂y2

+
∂2v
∂z2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = ρ

∂2v
∂t2

,  

(6) 
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€ 

λ
∂2u
∂z∂x

+
∂2v
∂z∂y

+
∂2w
∂z2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + G ∂2u

∂z∂x
+
∂2v
∂z∂y

+
∂2w
∂z2

+
∂2w
∂x2

+
∂2w
∂y2

+
∂2w
∂z2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = ρ

∂2w
∂t2

. 

(7) 

This set of equations comprises three equations in three unknowns, and 
so they constitute a mathematically “complete” set of equations 
governing the motion of the rock. Note that they do not explicitly contain 
the stresses or the strains. 

The displacement form of the equilibrium equations can also be 
expressed in a more compact vector-matrix notation. First, note the 
following two identities: 

      

€ 

∇Tu≡∇ ⋅u≡divu = ∂
∂x

∂
∂y

∂
∂z

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

u
v
w

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
= ∂u
∂x + ∂v

∂y + ∂w
∂z

,     (8) 

    

€ 

∇T∇ ≡∇2 = ∂
∂x

∂
∂y

∂
∂z

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

∂
∂x
∂
∂y
∂
∂z

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

= ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .       (9) 

The Laplacian operator   

€ 

∇2 is a scalar operator that can operate on, by 
pre-multiplication, a scalar or a vector. Using these identities, (5)-(7) can 
be written in the following form: 

      

€ 

(λ + G) ∂
∂x

∇ ⋅u( ) + G∇2u = ρ
∂2u
∂t2

,       (10) 

      

€ 

(λ + G) ∂
∂y

∇ ⋅u( ) + G∇2v = ρ
∂2v
∂t2

,       (11) 

      

€ 

(λ + G) ∂
∂z

∇ ⋅u( ) + G∇2w = ρ
∂2w
∂t2

.      (12) 

From (9) we see that the three partial derivative operators appearing in 
these three equations form the components of the gradient row vector. 
Furthermore,  
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€ 

(∇2u,∇2v,∇2w) = ∇2(u,v,w) = ∇2u.      (13) 

Hence, (10)-(12) can be written as 

uuu ρλ =∇+⋅∇∇+ 2)()( GG .       (14) 

where the superposed dots represent derivatives with respect to time. 
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5. Elastic waves in unbounded media 
In §2 we showed that elastic waves of long wavelength travel through 
thin rods at a speed of     

€ 

c = (E /ρ)1/ 2 . But elastic waves do not travel 
through a large rock mass at this speed. Moreover, we will show below 
that there are two different types of waves that can travel through 
unbounded rocks: transverse (shear) waves and longitudinal 
(compressional) waves.  

Elastic waves in three-dimensional, unbounded, isotropic elastic media 
are governed by the full three-dimensional equations of motion, §4.4 
(14): 

uuu ρλ =∇+⋅∇∇+ 2)()( GG .         (1) 

Let’s assume for now that the solution to (1) is wave-like, as in §2. So we 
consider a planar wave travelling at some (as yet unknown) speed c 
along a direction that is represented by the unit vector n = (nx,ny,nz). 
Such a wave can be represented by 

      

€ 

u = f (x ⋅n− ct)d,          (2) 

where the vector d, which represents the direction of particle motion, is 
taken to be a constant. In the one-dimensional theory of §2, the particle 
displacement must necessarily be in the same direction as the wave 
motion, but this does not have to be the case in three dimensions. We 
will consider the direction of d later. 

First, note that the dot product   

€ 

x ⋅n represents the projection of the 
vector x onto the direction n. The phase variable     

€ 

η = x ⋅n− ct  therefore 
has the same value for all points x that lie on a given plane 
perpendicular to n. So for simplicity, we can consider a point that lies on 
the vector n, i.e.,   

€ 

x = ζn. Along direction n, the phase is equal to 
      

€ 

η = (ζn) ⋅n− ct = ζ − ct , since n is a unit vector. The velocity at which the 
wavefront moves along n is then given, as in §2(8), by 

      

€ 

v(wavefront) =
∂x
∂t
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
η

=
∂(ζn)
∂t

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
η

=
∂ζ
∂t
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
η

n = cn.     (3) 
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Hence, the wave propagates in the n direction, and the parameter c that 
appears in (2) is the phase velocity of this disturbance.  

The time derivatives of u are found by applying the chain rule to (2): 

dnxudnxu )(       ,)( 2 ctfcctfc −⋅ʹ′ʹ′=−⋅ʹ′−=  .         (4) 

The phase of this wave is explicitly given by   

€ 

η = xnx + yny + znz − ct , so 
the spatial derivatives of u are, for example,  

      

€ 

∂u
∂x

= ʹ′ f (x ⋅n− ct)d∂η
∂x

= ʹ′ f (x ⋅n− ct)dnx .      (5) 

Hence, it follows that 

      

€ 

∇ ⋅u = ʹ′ f (η)d ⋅n,             (6) 

      

€ 

∇(∇ ⋅u) = ʹ′ ʹ′ f (η)(d ⋅n)n,         (7) 

      

€ 

∇2u = ʹ′ ʹ′ f (η)d,             (8) 

and (1) reduces to  

      

€ 

[(λ + G)(d ⋅n)n + (G − ρc2)d] ʹ′ ʹ′ f (η) = 0.      (9) 

One obvious solution to this equation is the trivial case     

€ 

ʹ′ ʹ′ f (η) = 0, which 
leads to either a rigid-body motion or a state of uniform strain that is 
independent of time. If we assume that     

€ 

ʹ′ ʹ′ f (η)  ≠ 0, (9) is equivalent to 

      

€ 

(λ + G)(d ⋅n)n + (G − ρc2)d = 0 .       (10) 

Now we must think about the specific direction of the particle motion, 
which is given by d. If d is perpendicular to the direction n of wave 
propagation, then     

€ 

d ⋅n = 0, and (10) can only be satisfied for a non-zero 
vector d if     

€ 

G − ρc2 = 0, i.e., if  

    

€ 

c ≡ cT = G /ρ ,          (11) 

where   

€ 

cT  is the velocity of transverse waves, for which the particle 
motion is transverse to the direction of wave propagation. The direction 
of propagation n is completely arbitrary, as is the amplitude of the 
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particle displacement. Hence, transverse plane waves can travel in any 
direction of an isotropic elastic medium, but can only travel at a speed 
given by (11). This speed is independent of the frequency or wavelength 
of the disturbances, so these waves are non-dispersive.  

If, on the other hand, d is parallel rather than perpendicular to the 
direction of wave propagation, then     

€ 

d = dn, where d is a scalar, and (10) 
reduces to 

      

€ 

(λ + 2G − ρc2)dn = 0,           (12) 

which can only be satisfied by non-zero particle displacement d if  

    

€ 

c ≡ cL = (λ + 2G) /ρ .         (13) 

Longitudinal plane waves, in which the particle velocity is in the same 
direction as the wave propagation, can therefore travel through an 
isotropic elastic medium in any direction, but only at a velocity given by 
(13). These longitudinal waves are also non-dispersive, because   

€ 

cL  
does not vary with frequency.  

Use of relations §4.3 (18)-(20) allows the longitudinal wavespeed to be 
written in the following forms: 

    

€ 

cL =
K + (4G / 3)

ρ
=

(1−ν)E
(1+ ν)(1−2ν)ρ

=
2(1−ν)G
(1−2ν)ρ

,    (14) 

from which it follows that the ratio of the two wavespeeds is 

    

€ 

cL

cT
=

2(1−ν)
(1−2ν)

.          (15) 

In any elastic medium, longitudinal waves travel faster than transverse 
waves. The ratio of the two wavespeeds is   

€ 

2 ≈ 1.41 when   

€ 

ν = 0, 
increases with increasing ν, and becomes unbounded when   

€ 

ν → 0.5. 

Now let’s examine transverse waves more closely. Without loss of 
generality, in an isotropic medium we can take the direction of 
propagation n to be the x-axis, and the direction of the particle 
displacement vector d to be the y-axis. The displacement vector for a 
transverse wave then has the form       

€ 

u = f (x − cTt)dyey, from which it 
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follows that the only non-zero strain component is     

€ 

εxy = ʹ′ f (x − cTt)dy / 2, 
and the non-zero stress is     

€ 

τ xy = G ʹ′ f (x − cTt)dy . A transverse wave is 
therefore a shear wave, because the only non-zero stresses and strains 
in a transverse wave are shear stresses and shear strains. This is also 
consistent with the fact that the shear modulus is the only elastic 
modulus that affects   

€ 

cT .   

Similarly, by proper alignment of the co-ordinate system a longitudinal 
wave can be represented by     

€ 

u = f (x−cLt )dxex , for which the only non-
zero strain component is     

€ 

εxx = ʹ′ f (x−cLt )dx . Hence, a longitudinal wave is 
a wave of uniaxial strain, consistent with the fact that, according to §4.3 
(12),     

€ 

λ + 2G  is the uniaxial strain modulus. However, due to the Poisson 
effect, longitudinal waves are not waves of uniaxial stress, as the normal 
stresses on planes perpendicular to the direction of wave propagation 
must satisfy     

€ 

τ yy = τ zz = ντ xx /(1−ν) in order to maintain a state of 
uniaxial strain. This is in contrast to the situation that occurs when a 
long-wavelength longitudinal wave travels along a thin bar, as in §2. In 
that case, the stress is essentially uniaxial, and the two lateral strains are 
non-zero.  

In geophysics, the transverse wave velocity is usually denoted by   

€ 

Vs , 
and the longitudinal velocity by   

€ 

Vp . The subscript s can be thought of as 
signifying a shear wave, or it can be thought of as signifying a secondary 
wave, as these waves arrive at a receiver later than the faster-moving 
longitudinal waves. The subscript p can similarly be thought of as 
standing for primary wave or pressure wave. These two types of waves 
are usually referred to as P-waves and S-waves. 

The two wave velocities depend on the elastic moduli and density of the 
rock, which in turn depend not only on mineral composition, pore 
structure, fluid properties (see §8 and §10), but also vary with stress, 
temperature, pore pressure, etc. For example, a decrease in pore fluid 
pressure would tend to allow cracks and grain-boundary pores to close 
up, thereby increasing the elastic moduli and the wavespeeds. Given the 
great variability in rock properties, even within the same rock type, it is 
difficult, and not very meaningful, to cite specific values for specific 
rocks. Table 5.1, adapted from Bourbié et al. (1987), gives ranges of 
representative values for several types of rock. 
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Table 5.1. Wavespeeds and densities of various rock types. 

Rock Type   

€ 

Vp  (m/s)   

€ 

Vs  (m/s) ρ (kg/m3) 
Vegetal soil 300-700 100-300 1700-2400 
Dry sands 400-1200 100-500 1500-1700 
Wet sands 1500-2000 400-600 1900-2100 
Saturated shales or clays 1100-2500 200-800 2000-2400 
Marls 2000-3000 750-1500 2100-2600 
Saturated shale/sand 
sections 

1500-2200 500-750 2100-2400 

Porous saturated 
sandstones 

2000-3500 800-1800 2100-2400 

Limestones 3500-6000 2000-3300 2400-2700 
Chalk 2300-2600 1100-1300 1800-2300 
Salt 4500-5500 2500-3100 2100-2300 
Anhydrite 4000-5500 2200-3100 2900-3000 
Dolomite 3500-6500 1900-3600 2500-2900 
Granite 4500-6000 2500-3300 2500-2700 
Basalt 5000-6000 2800-3400 2700-3100 
Gneiss 4400-5200 2700-3200 2500-2700 
Coal 2200-2700 1000-1400 1300-1800 
Water 1450-1500 - 1000 
Ice 3400-3800 1700-1900 900 
Oil 1200-1250 - 600-900 

 
A useful mathematical tool for the analysis of elastodynamic problems is 
the Helmholtz decomposition of the displacement vector into the 
gradient of a scalar potential, 

€ 

ϕ , plus the curl of a vector potential, 

€ 

Ψ  
(Sternberg, 1960): 

    

€ 

u = divϕ + curlΨ = ∇ϕ +∇ ×Ψ .       (16) 

The displacement corresponding to 

€ 

Ψ  is divergence-free, and hence 
has no volumetric strain, and is therefore a state of pure shear. To prove 
this, consider 
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€ 

u = curlΨ ≡ −2asym(∇Ψ ) = (∇Ψ )T −∇Ψ  

    

€ 

=
∂ψz
∂y

−
∂ψy
∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , ∂ψx

∂z
−
∂ψz
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,

∂ψy
∂x

−
∂ψx
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
,        (17) 

from which it readily follows that 

      

€ 

εv = ∇ ⋅u =
∂2ψz
∂x∂y

−
∂2ψz
∂y∂x

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ +

∂2ψy
∂z∂x

−
∂2ψy
∂x∂z

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

+
∂2ψx
∂y∂z

−
∂2ψx
∂z∂y

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 0 ,  (18) 

in which case (1) reduces to  

uu ρ=∇2G .              (19) 

Eqn. (19) represents three uncoupled wave equations, one for each of 
the displacement components, each with wavespeed     

€ 

cT = (G /ρ)1/ 2: 

    

€ 

∇2u =
1

cT
2
∂2u
∂t2

, ∇2v =
1

cT
2
∂2v
∂t2

, ∇2w =
1

cT
2
∂2w
∂t2

.   (20) 

Taking the partial derivative of (20a) with respect to y, and adding it to 
the partial derivative of (20b) with respect to x, and similarly for the other 
two pairs of equations that can be chosen from (20), shows that each of 
the components of the strain tensor also satisfies this same wave 
equation: 

    

€ 

∇2εxy =
1

cT
2

∂2εxy

∂t2
, ∇2εxz =

1
cT

2
∂2εxz

∂t2
, ∇2εyz =

1
cT

2

∂2εyz

∂t2
.       (21) 

Alternatively, subtracting the partial derivative of (20a) with respect to y 
from the partial derivative of (20b) with respect to x, etc., which is 
essentially equivalent to applying the curl operator to (19), shows that 
the three independent components of the rotation tensor also satisfy this 
same wave equation: 

    

€ 

∇2ωxy =
1

cT
2

∂2ωxy

∂t2
, ∇2ωxz =

1
cT

2
∂2ωxz

∂t2
, ∇2ωyz =

1
cT

2

∂2ωyz

∂t2
. (22) 
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Hence, “rotation” is also propagated through the medium at speed   

€ 

cT . 
Consequently, shear waves are also sometimes called rotational waves. 

The other part of the decomposed displacement vector,   

€ 

u = ∇ϕ , 
corresponds to a deformation in which there is no rotation. For example, 

    

€ 

ωxy =
1
2
∂u
∂y

−
∂v
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
2

∂
∂y

∂ϕ
∂x
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ −

∂
∂x

∂ϕ
∂y
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0,      (23) 

and similarly for   

€ 

ωxz and   

€ 

ωyz . In this case the term     

€ 

∇(∇ ⋅u) in (1) 

reduces to     

€ 

∇2u, because, for example, 

      

€ 

∂(∇ ⋅u)
∂x

=
∂
∂x

∂u
∂x

+
∂v
∂y

+
∂w
∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

∂2u
∂x2

+
∂
∂y

∂v
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

∂
∂z

∂w
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 
    

€ 

=
∂2u
∂x2

+
∂
∂y

∂u
∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

∂
∂z

∂u
∂z
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = ∇

2u,      (24) 

and similarly for the other two components of     

€ 

∇(∇ ⋅u), in which case (1) 
takes the form 

uu ρλ =∇+ 2)2( G .            (25) 

This is equivalent to the three uncoupled scalar wave equations 

    

€ 

∇2u =
1

cL
2
∂2u
∂t2

, ∇2v =
1

cL
2
∂2v
∂t2

, ∇2w =
1

cL
2
∂2w
∂t2

.   (26) 

Hence, irrotational waves travel at the longitudinal wave velocity,   

€ 

cL; 
equivalently, longitudinal waves are associated with irrotational motions. 

Finally, differentiating (26a) with respect to x, (26b) with respect to y, and 
(26c) with respect to z, and adding the results, which is equivalent to 
taking the divergence of (25), yields 

      

€ 

∇2(∇ ⋅u) = ∇2εv =
1

cL
2
∂2εv
∂t2

.        (27) 
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Hence, changes in the bulk volumetric strain also propagate at the 
speed   

€ 

cL . 

More generally, the scalar potential 

€ 

ϕ  satisfies the wave equation with 
wavespeed   

€ 

cL. This is proven by substituting     

€ 

∇ ⋅u = ∇ ⋅ (∇ϕ) = ∇2ϕ  into 
(27), and noting that the operator   

€ 

∇2 commutes with the time 
derivatives, leading to 

    

€ 

∇2ϕ =
1

cL
2
∂2ϕ

∂t2
.          (28) 

Similarly, it can be shown that each of the three Cartesian components 
of the vector potential 

€ 

Ψ  satisfies the wave equation with wavespeed 
  

€ 

cT : 

    

€ 

∇2ψx =
1

cT
2
∂2ψx

∂t2
, ∇2ψy =

1
cT

2

∂2ψy

∂t2
, ∇2ψz =

1
cT

2
∂2ψz

∂t2
.     (29) 

The full explicit relationships between the displacements and the 
potentials are  

    

€ 

u =
∂ϕ
∂x

+
∂ψz
∂y

−
∂ψy
∂z

, v =
∂ϕ
∂y

+
∂ψx
∂z

−
∂ψz
∂x

, w =
∂ϕ
∂z

+
∂ψy
∂x

−
∂ψx
∂y

.   (30) 
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6. Reflection and refraction of waves at an interface 
In §2 the transmission of a wave across an interface between two 
possibly different elastic media was studied in the one-dimensional case. 
It was seen that, in general, some portion of the energy is transmitted 
through to the second medium, and the remaining portion is reflected 
back into the medium from which the wave came. The amplitudes of the 
reflected and transmitted waves depended on the ratios of the acoustic 
impedances of the two media, where the acoustic impedance is the 
product of the density and the wavespeed.  

When an elastic wave impinges upon an interface between two rock 
types at an oblique angle, the behaviour is more complicated. This 
problem was first studied by Knott (1899), although the resulting 
equations are usually attributed to Zoeppritz (1919). Other early studies 
were made by Jeffreys (1926), Muskat and Meres (1940) and Ott (1942). 
Detailed results are given by Ewing, Jardetzky and Press (1957) and 
Brekhovskikh (1980). In general, regardless of whether the impinging 
wave is a shear wave or a compressional wave, four waves are created: 
both a shear and a compressional wave are transmitted (refracted) 
across the interface, and a shear and compressional wave are reflected 
back into the first medium. The amplitudes of these four waves, and the 
angles that they make with the interface, will depend not only on the 
acoustic impedances of the two media, but also on the angle of 
incidence of the incident wave.  

An exception to this general behaviour occurs when the incident wave is 
a shear wave whose displacement vector is parallel to the interface. 
Such waves are called “SH” waves, referring to the fact that if the 
interface is horizontal, the displacement of such a wave will lie in the 
horizontal plane. Although interfaces between two rock types need not 
be horizontal, waves in which the displacement has no component 
normal to the interface are known as SH-waves. In this case, the 
transmitted and reflected wave will both be of the SH type, and no 
compressional waves will be generated. As this is the simplest case, we 
will study it first, in detail.  

Consider two semi-infinite half-spaces, with their interface coinciding 
with the x-y plane. The region     

€ 

z < 0 is labelled with superscript 1, and 



MSc in Petroleum Geophysics            Seismic Rock Physics                   RW Zimmerman                  Page 49 
   
 

  
Imperial College London                                                          Department of Earth Science and Engineering 

 

 

the region     

€ 

z > 0 is labelled with superscript 2. A plane shear wave 
propagates through medium 1, with its direction of propagation (n in the 
notation of §5) lying in the x-z plane, making an angle   

€ 

θ0 with the z-axis 
(Fig. 6.1a). The particle displacement is in the y-direction; this motion 
therefore represents an “SH” wave.  

 
 

cT2 , ρ2

z

x
cT1, ρ1

θ2θ0

θ4

u(4)

u(2)u(0)
(a)  

-1.0

0.0

1.0

2.0

0 20 40 60 80

R (Z2/Z1=0.5)
T (Z2/Z1=0.5)
R (Z2/Z1=2.0)
T (Z2/Z1=2.0)

Angle of incidence, θ0

(b)

 
Fig. 6.1. (a) Incident, transmitted and reflected SH-wave impinging on a 
plane interface; (b) Reflection and transmission coefficients as a function 
of   

€ 

θ0, for the case of   

€ 

ρ1 = ρ2. 

It is traditional (and simpler) to use complex numbers to represent the 
displacements, stresses, etc., when solving such problems, bearing in 
mind that only the real component has physical significance. Consider 
(Fig. 6.1a) an incoming wave travelling in direction n, where n = (sinθ, 0, 
cosθ). In this notation, the only non-zero displacement component 
associated with the incoming wave is  

    

€ 

v(0) = A0 exp[ik0(xsinθ0 + z cosθ0 − cT1t)].    (1) 

The wave that is reflected back into medium 1 is taken to be of the form 

    

€ 

v(2) = A2 exp[ik2(xsinθ2 − z cosθ2 − cT1t)],    (2)  

and the wave that is refracted into medium 2 is taken to be of the form 

    

€ 

v(4) = A4 exp[ik4(xsinθ4 + z cosθ4 − cT 2t)].    (3) 
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The term “refracted” is used instead of “transmitted”, to emphasise that, 
in general, the wave changes its velocity of propagation as well as its 
direction of propagation when it enters the second medium.  

The total displacement in medium 1 will be the sum of the displacement 
from the incoming wave and the reflected wave. In general, all three 
components of the total displacement vector must be continuous across 
a “welded” interface between two rock types. [If the rocks are separated 
by a fracture or other type of mechanical discontinuity, different 
boundary conditions must be used; see Jaeger et al. (2007) for details.]  

For welded interfaces, the stresses acting on the interface must also be 
continuous. As the unit normal vector of the interface is   

€ 

ez, the stresses 
that act on the interface are     

€ 

{τ zx ,τ zy ,τ zz } . In general there are six 
continuity conditions, corresponding to the three displacement 
components and three interface stresses. In the present case, the only 
non-zero displacement component is v, and the only relevant non-zero 
stress component is   

€ 

τ zy .   

From (1)-(3), the condition for continuity of v across the interface     

€ 

z = 0 
takes the form 

    

€ 

A0 exp[ik0(xsinθ0 − cT1t)] + A2 exp[ik2(xsinθ2 − cT1t)]

= A4 exp[ik4(xsinθ4 − cT 2t)]
.    (4) 

As this equation must hold for all values of x, the factors multiplying x in 
each of the three exponential terms must be identical, i.e., 

    

€ 

k0 sinθ0 = k2 sinθ2 = k4 sinθ4.       (5) 

The same must be true for the time-dependent terms, so 

    

€ 

k0cT1 = k2cT1 = k4cT 2 .         (6) 

Solving (5) and (6) for the angles and wave numbers of the reflected and 
refracted waves gives 

    

€ 

k2 = k0, k4 = (cT1 / cT 2 )k0, θ2 = θ0, sinθ4 = (cT 2 / cT1)sinθ0,  (7) 

after which (4) reduces to 
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€ 

A0 + A2 = A4 .           (8) 

Equation (7) shows that the angle of the reflected wave is always equal 
to the angle of the incident wave, whereas the refracted wave is “bent” 
towards the normal when medium 2 is “slower” than medium 1, and bent 
away from the normal if medium 2 is faster than medium 1. These facts, 
as implied by (7), are equivalent to Snell’s law of optics.  

The stress   

€ 

τ zy  that corresponds to a displacement of the form (1)-(3) is, 
suppressing the subscripts, 

    

€ 

τ zy = ± ik cosθGAexp[ik(xsinθ ± z cosθ − cTt)],      (9) 

where the + sign is used for the incident and refracted wave, and the - 
sign is used for the reflected wave. From (9) and (7), the condition of 
continuity of   

€ 

τ zy  across the interface takes the form 

    

€ 

cosθ0G1A0 − cosθ0G1A2 = (cT1 / cT 2 )cosθ4G2A4.   (10) 

Solving (8) and (10) for the amplitudes of the reflected and transmitted 
waves gives 

R = 
    

€ 

A2
A0

=
ρ1cT1 cosθ0 − ρ2cT 2 cosθ4
ρ1cT1 cosθ0 + ρ2cT 2 cosθ4

,     (11) 

T = 
    

€ 

A4
A0

=
2ρ1cT1 cosθ0

ρ1cT1 cosθ0 + ρ2cT 2 cosθ4
.     (12) 

The product of the density and shear-wave velocity is the shear-wave 
impedance (see §2), and so the displacement reflection and 
transmission coefficients,     

€ 

R = A2 / A0 and     

€ 

T = A4 / A0, depend on the 
shear-wave impedance ratio,     

€ 

ZT2 / ZT1, and the angle of incidence of the 
incoming wave,   

€ 

θ0. However, these coefficients also depend on the 
angle of the transmitted wave,   

€ 

θ4, which in turn depends on the ratio of 
wavespeeds. Hence, the reflection and transmission coefficients depend 
on two material property ratios, impedance and wavespeed. From (9), it 
is clear that if the reflection and transmission coefficients were defined in 
terms of the amplitudes of the stresses, rather than the displacements, 
they would have somewhat different forms (Daehnke and Rossmanith, 
1997).  
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The wavelength or frequency of the incident wave does not appear in 
the expressions for the reflection and transmission coefficients, so these 
expressions hold for arbitrary superposition of waves of different 
frequencies. 

The reflection and transmission ratios are plotted in Fig. 6.1b, for two 
different impedance ratios. As there is somewhat more variability in 
wavespeed than in density between different rocks (see Table 5.1), for 
the purposes of illustration and discussion we take the densities of the 
two media to be equal, in which case the impedance ratio coincides with 
the velocity ratio. Aside from cases in which one of the media is a fluid, 
impedance ratios typically lie within the range shown in Fig. 6.1b, 
namely 0.5-2.0. The following observations can be made: 

(1) If the incoming wave is normal to the interface, then   

€ 

θ0 = θ2 = θ4 = 0, 
and the reflection and transmission coefficients reduce to those given in 
§2 (18) and (19) and Fig. 2.2b for the one-dimensional wave model.  

(2) If the second medium has zero shear impedance, such as occurs 
when a wave impinges on an interface between rock and fluid, the 
reflection coefficient is unity. Although the transmission coefficient 
approaches 2, this coefficient refers to the amplitudes, not the energies. 
If either the wavespeed or the density goes to zero, §2 (21) shows that 
no energy will be transmitted across the interface; the energy is entirely 
reflected back into medium 1. This apparent paradox of having a non-
zero transmission coefficient can be eliminated by utilising the stress 
transmission coefficient, which would vanish in this case.  

(3) There will be one particular angle of incidence for which there is no 
reflected wave. This angle is found by simultaneously solving, from (7), 
    

€ 

sinθ4 = (cT 2 / cT1)sinθ0 and, from (11),     

€ 

cosθ4 = (ZT1 / ZT 2 )cosθ0. For the 
case in which the rocks on either side of the interface have the same 
density, this occurs for     

€ 

sinθ0 = [1+ (cT 2 / cT1)
2 ]−1/ 2. 

(4) If     

€ 

(cT 2 / cT1)sinθ0 > 1, which can only occur if     

€ 

cT2 > cT1, Snell’s law 
yields an imaginary value for   

€ 

sinθ4. The transmitted wave then has the 
form (Miklowitz, 1973, p. 184) 

    

€ 

v(4) = A4 exp(−bz)exp[ik4(xsinθ4 − cT 2t)],     (13) 
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where     

€ 

b = k0[(cT 2 / cT1)
2 sin2 θ0 −1]1/ 2. Instead of representing a wave 

that propagates into medium 2, this displacement propagates only in the 
x-direction, parallel to the interface, with an amplitude (in medium 2) that 
decays exponentially with distance from the interface. Hence, this wave 
carries no energy into medium 2, and all of the incoming energy is 
reflected back into medium 1, with the reflected wave. This situation is 
referred to as total internal reflection.  

If the incident wave is either an SV-wave or a P-wave, with particle 
motion in the x-z plane, the conditions of continuity for the displacement 
and stresses across the interface will in general only be satisfied by a 
combination of a pair of reflected P and SV-waves, and a pair of 
refracted P and SV-waves. An incident P-wave propagating towards the 
interface at an angle θo  to the z-axis can be represented by 

      

€ 

u0 = {u (0),v(0),w (0) } = A0 exp[ik0(xsinθ0 + z cosθ0 − cL1t)]{sinθ0,0,cosθ0 } . 
(14) 

The reflected P-wave is denoted by 1, the “reflected” SV-wave by 2, the 
transmitted P-wave by 3, and the transmitted SV-wave by 4, as follows: 

      

€ 

u1 = {u (1),v(1),w (1) } = A1exp[ik1(xsinθ1 − z cosθ1 − cL1t)]{sinθ1,0,−cosθ1}     (15) 

      

€ 

u2 = {u (2),v(2),w (2) } = A2 exp[ik2(xsinθ2 − z cosθ2 − cT1t)]{sinθ2,0,−cosθ2 }     (16)  

      

€ 

u3 = {u (3),v(3),w (3) } = A3 exp[ik3(xsinθ3 + z cosθ3 − cL2t)]{sinθ3,0,cosθ3 }     (17) 

      

€ 

u4 = {u (4),v(4),w (4) } = A4 exp[ik4(xsinθ4 + z cosθ4 − cT 2t)]{sinθ4,0,cosθ4 }     (18) 

Matching the phases of the five waves along the interface     

€ 

z = 0 leads to 
the following equations that define the four angles   

€ 

{θ1,θ2,θ3,θ4 } and four 
wave numbers     

€ 

{k1,k2,k3,k4 }: 

    

€ 

k0 sinθ0 = k1sinθ1 = k2 sinθ2 = k3 sinθ3 = k4 sinθ4,   (19) 

    

€ 

k0cL1 = k1cL1 = k2cT1 = k3cL2 = k4cT 2.      (20) 
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A set of four algebraic equations for the amplitudes of the four waves 
generated by the incident wave are found by imposing continuity 
conditions on the non-zero displacement components u and w, and the 
non-zero stresses   

€ 

τ zz and   

€ 

τ zx . The resulting equations are (Achenbach, 
1973, p. 186) 

    

€ 

−sinθ1 −cosθ2 sinθ3 −cosθ4
cosθ1 −sinθ2 cosθ3 sinθ4

sin2θ1
cL1

cT1

cos2θ2
G2
G1

cL1

cL2

sin2θ3 −
G2
G1

cL1

cT 2

cos2θ4

−cos2θ2
cT1

cL1

sin2θ2
G2
G1

cL2

cL1

cT1

cT 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
cos2θ4

G2
G1

cT1

cT 2

cT1

cL1

sin2θ4

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

A1

A2

A3

A4

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

= A0

sinθ0

cosθ0

sin2θ0

cos2θ2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

. 

(21) 

Closed-form solutions to these equations have been given by Ewing et 
al. (1957), and extensive numerical tables have been generated by 
Muskat and Meres (1940). The results display complicated and often 
non-monotonic behaviour, and, as mentioned by the latter authors, “no 
simple physical interpretation or explanation can be given for the 
manifold variations of the coefficients with the parameters”.  

One important special case, which can be solved and interpreted easily, 
is that of a P-wave impinging on a stress-free surface (Fig. 6.2a). In 
general, both a P-wave and an SV-wave will be reflected back into the 
rock. This case is obtained from (21) by setting     

€ 

A3 = A4 = 0, so as to 
ignore “transmitted” waves, and also ignoring the first two equations in 
(21), because the “continuity of displacement” boundary conditions are 
not relevant at a free surface. The third and fourth equations in (21), 
representing the stress-free boundary conditions, remain relevant. 
These two equations, corresponding to the lower-left 2×2 sub-matrix in 
(21), can be solved for 

    

€ 

A1
A0

=
sin2θ0 sin2θ2 − (cL / cT )2 cos2 2θ2

sin2θ0 sin2θ2 + (cL / cT )2 cos2 2θ2
,     (22) 

    

€ 

A2
A0

=
2(cL / cT )sin2θ0 cos2θ2

sin2θ0 sin2θ2 + (cL / cT )2 cos2 2θ2
.     (23) 
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These coefficients are shown in Fig. 6.2b for two values of Poisson’s 
ratio. When   

€ 

ν < 0.26, there will be two angles of incidence for which the 
amplitude of the reflected P-wave is zero. In this case, known as mode 
conversion, all of the incident energy is reflected as an SV-wave. The 
two angles at which mode conversion occurs are equal to 38˚ and 90˚ 
when ν = 0, and coalesce to 68˚ when   

€ 

ν = 0.26 (Arenberg, 1948). 
 

 
 
z

x
cL, cT, ρ

θ2
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Fig. 6.2. (a) Incident P-wave, and reflected P and SV-waves, at a free 
surface. (b) Amplitude ratios for the reflected P-wave,     

€ 

A1 / A0, and the 
reflected SV-wave,     

€ 

A2 / A0. 
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7.  Anisotropy 
7.1. Elastic Anisotropy 
Most rocks are anisotropic to one extent or another. If cylindrical cores 
are cut from a rock in the horizontal and a vertical direction, and P-wave 
speeds are measured along the length of these cores, the two values 
thus measured will in general differ from one another. Common cases of 
anisotropic rocks include sedimentary rocks that have different elastic 
properties in and perpendicular to the bedding planes, or metamorphic 
rocks such as slates that have a well-defined plane of cleavage. In 
contrast to an isotropic rock, in an anisotropic rock the generalised 
Hooke’s law will have more than two independent elastic coefficients.  

As both the stress and strain are second-order tensors, with nine 
components each, the most general linear relationship between the 
stresses and strains can be expressed via a fourth-order tensor that has 
  

€ 

9×9 = 81 components. This relationship is often written as   

€ 

τ = Cε, where 
  

€ 

C is a fourth-order tensor whose eighty-one components are known as 
the elastic stiffnesses. However, there is no straightforward way to write 
out the eighty-one components of a fourth-order tensor in the form of a 
matrix, so use of the tensor notation causes us to lose the convenience 
of matrix multiplication. A more concise approach is that due to Voigt 
(1928), in which the stress and strain tensors are each converted into 
  

€ 

1×6 column vectors, and the elastic stiffnesses are then represented by 
thirty-six stiffness coefficients that can be written as a   

€ 

6×6 matrix. 
Hooke’s law can be written in the Voigt notation as 

    

€ 

τ xx
τ yy
τ zz
τ yz
τ xz
τ xy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

εxx
εyy
εzz
2εyz
2εxz
2εxy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

,    (1) 

where the factors of “2” arise because Voigt originally worked in terms of 
the “engineering” shear strains, rather than the tensor shear strains. Eq. 
(1) can also be written symbolically as   

€ 

τ = Cε, although now τ  and ε  
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must be interpreted   

€ 

6×1 row vectors rather than   

€ 

3×3 matrices, and C 
must be interpreted as a   

€ 

6×6 matrix.  

The inverse version of Hooke’s law, in which the strains are expressed 
as linear functions of the stresses, can be symbolically written as   

€ 

ε = Sτ , 
where     

€ 

S = C−1 is the inverse matrix of C. The components of the matrix 
S are referred to as the elastic compliances. 

The stiffness matrix that appears in (1) must necessarily be symmetric, 
so in fact at most only twenty-one of the stiffness coefficients can be 
independent (Jaeger et al., 2007, §5.8), and Hooke’s law can be written 
in the Voigt notation as 

    

€ 

τ xx
τ yy
τ zz
τ yz
τ xz
τ xy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

εxx
εyy
εzz
2εyz
2εxz
2εxy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

.    (2) 

The greatest possible number of independent stiffnesses is twenty-one, 
and some materials (triclinic crystals) do indeed fall into this category. 
However, if a material exhibits any physical symmetry, the number of 
independent stiffnesses will be less than 21. Fumi (1952a,b) devised a 
systematic method for deducing the number of independent components 
of the stiffness matrix from the symmetry elements of the material, using 
group theory. These results can also be found in an ad hoc manner, as 
explained in §5.8 of Jaeger et al. (2007). This method, however, requires 
use of the rules for transforming tensors from one co-ordinate system to 
another, and so will not be used here. Instead, we will only summarise 
the results of this analysis. 

Consider a rock mass that contains three mutually perpendicular sets of 
fractures. Such a rock mass is called an orthotropic (or orthorhombic) 
material, and has nine independent components of the elastic moduli 
tensor. The stress-strain law of an orthotropic rock can be written as 
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€ 

τ xx
τ yy
τ zz
τ yz
τ xz
τ xy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

εxx
εyy
εzz
2εyz
2εxz
2εxy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;    (3) 

or, in explicit form:  

    

€ 

τ xx = c11εxx + c12εyy + c13εzz,       (4) 

    

€ 

τ yy = c12εxx + c22εyy + c23εzz,       (5) 

    

€ 

τ zz = c13εxx + c23εyy + c33εzz,       (6) 

    

€ 

τ yz = 2c44εyz, τ xz = 2c55εxz, τ xy = 2c66εxy .       (7) 

The compliance matrix S of an orthotropic rock can be found by inverting 
the stiffness matrix C. As C is “block-diagonal”, its inverse is readily 
found to be 

    

€ 

s11 =
c22c33 − c23

2

D
, s22 =

c11c33 − c13
2

D
, s33 =

c11c22 − c12
2

D
,   (8) 

    

€ 

s12 =
c12c23 − c12c33

D
, s13 =

c12c23 − c22c13
D

, s23 =
c12c13 − c11c23

D
, (9) 

where D is the determinant of the upper-left-corner block of C, i.e., 

    

€ 

D = det
c11 c12 c13
c12 c22 c23
c13 c23 c33

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
,        (10) 

and all other components of S are zero. The inverse form of Hooke’s law 
for an orthotropic material is therefore 
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€ 

εxx
εyy
εzz
2εyz
2εxz
2εxy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

τ xx
τ yy
τ zz
τ yz
τ xz
τ xy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

,    (11) 

where the s coefficients are given by (8)-(10).   

A special case of an orthotropic material is one in which all three 
directions (x,y,z) are elastically equivalent. This might be the case if the 
rock mass contains three sets of orthogonal fractures that each have the 
same spacing. This type of material, which is said to possess cubic 
symmetry, and will have three independent elastic moduli. Hence, even 
though all three orthogonal directions are elastically equivalent, a cubic 
material is not the same as an isotropic material, which has only two 
independent moduli. A physical explanation for this fact is that although, 
for example, the Young’s modulus of a cubic material will be the same in 
the x and y directions, there is no reason for E to have the same value in 
a direction that is oriented at an arbitrary angle between the x and y 
axes. 

The stress-strain law of a rock mass that has cubic symmetry can be 
written as 

    

€ 

τ xx
τ yy
τ zz
τ yz
τ xz
τ xy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

εxx
εyy
εzz
2εyz
2εxz
2εxy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;    (12) 

or, in non-matrix form:  

    

€ 

τ xx = c11εxx + c12εyy + c12εzz,      (13) 

    

€ 

τ yy = c12εxx + c11εyy + c12εzz ,      (14) 

    

€ 

τ zz = c12εxx + c12εyy + c11εzz ,      (15) 
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€ 

τ yz = 2c44εyz, τ xz = 2c44εxz, τ xy = 2c44εxy .    (16) 

The most important form of anisotropy for seismic exploration purposes 
is the case when one of the three orthogonal axes is an axis of rotational 
symmetry, in the sense that all directions perpendicular to this axis are 
elastically equivalent. In this case, the rock is isotropic within any plane 
normal to the axis of rotational symmetry. A rock possessing this type of 
symmetry is known as “transversely isotropic” (a slightly misleading 
term, as a transversely isotropic rock is actually anisotropic). This type of 
anisotropy is common in layered rocks. 

A transversely isotropic rock has five independent coefficients in its 
elastic moduli tensor. Hooke’s law for a transversely isotropic rock takes 
the form  

    

€ 

τ xx
τ yy
τ zz
τ yz
τ xz
τ xy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66 = 1

2
(c11 − c12)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

εxx
εyy
εzz
2εyz
2εxz
2εxy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

. (17) 

Finally, we note that using the Voigt notation, Hooke’s law for an 
isotropic rock can be written as   

    

€ 

τ xx
τ yy
τ zz
τ yz
τ xz
τ xy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44 = 1

2
(c11 − c12)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

εxx
εyy
εzz
2εyz
2εxz
2εxy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

. (18) 

where     

€ 

c11 = λ + 2G ,     

€ 

c12 = λ , and     

€ 

c44 = G. 
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7.2. Elastic Waves in Anisotropic Rocks 
In an isotropic rock, there are three modes of wave propagation: one 
longitudinal mode that travels at a speed of     

€ 

Vp = sqrt{[K + (4 / 3)G] /ρ}, 
and two shear modes, SH and SV, both of which travel at the same 
speed,     

€ 

Vs = sqrt(G /ρ). In the longitudinal mode, the particle motion is 
parallel to the direction of wave propagation, whereas in the transverse 
(shear) modes, the particle motion is perpendicular to the direction of 
wave propagation. These two shear modes are considered to be 
different modes because the particle motion vectors of these two modes 
are orthogonal to each other. 

For anisotropic rocks, the situation is much more complicated. Full 
details can be found in the monographs by Musgrave (1970) and 
Carcione (2001). In general, we can say the following about elastic wave 
propagation in an unbounded anisotropic medium: 

a. Planar elastic waves can propagate in any direction.  

b. In any given direction, three wave modes are possible. Each of 
these three modes will have its own velocity, and its own direction 
of particle motion. These three directions of particle motion will 
always be mutually orthogonal.  

c. In general, the velocities of any of these three modes will vary with 
the direction of propagation of the wave.  

d. Unlike the situation for isotropic rocks, the particle velocity vectors 
will not generally be precisely parallel or perpendicular to the 
direction of wave propagation. However, for most rocks the 
particle velocity vectors are “almost” parallel or perpendicular to 
the direction of wave propagation. Hence, we can refer to these 
waves as “quasi-longitudinal” or “quasi-shear”. 

The most important type of anisotropy is so-called transverse isotropy. 
Consider a transversely isotropic rock mass in which the axis of 
rotational symmetry is vertical. Now consider a wave whose direction of 
propagation lies in some vertical plane, making an angle θ to the vertical 
axis. As discussed above, there will be three possible wave modes that 
can propagate in this direction.   

(a) One of these modes is a quasi-longitudinal mode whose velocity is 
given by (Mavko et al., 2009): 
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€ 

Vp = sqrt[(c11sin2θ + c33 cos2θ + c44 + M) / 2ρ],     (19) 

where  

      

€ 

M = sqrt{[(c11−c44)sin2θ − (c33 −c44)cos2θ]2 + (c13 + c44)2sin22θ}. (20) 

Note that if θ = 0,     

€ 

M → c33 − c44, and so     

€ 

Vp → c33 /ρ , as we would 
expect for a longitudinal wave travelling in the vertical (3) direction. 

(b) There is a quasi-shear wave that travels at a speed give by 

    

€ 

VSV = sqrt[(c11sin2θ + c33 cos2θ + c44 −M) / 2ρ],    (21) 

where M is given by (20). Note that (21) differs from (19) only by the sign 
in front of the coefficient M. If θ = 0,     

€ 

M → c33 − c44 , and     

€ 

VSV → c44 /ρ , 
as we would expect for a shear wave travelling in the vertical (3) 
direction. 

(c) There is a pure-shear wave that travels at a speed given by 

    

€ 

VSH = sqrt[(c66 sin2θ + c44 cos2θ) /ρ].      (22) 

In this mode, the particle velocity lies in the horizontal plane. If θ = 0, the 
speed of this wave also reduces to     

€ 

VSH → c44 /ρ . 

The above expressions for the three velocities of waves that travel in a 
vertical plane in a transversely isotropic medium are cumbersome to 
use. Thomsen (1986) developed simplified expressions that are 
accurate if the degree of elastic anisotropy is not “too large”. 

In this “weak elastic anisotropy” model, Thomsen first defined the 
following three parameters: 

    

€ 

ε =
c11− c33

2c33
,          (23) 

    

€ 

γ =
c66 − c44

2c44
,          (24) 
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€ 

δ =
(c13 + c44)2 − (c33 − c44)2

2c33(c33 − c44)
.        (25) 

Note that for an isotropic medium,     

€ 

c11 = c33, and so (23) shows that ε = 
0;     

€ 

c66 = c44, and so (24) show that γ = 0; and     

€ 

c11 = λ + 2G ,     

€ 

c12 = λ , and 
    

€ 

c44 = G, in which case (25) shows that δ = 0. Hence, each of these 
parameters in some sense quantifies the degree of anisotropy.  

If each of these three parameters are small, Thomsen showed that the 
three wave speeds were approximately given by the following 
expressions: 

    

€ 

Vp ≈
c33
ρ

1+δsin2θ cos2θ + εsin4θ[ ],      (26) 

    

€ 

VSV ≈
c44
ρ

1+ c33
c44

(ε −δ)sin2θ cos2θ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,      (27) 

    

€ 

VSH ≈
c44
ρ

1+ γ sin2θ[ ] .        (28) 

If the anisotropy parameters vanish, then     

€ 

Vp → c33 /ρ , and 

    

€ 

VSH ,VSV → c44 /ρ , as would be the case in an isotropic medium. 

For a wave travelling vertically, θ = 0, and     

€ 

Vp = c33 /ρ , whereas for a 

wave travelling horizontally, θ = 90o, and     

€ 

Vp = (1+ ε) c33 /ρ . Hence, ε 
represents the fractional difference between the velocities of horizontally 
travelling and vertically travelling P-waves, i.e., 

    

€ 

ε =
Vp(θ = 90o )−Vp (θ = 0o )

Vp (θ = 0o )
.        (29) 

Similarly, (28) shows that γ is the fractional difference between the 
velocities of horizontally travelling and vertically travelling SH-waves, i.e., 

    

€ 

γ =
VSH (θ = 90o )−VSH (θ = 0o )

VSH (θ = 0o )
.         (30) 
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8. Effect of Fluid Saturation 
The theory of wave propagation presented in previous sections of these 
notes applies to a homogeneous, single-phase elastic material. When 
the void space of a porous or fractured rock is saturated with a fluid, the 
rock can no longer be considered to be a homogeneous, single-phase 
material. Several approaches, having differing degrees of rigour and 
complexity, can be used to account for the effect of fluid saturation on 
seismic velocities.  

Consider a rock with porosity φ, saturated with a fluid having density   

€ 

ρf  
and bulk modulus   

€ 

Kf ; recall that the shear modulus of a fluid is zero. 
Although the rock is usually composed of a mixture of different mineral 
grains, the effective “upscaled” moduli of the minerals, denoted by 
    

€ 

{Km ,Gm }, can be accurately estimated from the mineral composition 
using the Voigt-Reuss-Hill average (see §10). The effective density   

€ 

ρm  
of the mineral phase of the rock is given by the volumetric average of the 
densities of the individual mineral components.  

The simplest model for the wavespeeds in a fluid-saturated rock is the 
so-called time-average model proposed by Wyllie et al. (1956), in which 
the travel time of a wave passing through the rock is approximated by 
the volume-weighted average of the travel times through a layer of solid 
rock and a layer of pore fluid (Fig. 8.1).  

(1-φ)L

φL

L
solid rock, Vpm

fluid, Vpf
 

Fig. 8.1. Layer of a solid rock and a fluid, as used in the Wyllie time-
average model. 
 
In order for this model to have the correct porosity, the rock layer must 
have thickness (1-φ)L, and the fluid layer should have thickness φL. The 
compressional wave speed in the rock is     

€ 

Vpm = [(3Km + 4Gm ) / 3ρm ]1/ 2 , 

and the compressional wave speed in the fluid is     

€ 

Vpf = (Kf /ρf )1/ 2. The 
time required for the wave to pass through the layer of rock is L(1-φ)/Vpm, 
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and the time required for the wave to pass through the layer of fluid is 
Lφ/Vpf. The total time required for the wave to pass through both layers is 
t = L(1-φ)/Vpm + Lφ/Vpf. Since the total thickness is L, the effective 
velocity of the fluid-saturated rock will be Vp = L/t, which is to say,  

    

€ 

1
Vp

=
φ

Vpf
+

1− φ
Vpm

.          (1) 

This model usually under-estimates wavespeeds, but is sometimes 
reasonably accurate for cemented and consolidated sandstones, 
particularly at high pressures, when the crack-like pores have been shut. 
This approach cannot be applied to shear waves, because the shear 
speed in a fluid is zero. 

The next level of sophistication is to treat the fluid-saturated rock as an 
“effective elastic medium”. This approach works well in the low-
frequency, quasi-static limit, and is more accurate than the Wyllie time 
average. In this approach, if we can calculate the effective (upscaled) 
elastic moduli, K and G, of the fluid-saturated rock, and an effective 
density, ρ, then the two wavespeeds can be calculated from the usual 
equations,     

€ 

Vp = [(3K + 4G)/3ρ]1/2, Vs = (G/ρ)1/2. 

First, we note that if the porous rock is dry, it will have some effective 
elastic moduli     

€ 

{Kd ,Gd }. These moduli will be less than the moduli of the 
mineral phase,     

€ 

{Km ,Gm }, due to the presence of pores and cracks. The 
precise relation between the mineral moduli and the “dry porous rock” 
moduli will depend on the amount of porosity, and the shapes of the 
pores, as discussed in §10. For now, we just denote the dry rock moduli 
as     

€ 

{Kd ,Gd }.  

Now imagine that we add fluid to the pore space. In principle, the 
presence of the pore fluid will cause changes in the elastic moduli and 
density of the rock. Within the context of the effective medium approach, 
the effective density of the fluid-saturated rock is assumed to be given 
by the volumetrically-weighted average of the mineral and fluid densities, 
i.e.,  

    

€ 

ρ = (1− φ)ρm + φρf .         (2) 
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Since the pore fluid has zero shear modulus, it seems reasonable to 
assume that the pore fluid cannot contribute any additional shear 
stiffness to the rock. Hence, we assume that the shear modulus of the 
fluid-saturated rock must equal   

€ 

Gd , the shear modulus of the dry rock. 
This is rigorously true in the static, zero-frequency limit, and is thought to 
be a good approximation at low frequencies.  

As mentioned above, the relationship between the bulk modulus of the 
dry porous rock and the bulk modulus of the minerals depends strongly 
on pore structure. Fortunately, however, in the “quasi-static” limit of low 
frequencies, an exact expression can be found for the effective bulk 
modulus of the fluid-saturated rock, if we know the bulk modulus of the 
mineral phase,   

€ 

Km , the bulk modulus of the dry porous rock,   

€ 

Kd , the 
bulk modulus of the pore fluid,   

€ 

Kf , and the porosity, φ. 

This expression was first derived by Gassmann in 1951, in a 
complicated manner; a much simpler derivation can be found in 
Zimmerman (1991), but will not be repeated here, where we merely state 
Gassmann’s equation without derivation. The Gassmann equation 
requires two crucial but subtly different assumptions. One assumption is 
that the pressure in the pore fluid is locally uniform, in the sense that the 
pressure in two adjacent pores will be the same. This will be true if the 
wave is of sufficiently low frequency, in which case the pore pressure will 
have time locally equilibrate within the time needed for the stress pulse 
to pass through a region of the rock.  

Another assumption implicit in the Gassmann (1951) model is that, as 
the wave passes through the rock, the stress changes so rapidly that the 
fluid cannot “escape”. The fluid is effectively trapped in the pore, and 
consequently plays a role in resisting being compressed by the passing 
stress wave. This type of process is known as “undrained” compression. 
Under these two assumptions, Gassmann was able to use superposition 
arguments to derive the following expression for the undrained elastic 
moduli: 

    

€ 

Ku =
φ(1/ Kf −1/ Km )+ (1/ Kd −1/ Km )

φ(1/ Kf −1/ Km ) / Kd + (1/ Kd −1/ Km ) / Km
, Gu = Gd .  (3) 

Finally, according to the Gassmann model, the wavespeeds in the fluid-
saturated rock are given by 
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€ 

Vp(low ω) ={[Ku + (4/3)Gu]/ρ}1/2, Vs(low ω) = (Gu /ρ)1/2 ,   (4) 

where the effective moduli and density are given by (2) and (3). 

Although we will not derive the Gassmann equation, we can verify that it 
makes intuitive sense in various limiting cases. First, if the porosity goes 
to zero, we see from (3) that the undrained bulk modulus equals that of 
the mineral phase, Km.  

If the pore fluid is a very compressible gas, i.e., Kf = 0, then (3) predicts 
that the undrained bulk modulus will coincide with the drained (or “dry”) 
bulk modulus, Kd .  

If the pore fluid has the same bulk modulus as the mineral phase, i.e., Kf  

= Km, then (3) predicts that Ku = Km, as would be expected. (Although this 
case is physically unlikely to ever occur, we can nevertheless use it to 
test the plausibility of the Gassmann equation). 

Although it is not easy to see from (3), the Gassmann equation predicts, 
as we would expect, that the undrained modulus will increase as the 
bulk modulus of the pore fluid increases. In other words, the undrained 
bulk compressibility increases as the fluid compressibility increases, all 
other parameters being constant. The variation of Cbu ≡ 1/Ku with Cf ≡ 
1/Kf, for the Fort Union sandstone described by Murphy (1984), is shown 
in Fig. 8.2. This sandstone had a porosity of 0.085, a matrix bulk 
modulus of     

€ 

Km = 35.0 GPa , and a dry/drained bulk modulus of 
    

€ 

Kd = 7.63 GPa. If the pores were filled with air at atmospheric pressure, 
which has a bulk modulus of     

€ 

Kf = 0.101 MPa, then the undrained bulk 
modulus would equal (to three significant figures) the drained value, 
  

€ 

7.63 GPa . If the rock were saturated with water, which has a bulk 
modulus of     

€ 

Kf = 2.0 GPa, the undrained bulk modulus would be 
    

€ 

Ku = 17.4 GPa.  
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Fig. 8.2. Undrained bulk compressibility, Cbu = 1/Ku, of Fort Union 
sandstone, as a function of the compressibility of the pore fluid, Cf 
(Murphy, 1984; Zimmerman, 1985). If the pore fluid is a mixture of water 
and air at atmospheric pressure, the symbols (,,,) show the three 
cases of 0%, 99% and 100% water saturation, respectively. 

Under quasi-static loading, the effective compressibility of the pore fluid 
is the volumetrically weighted average of the compressibilities of the 
different fluid phases. Hence, a small amount of air greatly increases the 
effective value of Cf, and would thereby cause the undrained bulk 
compressibility to increase. 

According to the Gassmann model, saturating the pore space with fluid 
will increase the density and leave the shear modulus unchanged, 
leading to a slightly lower shear wave velocity. For example, in a 
sandstone of 20% porosity, with mineral density 2.65 g/cm3, saturating 
the pore space with water having density 1.00 g/cm3 will lower the shear 
wave speed by about 6%. The increase in bulk modulus usually 
overshadows the increase in density, so that compressional wave 
speeds are greater under saturated conditions than under dry 
conditions. The Gassmann approach usually works very well at seismic 
frequencies, below about 100 Hz.  

At higher frequencies, in the logging (10 kHz) or laboratory ultrasonic (1 
MHz) range, the pore fluid does not have sufficient time to redistribute 
itself so as to locally equilibrate the pore pressure. In this regime, the 
fluid-saturated rock cannot be treated as an effective single-phase 
continuum. Rather, the motion of the fluid, as distinguished from that of 
the solid phase, must somehow be accounted for. Biot (1956a,b) 
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developed a theory, based on the model of pores being long, cylindrical 
tubes, that allows for macroscopic flow of the fluid phases. Biot’s theory 
reduces to the Gassmann approach at low frequencies, but predicts 
higher P- and S-wave velocities than does Gassmann in the high-
frequency limit. At intermediate frequencies, the velocities are given by 
complicated expressions that involve the parameters appearing in (2) 
and (3), along with a “tortuosity” parameter and a characteristic grain 
size parameter (Berryman, 1980).  

Although Biot’s theory works reasonably well for very porous, high-
permeability sediments (Stoll, 1989), it does not give accurate results for 
consolidated rocks. Wave propagation at logging or acoustic frequencies 
in rocks seems to involve small-scale “squirt-like” fluid flow that occurs 
on the length scale of individual pores and cracks (Mavko and Nur, 
1975), not necessarily in the direction of propagation of the wave, as is 
implicitly assumed in Biot’s model. Mavko and Jizba (1991) developed a 
procedure for estimating the wave speeds over the complete range of 
frequencies, which required knowledge of the wavespeeds in the dry 
rock at a given value of the effective stress, and in the high-stress limit, 
when all crack-like pores are closed. The computational procedure is 
summarised by Mavko et al. (2009, pp. 297-302).  
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9 Attenuation 
When a wave travels through an elastic medium, the total energy 
contained in the wave, which (as explained in §2 and §3) is partitioned 
between elastic strain energy and kinetic energy, is conserved. Since 
the energy of a plane wave is related to its amplitude, a plane elastic 
wave will propagate without any change in amplitude. But for waves that 
spread out radially, such as those emanating from spherical cavities or 
cylindrical boreholes, the amplitude will decrease, because a finite 
amount of energy is spread out over a wavefront that has an ever-
increasing area. This type of amplitude decay is known as geometric 
attenuation, and is not associated with a loss of overall kinetic energy.  

However, rocks do not behave purely elastically under transient 
conditions. There are many mechanisms that cause the kinetic energy of 
seismic waves to be transformed into internal energy. This energy is not 
lost, but is transformed into internal energy, which is manifested by a 
slight increase in the temperature of the rock. But from a purely 
mechanical point of view, this energy appears to be “lost”, or 
“dissipated”.  

The attenuation of a plane wave can be introduced by following the 
development in §2 for one-dimensional wave propagation, but using a 
simple viscoelastic constitutive model, such as the Kelvin-Voigt model. 
The Kelvin-Voigt model can be interpreted as an elastic element (a 
spring) in parallel with a viscous element (a dashpot). In an elastic 
spring, the stress is proportional to the strain, whereas in a viscous fluid, 
the stress is proportional to the strain rate. Hence, a Kelvin-Voigt 
material has the following stress-strain relationship: 

εηετ += E ,          (1) 

where η is a viscosity-like parameter.  

If we consider a process in which the strain varies according to 
    

€ 

ε = εoeiωt , the stress can be written as 

    

€ 

τ = (E + iωη)εoeiωt = (MR + iMI )ε ,      (2) 
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where MR + iMI is the complex modulus. Eq. (2) shows that E can be 
interpreted as the real part of the complex modulus, and ωη as the 
imaginary part.  

Substituting (1) into the governing equation §2.2 yields  

    

€ 

E ∂2u
∂x2

+η
∂3u
∂t∂x2

= ρ
∂2u
∂t2

.         (3) 

This differs from a standard elastic wave equation by the presence of the 
viscosity term.  

Now consider a plane wave whose displacement is described by 

    

€ 

u(x,t) = Uo exp[i{(kR + ikI )x −ω t }],      (4) 

where we take the wave number k to have both a real and an imaginary 
part. Substitution of (4) into (3) yields the condition  

    

€ 

(kR + ikI )
2(E − iωη) = ρω2,        (5) 

the solution to which is (Kolsky, 1963, p. 117) 

    

€ 

kR =
ρEω2

2(E2 +η2ω2)
E2 +η2ω2

E2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 2

+ 1
⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1/ 2

,    (6) 

    

€ 

kI = −
ρEω2

2(E2 +η2ω2)
E2 +η2ω2

E2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 2

−1
⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1/ 2

.    (7) 

The positive root for   

€ 

kR is chosen so that the wave propagates to the 
right, whereas the positive root must be chosen for   

€ 

kI so as to yield a 
wave whose amplitude decreases with x as it propagates.  

For a non-molten rock, we expect that the elastic part of the stress will 
dominate the viscous part, which is to say η must in some sense be 
“small”. Expanding (6) and (7) for small values of η gives 
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€ 

kR =
ω
c0

1− 3
8
ηω
E

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
,       

    

€ 

kI =
ηω2

2Ec0
,       (8) 

where     

€ 

c0 = (E /ρ)1/ 2 is the velocity that the elastic wave would have in 
the absence of any dissipative mechanisms. The actual velocity, 
    

€ 

c =ω / kR, varies with frequency, as it must for any dissipative medium, 
as is required by the Kramers-Kronig relations (Mavko et al., 2009, pp. 
127-128). However, to first-order in η, the wavespeed is unaffected by a 
small amount of viscous damping, and is given by     

€ 

c = (E /ρ)1/ 2 . Using 
this further simplification, the wave (3) can be expressed as 

    

€ 

u(x,t) = Uo exp(−kIx)exp[i{(ω / c0)x −ω t }],     (9) 

where   

€ 

kI is given by (8). Thus, the wave travels at velocity     

€ 

c0, but with 
an amplitude that decays exponentially with distance. This represents 
actual viscous attenuation, rather than the geometrical attenuation that 
occurs in spherical or cylindrical waves.  

According to this model, the attenuation seems to increase with the 
square of the frequency, according to (8b). However, there are various 
mechanisms in rocks that give rise to viscous-like behaviour, and each 
has, in effect, its own dependence of η on frequency. Thus, each 
mechanism predicts a frequency-dependence of attenuation that will 
reflect both the ω 

2 term from (8), and the frequency-dependence of η, 
usually giving rise to an exponent that differs from 2. Before discussing 
these dissipative mechanisms, we discuss several standard definitions 
that are used to quantify attenuation.  

The imaginary part of the wavenumber,   

€ 

kI, is also denoted by α, the 
attenuation coefficient. Its inverse, 1/  

€ 

kI, is the length over which the 
amplitude will decay by a factor of     

€ 

1/ e ≈ 0.37. The mechanical energy 
(kinetic plus elastic strain energy) contained in a sinusoidal plane wave 
is proportional to the square of the amplitude, according to §3(8), so the 
fractional loss of energy over one wavelength is 

      

€ 

ΔT
T

=
exp(−2αx)−exp(−2α{x + λ })

exp(−2αx)
= 1−exp(−2αλ) ≈ 2αλ .  (10) 
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The quality factor Q is defined in terms of this fractional energy loss, as 
follows: 

      

€ 

1
Q
≡
ΔT
2πT

=
2αλ
2π

=
2αc
ω

,       (11) 

where the last step makes use of the relation     

€ 

λ = 2πc /ω . Substituting   

€ 

kI 
from (8) into (11), and recalling that   

€ 

ωη = MI , and   

€ 

E = MR , shows that Q 
can also be expressed as 

    

€ 

1
Q

=
2αc
ω

=
2cηω2

2Ecω
=
ηω
E

=
MI
MR

.      (12) 

It can also be shown that, if α is small, 1/Q is equal to the phase shift (in 
radians) between the stress and the strain, under sinusoidal oscillations 
such as described in (2). Another parameter occasionally used to 
quantify attenuation in rocks is the logarithmic decrement, defined by 
    

€ 

δ = π /Q. 

Although α and Q contain essentially the same information, α measures 
the energy loss per distance travelled by the wave, whereas 1/Q 
measures the energy loss per wave cycle. Hence, as seen in (12), they 
will vary with frequency in different ways, a fact that should be 
remembered when viewing graphs of Q or α.  

Versions of the relations (10)-(12) that do not require the assumption of 
small attenuation are given by Bourbié et al. (1987, p. 113). Relations 
similar to those described above for waves propagating along a thin bar 
can be derived for bulk P and S-waves in terms of the real and 
imaginary parts of K and G, and the P and S-wave quality factors 
(Winkler and Nur, 1979).  

Toksöz and Johnston (1981) have collected many of the seminal papers 
on wave attenuation in rocks, and have provided several 
summary/overview chapters. Bourbié et al. (1987) present much data on 
attenuation measurements, and also review the various mechanisms. 
Measured values of Q for P-waves in various rocks are shown in Table 
9.1. Porous rocks such as sandstones and limestones tend to have Q 
values in the range of 10-100, whereas igneous and metamorphic rocks 
will be in the range 100-1000 (Bradley and Fort, 1966).  
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Table 9.1. P-wave quality factors of some rocks 

Rock Condition f (Hz) Q Source 

Tennessee 
marble 

dry 0-2×104 480 Wyllie et al. (1962) 

Quincy 
granite 

air dry 2-45×102 125 Birch & Bancroft (1938) 

Solenhofen 
limestone 

air dry 3-15×106 112 Peselnick & Zeitz (1959) 

Amherst 
sandstone 

oven dry 1-13×103 52 Born (1941) 

Pierre shale in situ 5-45×101 32 McDonal et al. (1958) 
Berea 
sandstone 

brine 
saturated 

 
2-8×105 

 
10 

 
Toksöz et al. (1979) 

 
Walsh (1966) developed a model in which attenuation is due to sliding 
friction along the faces of closed elliptical cracks. The model predicts 
    

€ 

Q−1 = f (µ,E / Em )ϖ , where µ is the coefficient of sliding friction along the 
crack faces, f is a dimensionless function whose values are on the order 
of 0.1, and 

€ 

ϖ  is the crack density parameter (defined in §10) for those 
cracks whose faces are barely touching. There will be no frictional sliding 
along faces of open cracks, and the small stresses associated with 
seismic waves will be insufficient to cause sliding on crack faces that are 
tightly closed. Savage (1969) argued that there are unlikely to be a 
sufficient number of “barely closed” cracks to yield appreciable values of 
    

€ 

Q−1.  

Mavko (1979) considering a tapered crack, a portion of whose two faces 
will always be in contact, and for typical parameter values found 

    

€ 

Q−1 ≈ ε /α i , where ε is the incremental strain associated with the wave, 
and   

€ 

α i  is some appropriate mean value of the initial crack aspect ratio. 
For values such as     

€ 

α i ≈ 10−3, this attenuation may be appreciable under 
laboratory conditions, but would be negligible at the strains encountered 
in seismic waves, which would typically be   

€ 

< 10−6, except very close to 
the source (Winkler et al., 1979).  
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Savage (1966) analysed attenuation arising from the conversion of 
mechanical energy into internal energy due to the coupling between 
strain and heat flow. The strain rises and falls sharply in the vicinity of 
cracks or pores, causing local heat flow, leading to wave attenuation 
described by 

    

€ 

Q−1 =
β2KTo
ρcv

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ g(ν)φF(ω),         (13) 

where β is the volumetric thermal expansion coefficient, K is the bulk 
modulus,   

€ 

To  is the ambient temperature, ρ is the rock density,   

€ 

cv  is the 
specific heat, φ is the porosity, g is a dimensionless function of the 
Poisson ratio (that takes on a slightly different form depending on 
whether the wave is compressional or shear), an F is a dimensionless 
function of frequency. The term in parenthesis in (13) is the 
thermoelastic coupling parameter that measures the extent to which 
strain induces heat flow, and is on the order of   

€ 

10−3 −10−4 for most 
rocks (Zimmerman, 2000). The function F is greatest at a characteristic 
frequency of about     

€ 

ω∗ = kT /ρcv a2, where a is the pore/crack size and 

    

€ 

kT  is the thermal conductivity; it increases with ω for lower frequencies, 
and drops off as   

€ 

ω−1 at higher frequencies. At the critical frequency, the 
diffusion length of the induced heat flux is on the order of the pore/crack 
size. By assuming a range of cracks sizes so as to smear out the 
function F over a range of frequencies, Savage found Q values of about 
225 for longitudinal waves and 350 for transverse waves in granite, 
about twice as high as the measured values. This mechanism therefore 
seems to be important for cracked igneous rocks, and can lead to 
attenuations as large as about     

€ 

Q−1 ≈ 0.01. 

The Biot theory of wave propagation in fluid-saturated rocks predicts 
attenuation due to the viscous drag exerted by the pore walls on the 
pore fluid. At frequencies below the Biot critical frequency     

€ 

ω∗ = φµ / kρf , 
which for most rock/fluid systems exceeds 1 MHz, the theory predicts 
(Schön, 1996, p. 252) 

    

€ 

Q−1 =
gρf

2kω
2ρµ

,          (14) 
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where   

€ 

ρf  is the density of the fluid, ρ is the density of the fluid-saturated 
rock, k is the permeability, and g is a numerical constant that equals 1 
for shear waves, and is less than 1 for compressional waves. The 
inverse relation between attenuation and viscosity predicted by (14) is in 
contradiction to most measured data (Jones and Nur, 1983). Mochizuki 
(1982) made measurements on a Massilon sandstone, and found 
attenuations much greater than those predicted by Biot theory. For 
consolidated rocks with permeabilities below about 1 Darcy, Biot 
attenuation appears to be negligible at seismic and logging frequencies 
(  

€ 

< 104  Hz). Biot theory has been more successful when applied to highly 
permeable sediments, for which (14) yields appropriately high values of 
1/Q (Stoll, 1989).  

Whereas the Biot attenuation mechanism is based on “global flow” of the 
pore fluid, Mavko and Nur (1975), Murphy et al. (1984) and others have 
modelled the attenuation arising from the local flow of fluid squirting out 
of compliant cracks that are compressed by the passing elastic wave. 
This “squirt” flow is local, and is not necessarily aligned with the direction 
of wave propagation. Instead, it occurs locally in directions determined 
by the geometry of crack and pore intersections. The attenuation 
predicted by squirt flow models goes to zero at low frequencies, since in 
the limit of zero frequency there can be no viscous attenuation, and also 
goes to zero at very high frequencies, at which the fluid does not have 
sufficient time to move from one crack to a neighbouring crack within 
one period of the wave. The attenuation is peaked about a critical 
frequency that is roughly given by (Sams et al., 1997) 

    

€ 

ω* ≈ Kα3 / µ ,          (15) 

where K is the bulk modulus of the rock, and α is the aspect ratio of the 
cracks. Sams et al. (1997) measured wavespeeds and attenuations on a 
finely-layered sequence of limestones, sandstones, siltstones and 
mudstones in northeast England, over a range of methods/frequencies 
spanning vertical seismic profiling (30-280 Hz), crosshole surveys (0.2-
2.3 kHz), sonic logging (8-24 kHz), and laboratory measurements (300-
900 kHz), and found a bell-shaped curve for 1/Q vs. lnω that fit very well 
to the squirt-flow model.  

One mechanism that produces “attenuation” without any conversion of 
mechanical energy into internal energy is elastic wave scattering. When 
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an elastic wave impinges upon an inhomogeneity, such as a pore, a 
crack, a fracture, etc., the inhomogeneity causes some portion of the 
energy to be scattered in directions other than the direction of 
propagation of the incident wave (Sato and Fehler, 1998), thereby 
effectively decreasing the amplitude of the original pulse. Yamakawa 
(1962) calculated the scattering from isolated spherical pores of radius 
a, and found 

Q-1 = gφ(ωa/c)3 = gφ(ka)3,        (16) 

where φ  is the porosity, and g is a dimensionless parameter of order 1 
whose precise value depends on the moduli and densities of the rock 
and pore fluid. Other pore shapes lead to the same general form, with a 
being some characteristic dimension such as crack length, but with 
different values of g. Yamakawa’s result applies asymptotically for 
wavelengths much larger than the inclusion size, the so-called Rayleigh 
scattering limit. As “typical” values of the parameters will be     

€ 

a ≈ 100 µm  
and     

€ 

c ≈ 5000 m/s, attenuation due to Rayleigh scattering will be become 
appreciable only for frequencies greater than about 1 MHz, i.e., perhaps 
important at laboratory frequencies, but negligible at seismic 
frequencies.  

As an approximation, it is usually assumed that the attenuation arising 
from different mechanisms, as quantified by     

€ 

Q−1, is additive. Individual 
mechanisms that give rise to very high values of Q are therefore 
negligible in comparison with other, more dominant, mechanisms. 
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10. Effect of Microstructure on Seismic Velocities 
The seismic velocities in a rock are controlled by the rock’s elastic 
moduli. The specific numerical values of the elastic moduli are in turn 
controlled by the mineralogy, the pore structure of the rock, and the pore 
fluids. The effect of pore fluids was discussed to some extent in §8. In 
this section we will discuss the influence of mineralogy and pore 
structure. Much more discussion of this topic can be found in 
Compressibility of Sandstones by Zimmerman (Elsevier, 1991), and the 
Rock Physics Handbook by Mavko et al. (Cambridge, 2009). 

10.1. Effect of Mineralogy 
First consider a piece of rock that contains no cracks or pores. In some 
rare cases the rock may be composed of a single mineral, but in general 
it will be composed of a mixture of several minerals, each of which has 
its own elastic moduli, K and G. (To keep the discussion simple, we will 
ignore anisotropy on the scale of a single mineral crystal). But on a scale 
that is much larger than a single grain, this rock can be treated as a 
homogeneous elastic body that has some effective elastic moduli, Keff 
and Geff. Calculating these effective moduli is conceptually similar to the 
upscaling problem of calculating the effective permeability of a 
heterogeneous rock.  

We start by considering a piece of a homogeneous rock that consists of 
a single mineral of bulk modulus K. If this piece of rock is subjected to a 
hydrostatic pressure P over its external surface, the volumetric strain 
inside the rock will be uniform, and equal to P/K. The total volume 
change of the rock will be ΔV = PV/K.   

Next, consider a rock that consists of an assemblage of N different 
minerals, each having its own bulk modulus Ki, where i = 1,2,3,…,N. If a 
piece of this rock is subjected to a hydrostatic pressure P, the resultant 
strain in the rock will not be uniform. In general, the stiffer minerals will 
deform less than the more compliant minerals, although the precise 
deformation in each grain will depend on the geometrical configuration of 
the grains. For example, a compliant clay particle that is sitting inside a 
pore in a sandstone will undergo much less deformation than would a 
clay particle that is wedged between two sand grains. Nevertheless, this 
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rock will undergo some overall volume decrease, ΔV. From a purely 
macroscopic point of view, an “effective” bulk modulus   

€ 

Keff  can be 
defined by the relation     

€ 

Keff = PV /ΔV . This effective bulk modulus can 
be interpreted as the bulk modulus of a hypothetical homogeneous rock 
that would undergo the same mean volumetric strain as does the actual 
heterogeneous rock.  

Precise calculation of   

€ 

Keff  would require exact knowledge of the 
microstructure of the rock, which in practice is never available. However, 
if the volume fractions   

€ 

χ i  and bulk moduli   

€ 

Ki  of the various mineral 
components of the rock are known, the methods of Reuss and Voigt can 
be used to provide estimates of   

€ 

Keff .  

Reuss (1929) made the assumption that the stresses would be uniform 
throughout the heterogeneous rock. In reality this cannot be exactly true, 
as the different strains in the various mineral grains would then lead to 
displacement discontinuities at the grain boundaries. But if the stress 
within each mineral were indeed a hydrostatic compression P, then the 
volume change of each component would be     

€ 

ΔVi = PVi / Ki . The total 
volume change would then be given by the sum of the volume changes 
of the individual minerals, i.e., 

    

€ 

ΔV = ΔVi
i =1

N
∑ =

PVi
Kii =1

N
∑ =

Pχ iV
Kii =1

N
∑ = PV χ i

Kii =1

N
∑ .     (1) 

Using the definition     

€ 

Keff = PV /ΔV ,  

    

€ 

Keff
Reuss =

PV
ΔV

=
χ i
Kii =1

N
∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−1

.        (2)  

The Reuss effective bulk modulus is therefore the weighted harmonic 
mean of the individual bulk moduli. In terms of the compressibilities, 

    

€ 

Ceff
Reuss ≡ 1/ Keff

Reuss =
χ i
Kii =1

N
∑ = χ iCi

i =1

N
∑ ,      (3)  

and so the Reuss effective compressibility is the weighted arithmetic 
mean of the individual mineral compressibilities. 
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Voigt (1889), on the other hand, made the assumption that the 
volumetric strains are uniform throughout the heterogeneous body. 
Again, this cannot be precisely true, as equality of strains implies that 
the stresses in each mineral phase are different, and so the resulting 
stress field would be discontinuous, and would not satisfy the stress 
equilibrium equations. Under the assumption of equal volumetric strains, 
the mean normal stress in each component would be given by 
    

€ 

σm,i = εvKi . The average value of the mean normal stress is simply the 
volumetric average of the mean normal stress in each component:  

    

€ 

σm = χ iσm,i
i =1

N
∑ = χ iεvKi

i =1

N
∑ = εv χ i Ki

i =1

N
∑ .     (4)  

Making the obvious identification of the average value of the mean 
normal stress with the applied stress P, it follows from the definition 
    

€ 

Keff = PV /ΔV = P /εv  that 

    

€ 

Keff
Voigt =

P
εv

=
σm

εv
= χ i Ki

i =1

N
∑ .       (5)  

Voigt’s estimate of the effective bulk modulus is therefore simply the 
weighted arithmetic mean of the individual bulk moduli. The Voigt 
estimate of the effective compressibility is 

    

€ 

Ceff
Voigt ≡

1

Keff
Voigt

= χ i Ki
i =1

N
∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−1

=
χ i
Cii =1

N
∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−1

.     (6) 

Since the harmonic mean of a set of numbers can never exceed the 
arithmetic mean, the Voigt estimate of   

€ 

Keff  will always exceed the 
Reuss estimate. More specifically, however, Hill (1952) used strain 
energy arguments to prove that the Voigt and Reuss estimates are 
rigorous upper and lower bounds on the true value of the effective bulk 
modulus, i.e., 

    

€ 

χ i
Kii =1

N
∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−1

= Keff
Reuss ≤ Keff ≤ Keff

Voigt = χ i Ki
i =1

N
∑ .    (7) 
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Hill then proposed using the average of the Voigt and Reuss bounds to 
find a best estimate of   

€ 

Keff . The resulting value is known as the Voigt-
Reuss-Hill estimate of the effective modulus: 

    

€ 

Keff
VRH =

1
2

[Keff
Reuss + Keff

Voigt ].        (8) 

Although there is no particular justification for assuming that   

€ 

Keff  will lie 
exactly midway between the two bounds, Hill’s assumption has the 
advantage of giving an estimate of the effective modulus that a priori will 
be guaranteed of having the minimum possible error. 

The Voigt, Reuss and Hill arguments can also be applied to the 
estimation of the effective shear modulus of a heterogeneous rock. In 
this case, 

    

€ 

χ i
Gii =1

N
∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−1

= Geff
Reuss ≤Geff ≤Geff

Voigt = χ iGi
i =1

N
∑ ,    (9) 

    

€ 

Geff
VRH =

1
2

[Geff
Reuss + Geff

Voigt ].       (10) 

Similar equations are often written for the Young’s modulus. However, in 
general the arithmetic and harmonic means of the individual Young’s 
moduli will not necessarily provide bounds on   

€ 

Eeff  (Grimvall, 1986, p. 
261). Instead, bounds on   

€ 

Eeff  can be obtained from the bounds on   

€ 

Keff  
and   

€ 

Geff  by using the identity     

€ 

1/ E = 1/(3G)+ 1/(9K).  

Values for the elastic moduli of various rock-forming minerals have been 
compiled by Clark (1966), Simmons and Wang (1971), and Mavko et al. 
(2009). Bulk moduli values of common minerals range from about 36-38 
GPa for quartz, 63-77 GPa for calcite, 130 GPa for olivine, up to about 
253 GPa for corundum. Shear moduli range from about 28-32 GPa for 
calcite, 44-46 GPa for quartz, 80 GPa for olivine, up to about 162 GPa 
for corundum. Hence, the range of values of K and G observed in 
common minerals span a range of less than one order of magnitude.   

The relative lack of variability of the elastic moduli of different minerals 
causes the Voigt and Reuss bounds to usually be fairly close together. 
In many cases, the difference between the Voigt and Reuss estimates 
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will be within the experimental uncertainty of the moduli values of the 
individual minerals. 

Brace (1965) measured the bulk moduli of several crystalline rocks at 
pressures up to 900 MPa. At such high pressures, it can be assumed 
that any cracks that may have been present at low pressures will be 
closed. As a representative example, consider the granite from Stone 
Mountain, Georgia, which was composed of 42% plagioclase, 30% 
quartz, 24% microcline, and 4% mica. In its unstressed state, it had a 
density of 2631 kg/m3, and a micro-crack porosity of 0.3%. At 900 MPa, 
the individual mineral bulk moduli assumed by Brace were 62.7 GPa for 
plagioclase, 44.5 GPa for quartz, 60.0 GPa for microcline, and 50.1 GPa 
for mica. From (5), the Voigt estimate is 56.1 GPa, the Reuss estimate is 
54.8 GPa, and the Voigt-Reuss-Hill estimate is 55.5 GPa. The measured 
bulk modulus was 56.8 GPa. Considering that the mineral compositions 
were reported only to within the nearest percent, the Voigt-Reuss-Hill 
average agrees with the measured value of the effective bulk modulus 
as nearly as one could expect. Brace found similar results for the other 
rocks.  

10.2. Effect of Pores on the Elastic Moduli 
The presence of pores or cracks will cause the moduli of a rock to be 
less than Km and Gm. The extent to which the effective moduli of the 
actual porous rock are less than those of the mineral phase will depend 
on the amount of porosity, and the shape of the pores. Precise 
calculation of this effect is a difficult and still controversial problem in 
rock physics. We will review some of the models that are used to 
estimate the effective moduli, and show specific results for the two 
important cases of spherical pores and thin, penny-shaped cracks. 

Numerous methods for accounting for the effect of pores on the elastic 
moduli have been proposed in the fields of rock physics, ceramics, and 
materials science. These methods are all applicable to the more general 
problem of predicting the effective elastic moduli of heterogeneous, 
multi-component materials (Christensen, 1991; Nemat-Nasser and Hori, 
1993; Milton, 2002). Most of these methods can be discussed within the 
general formalism based on the stored elastic strain energy. Since the 
elastic energy stored in a homogeneous body subjected to a pressure P 
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will be       

€ 

E = P2V / 2K , the effective bulk modulus K of a porous rock can 
be defined by  

      

€ 

P2V
2K

=
P2V
2Km

+ ΔEhydro ,            (1) 

where     

€ 

ΔEhydro  is the excess elastic strain energy that would be stored in 
a rock of bulk volume   

€ 

V , if the pores were introduced into the initially 
solid rock while maintaining a hydrostatic confining pressure P over its 
outer surface. The effective shear modulus can be defined in a similar 
way, with the rock assumed to be subjected to a shear stress of 
magnitude S: 

      

€ 

S2V
2G

=
S2V
2Gm

+ ΔEshear .           (2) 

Utilization of (1) and (2) requires the estimation of the energy 
perturbation terms caused by the presence of pores, under hydrostatic 
and shear loading. The simplest approach is to neglect stress-field 
interactions between nearby pores, and calculate the energy change 
due to each pore as if were an isolated void in an infinite intact rock, and 
then sum up this energy for all the pores. The two energy perturbations, 
    

€ 

ΔEhydro  and     

€ 

ΔEshear , will depend on the moduli of the intact rock, 
    

€ 

{Km,Gm }, and will be proportional to the porosity. The equations for the 
two effective moduli will be uncoupled, and can be solved explicitly for 
the effective moduli K and G. 

For example, the energy terms for an isolated spherical pore are given 
by (Nemat-Nasser and Hori, 1993) 

      

€ 

ΔEhydro =
P2V
2Km

3Km + 4Gm
4Gm

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ φ ,       (3) 

      

€ 

ΔEshear =
P2V
2Gm

15Km + 20Gm
9Km + 8Gm

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ φ .        (4) 

If the energy terms (3) and (4) are used in (1) and (2), the effective 
moduli are predicted to be 



MSc in Petroleum Geophysics            Seismic Rock Physics                   RW Zimmerman                  Page 84 
   
 

  
Imperial College London                                                          Department of Earth Science and Engineering 

 

 

    

€ 

K
Km

= 1+
3Km + 4Gm

4Gm
φ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1
= 1+

3(1−νm )
2(1−2νm )

φ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1
,    (5) 

    

€ 

G
Gm

= 1+
15Km + 20Gm

9Km + 8Gm
φ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1
= 1+

15(1−νm )
(7−5νm )

φ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1
,   (6) 

As these predictions ignore pore-pore interactions, they are correct only 
to first-order in φ, and increasingly overestimate the moduli as the 
porosity increases. This overestimation is also clear from the fact that 
they predict finite elastic moduli when the porosity reaches 100% (Fig. 
10.1). 
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Fig. 10.1. Elastic moduli of a rock containing dry, randomly distributed 
spherical pores, according to various effective medium theories. The 
Poisson ratio of the intact rock is taken to be 0.25. 

In the so-called “self-consistent” scheme of Hill (1965) and Budiansky 
(1965), the excess strain energy due to each single pore is calculated by 
assuming that it is introduced into a homogeneous medium that has the 
elastic properties of the actual porous material. This leads to the same 
functional forms for the two energy terms as does the “no-interaction” 
approach, except that     

€ 

{Km,Gm } are replaced by     

€ 

{K,G}. In general, (1) 
and (2) become two coupled nonlinear algebraic equations that require 
numerical solution. For spherical pores, the self-consistent method yields 

    

€ 

1
K

=
1

Km
+

1
K

3K + 4G
4G

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ φ ,        (7) 

G
/G

m
 

K
/K

m
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€ 

1
G

=
1

Gm
+

1
G

15K + 20G
9K + 8G

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ φ .       (8) 

This method yields much lower effective moduli than does the no-
interaction method, and predicts that the moduli vanish at some finite 
porosity (Fig. 10.1). 

Bruner (1976) suggested that the self-consistent method implicitly takes 
interactions between pairs of pores into account twice, since the “typical” 
pore is assumed to be imbedded in an effective medium whose elastic 
moduli already reflect in part the interactions between this typical pore 
and all other pores. To avoid this double-counting, one can introduce the 
pores into the rock sequentially, with pore     

€ 

n + 1 considered to be placed 
into a homogeneous medium which has the effective elastic properties 
of the body with n pores, etc. In this way, pore     

€ 

n + 1 feels the effect of 
pore n, but not vice versa. Each new pore is assumed to be randomly 
placed, and so if the “current” porosity is φ, the next pore “replaces” 
intact rock with probability 1-φ, and replaces existing pore space with 
probability φ (McLaughlin, 1977). In the limit in which each new addition 
of pores is infinitesimal, this method gives two coupled ordinary 
differential equations for the two effective moduli.   

In the case of spherical pores, these equations are 

    

€ 

−
(1− φ)

K
dK
dφ

=
3K + 4G

4G
,           (9) 

    

€ 

−
(1− φ)

G
dG
dφ

=
15K + 20G

9K + 8G
.        (10) 

The initial conditions are that   

€ 

K = Km and   

€ 

G = Gm when   

€ 

φ = 0. These 
equations can be integrated to give the following implicit expressions for 
the effective moduli (Norris, 1985): 

    

€ 

G
Gm

= (1− φ)2 1+ β(G /Gm )3 / 5

1+ β

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 3

,      (11) 

    

€ 

K
Km

=
G

Gm

1+ 2β
1+ 2β(G /Gm )3 / 5

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
,                             (12) 
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where     

€ 

β = (1−5νm ) / 2(1+ νm ). In general, these two equations must be 
solved numerically for K and G. Two-digit accuracy can be achieved by 
substituting     

€ 

G /Gm = (1− φ)2  into the right-hand sides of (11) and (12). 

The problem of computing the effective moduli of a porous rock can also 
be approached using a wave-scattering formalism; the relationships 
between elastic moduli and seismic wavespeeds are discussed in §5. 
Kuster and Toksöz (1974) calculated the sum of the elastic waves that 
have been scattered once from each of an assemblage of pores in a 
body with moduli     

€ 

{Km,Gm }, and equated this to the wave that would be 
scattered from an “equivalent homogeneous spherical inclusion” whose 
moduli are equal to the effective moduli of the porous rock,     

€ 

{K,G}. 
Toksöz et al. (1976) and Wilkens et al. (1986) used this approach to 
model seismic velocities in reservoir sandstones, and Zimmerman and 
King (1986) used it to study the effect of the ice/water ratio on seismic 
velocities in permafrost. For a rock containing dry spherical pores, the 
method of Kuster and Toksöz gives (Fig. 10.1) 

    

€ 

K
Km

=
1− φ

1+ (3Km / 4Gm )φ
=

1− φ
1+ [(1+ νm ) / 2(1−2νm )]φ

,   (13) 

    

€ 

G
Gm

=
1− φ

1+ [(6Km + 12Gm ) /(9Km + 8Gm )]φ
=

1− φ
1+ [2(4 −5νm ) /(7−5νm )]φ

.(14) 

The predicted moduli lie between those of the no-interaction method and 
the differential method, and vanish at a porosity of 100%. The Kuster-
Toksöz predictions for a rock containing spherical pores also coincide 
exactly with the upper bounds of Hashin and Shtrikman (1961), which 
are valid regardless of the geometry of the pores.   

The predictions of these four methods are plotted in Fig. 10.1, for 
    

€ 

νm = 0.25. Each approach predicts similar, although in general not 
identical, behavior for G as it does for K. Consider the curves for the 
effective bulk modulus as a function of spherical porosity. If expanded in 
Taylor series in φ, all four methods agree to first-order, but give different 
values for the higher-order coefficients. The predictions diverge from 
each other markedly for porosities greater than about 0.10. As an 
indication of the validity of these approaches, consider the suite of 
porous glass specimens that were fabricated by Walsh et al. (1965) to 
have pores that were as nearly spherical as possible. The measured 
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bulk moduli, for porosities ranging from 0.05-0.70, generally fell about 
midway between the predictions of the Kuster-Toksöz and the 
differential schemes (Zimmerman, 1991, p. 120). 

Each of the sets of predicted effective moduli take on a particularly 
simple form when     

€ 

Km = 4Gm / 3, which corresponds to     

€ 

νm = 0.2. In this 
case the no-interaction method gives     

€ 

K / Km =    

€ 

G /Gm = (1+ 2φ)−1, the 
self-consistent method gives     

€ 

K / Km =    

€ 

G /Gm = 1−2φ , the differential 
method gives     

€ 

K / Km =    

€ 

G /Gm = (1− φ)2 , and the method of Kuster and 
Toksöz gives     

€ 

K / Km =     

€ 

G /Gm = (1− φ) /(1+ φ). 

10.3. Effect of Cracks on the Elastic Moduli 
In order to apply the effective moduli theories to a body with penny-
shaped cracks, the two strain energy perturbation terms are needed. 
The energy perturbation     

€ 

ΔEhydro  for a single penny-shaped crack of 
radius a under hydrostatic loading is given by §8.13 (4) of Jaeger et al. 
(2007): 

      

€ 

ΔEhydro =
4(1−νm )a3P2

3Gm
=

8(1−νm
2 )a3P2

9(1−2νm )Km
.     (1) 

The strain energy perturbation     

€ 

ΔEshear  for an isolated crack subjected 
to a shear stress of magnitude S will depend on the orientation of the 
shear stress with respect to the crack plane; this issue does not arise for 
hydrostatic loading, nor does it arise for shear loading in the case of a 
spherical pore. If the orientations of the cracks within the rock are 
randomly distributed, the strain energy must be averaged over all 
possible angles of inclination with respect to the direction of shear. The 
average excess strain energy per crack, for a random distribution of 
crack planes, is (see Jaeger et al., 2007, §10.5 (60) for details): 

      

€ 

ΔEshear =
16(1−νm )(5−νm )a3S2

45(2−νm )Gm
.      (2) 

According to the no-interaction scheme, the effective elastic moduli of a 
randomly/isotropically-cracked body can be found by inserting the 
energy perturbations (1) and (2) into the general expressions §10.2 (1) 
and (2), to yield 
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€ 

K
Km

= 1+
16(1−νm

2 )
9(1−2νm )

Γ
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−1

,        (3) 

    

€ 

G
Gm

= 1+
32(1−νm )(5−νm )

45(2−νm )
Γ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1
,      (4) 

where VNa /3=Γ  is the “crack density parameter”, and N/V is the 
number of cracks per unit volume. The predictions of the self-consistent 
method are also found by inserting (1) and (2) into §10.2 (1) and (2), but 
with     

€ 

{K,G,ν } used in the excess energy terms. This leads to the 
following implicit expressions for K and G (O’Connell and Budiansky, 
1974): 

    

€ 

K
Km

= 1− 16(1−ν2)
9(1−2ν)

Γ ,        (5) 

    

€ 

G
Gm

= 1− 32(1−ν)(5−ν)
45(2−ν)

Γ .          (6) 

These equations can be partially inverted by using the identity 
    

€ 

3K(1−2ν) = 2G(1+ ν) to eliminate G and K, to arrive at 

    

€ 

Γ =
45(νm −ν)(2−ν)

16(1−ν2)(10νm −3νmν −ν)
.      (7) 

After (7) is solved numerically for ν as a function of Γ, this value of ν can 
be used in (5) and (6) to find K and G. The curves of K and G as 
functions of Γ are somewhat nonlinear, but the effective Young’s 
modulus that follows from (5) and (6) is very nearly a linear function of 
crack density. For all     

€ 

0 < νm < 1/ 2, the following expression is accurate 
to within 1%: 

    

€ 

E
Em

= 1− 16
9
Γ .         (8) 

The equations of the differential scheme, for a rock containing randomly 
distributed and oriented cracks, are (Salganik, 1973) 

    

€ 

1
K

dK
dΓ

= −
16(1−ν2)
9(1−2ν)

,             (9) 
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€ 

1
G

dG
dΓ

= −
32(1−ν)(5−ν)

45(2−ν)
.        (10) 

Using the initial conditions that   

€ 

K = Km and   

€ 

G = Gm when   

€ 

Γ = 0, these 
equations can be integrated to yield (Zimmerman, 1991) 

    

€ 

eΓ =
3−ν

3−νm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

5 /128 1−ν
1−νm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

30 /128 1+ ν
1+ νm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

45 /128
ν
νm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−80 /128
, (11) 

    

€ 

K
Km

=
ν
νm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

10 / 9 3−ν
3−νm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1/ 9 1−2ν
1−2νm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1
.     (12) 

A simple and accurate approximate solution to (9) and (10) is (Bruner, 
1976): 

    

€ 

E
Em

= e−16Γ / 9, ν
νm

= e−8Γ / 5.       (13) 

Kuster and Toksöz (1974) presented equations for the effective moduli 
of a body containing oblate spheroidal pores of arbitrary aspect ratio, but 
did not explicitly consider the limiting case of infinitely thin cracks. If we 
examine their solution in the limit as the aspect ratio goes to zero, the 
effective moduli predicted by their method are found to be  

    

€ 

K
Km

=
1− [32(1+ νm ) / 27]Γ

1+ [16(1+ νm )2 / 27(1−2νm )]Γ
,     (14) 

    

€ 

G
Gm

=
1− [32(5−νm )(7−5νm ) / 675(2−νm )]Γ
1+ [64(5−νm )(4 −5νm ) / 675(2−νm )]Γ

.    (15) 

 

 

The various predictions for the effective moduli of a rock containing a 
random distribution of cracks are plotted in Fig. 10.2. Note that the 
relative positions of the curves are not quite the same as for spherical 
pores; for cracks, the Kuster-Toksöz model predicts lower moduli than 
does the differential scheme. All four methods agree to first-order in 
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crack density, but begin to diverge appreciably for crack densities 
greater than about 0.15. The no-interaction method predicts that the 
moduli decay to zero roughly as 1/Γ, whereas the differential method 
predicts a faster, exponential decay. Nevertheless, both of these 
methods predict substantial moduli values for crack densities as high as 
1.0. The self-consistent method, on the other hand, predicts that the 
moduli both vanish at a crack density of 0.5625. The Kuster-Toksöz 
method also predicts that the moduli vanish at some finite crack density, 
although this critical density differs for K and G, and varies with the 
Poisson ratio of the intact rock. 
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Fig. 10.2. (a) Effective bulk modulus and (b) effective shear modulus of a 
rock containing dry, randomly distributed and randomly oriented penny-
shaped cracks, according to various effective medium theories. The 
Poisson ratio of the intact rock is taken to be 0.25.  

All three energy-based methods predict that as the moduli decay to zero 
due to an increase in crack density, the effective Poisson’s ratio goes to 
zero. However, as the Kuster-Toksöz method predicts that K decays 
faster than G, there is a range of crack densities for which this method 
predicts positive values for both of the elastic moduli, but a negative 
value for Poisson’s ratio. For example, if     

€ 

νm = 0.25, the Kuster-Toksöz 
method predicts negative values of the Poisson ratio for the range of 
crack densities   

€ 

0.420 < Γ < 0.675. This is clearly physically unrealistic. 

Budiansky and O’Connell (1976) showed that the results for cracks with 
circular planforms can be applied to cracks having elliptical planforms, if 
the crack density is defined as     

€ 

Γ = 2NA2 / PπV , where A is the area of 

G
/G

m
 

K
/K

m
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the crack in its plane, and P is its perimeter. Various special cases of two 
and three-dimensional bodies containing systems of aligned cracks are 
discussed by Hashin (1988), Kachanov (1994), Nemat-Nasser and Hori 
(1993), and Mavko et al. (2009). The effective moduli of a body 
containing randomly-oriented needle-shaped pores are discussed by 
Berryman (1995). 
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Homework Questions  
 
As we discussed in the lectures, the coursework questions consist of filling in some missing 
steps in the derivations of some of the equations in the notes. In doing so, please make use of 
any already-derived equations in the notes. 
 
1. In a one-dimensional elastic wave, prove that the stress and the strain satisfy the same 
partial differential equation as does the displacement, i.e., derive eq. (4) of p. 3.  
 
2. Starting with eqs. (9) and (10) of. p. 5, derive the d’Alembert solution of the wave 
equation, eq. (11). If you can't derive it, then work backwards from eq. (11), and verify that it 
satisfies eqs. (9) and (10).  

Hint:  recall that                       
    

€ 

d
dx

f (s)ds
a(x)

b(x)
∫

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= f (b) ʹ′ b (x) − f (a) ʹ′ a ( x) . 

 
3. Verify that reflected and transmitted waves, as given by expressions (16) and (17) on p. 7, 
contain the same total energy that was contained in the original incident wave. Hint: the 
energy of a one-dimensional wave is given by eq. (24) of p. 9. 
 
4. Starting with eqs. (4-6) on pp. 33-34, for the strains in terms of the stresses, derive eqs. (9-
11) of p. 35, which give the stresses in terms of the strains. Hint: adding up eqs. (4-6) will 
give you a useful relation between the sum of the three normal stresses and the sum of the 
three normal strains. Then, add and subtract ντxx/E from the right side of eq. (4), so that the 
term τxx + τyy + τzz appears, etc. 
 
5. Derive eq. (8) on p. 41. Hint: recall the definition of   

€ 

∇2 given in eq. (9) on p. 38. 
 
6. Prove the assertion made on p. 41: choosing     

€ 

ʹ′ ʹ′ f (η) = 0  in eq. (9) leads to a rigid-body 
motion or a steady-state uniform strain, but not to a wave-like motion.   
 
7. Using eqs. (18-20) on p. 36, and eq. (13) on p. 42, show that the compressional wave speed 
can also be written in the forms given by eq. (14) of p. 42. 
 
8. Consider an SH-wave impinging on an interface between two rock types that have the 
same density but different shear moduli (i.e., different wavespeeds). Starting with the 
reflection coefficient given by eq. (11) on p. 51, find the angle of incidence for which the 
amplitude of the reflected wave is zero. 
 
9. Starting with eqs. (20,21) on p. 62, derive Thomsen’s approximate expression, eq. (27), for 
the speed of the quasi-shear wave.  
 
10. Solve eq. (5) on p. 71 to find the real and imaginary parts of the wave number of the 
viscoelastic wave, as given by eqs. (6) and (7). 
 
Please turn in your solutions to Shashi Luther by 5 pm, Monday, 31 January. 
 


